
Troubleshooting StarOS Facility Crashes

Contents

Introduction
Overview
Scenario of Crashes
Reason Behind Crash
Different Types of Crash
Initial Logs Requirement
Analysis Steps
Session Recovery

Introduction

This document describes how to find and troubleshoot StarOs Facility Crashes.

Overview

At times, the system logic can fail, causing a software task to restart in order to restore proper functionality.
This can lead to a process crash. Task facility crashes are frequently reported in StarOS, and the necessary
actions can be taken based on the root cause of the crash. To identify crashes on the node, you can use this
CLI command:

 ******** show crash list *******
Saturday April 15 05:05:56 SAST 2023
=== ==================== ======== ========== =============== =======================
Time Process Card/CPU/ SW HW_SER_NUM
 PID VERSION CF / Crash Card
=== ==================== ======== ========== =============== =======================

1 2022-Dec-02+14:08:46 confdmgr 02/0/19342 21.26.13 NA
2 2022-Dec-02+14:48:08 confdmgr 02/0/31546 21.26.13 NA
3 2022-Dec-04+19:10:50 sessmgr 03/0/12321 21.26.13 NA
4 2022-Dec-21+03:34:13 sessmgr 04/0/12586 21.26.13 NA

Similar crashes are consolidated into one record. The record does display the number of times this crash
type has occurred.

********************* CRASH #02 ***********************
SW Version : 21.26.13
Similar Crash Count : 33 >>>>
Time of First Crash : 2022-Dec-02+14:10:05

Assertion failure at confdmgr/src/confdmgr_fsm.c:870
 Note: State machine failure, state = 3
 Function: confdmgr_fsm_state_wait_p0_handler()
 Expression: 0

 Code: CRASH
 Proclet: confdmgr (f=1900,i=0)
 Process: card=2 cpu=0 arch=X pid=31546 argv0=confdmgr

In show snmp trap history verboseoutput shows that some process has crashed:

Fri Dec 26 08:32:20 2014 Internal trap notification 73 (ManagerFailure) facility sessmgr
instance 188 card 7 cpu 0
Fri Dec 26 08:32:20 2014 Internal trap notification 150 (TaskFailed) facility sessmgr instance
188 on card 7 cpu 0
Fri Dec 26 08:32:23 2014 Internal trap notification 1099 (ManagerRestart) facility sessmgr
instance 139 card 4 cpu 1
Fri Dec 26 08:32:23 2014 Internal trap notification 151 (TaskRestart) facility sessmgr
instance 139 on card 4 cpu 1

Scenario of Crashes

There can be multiple different reasons for crashes:

1. Different call flow scenarios

2. Memory issues

3. Configuration issue

4. Hardware failures

Reason Behind Crash

You have multiple task facilities in StarOS having their individual functionality so based on the functions,
whenever the facility encounters any such input where it is getting into a problematic state, it crashes the
facility to recover from that error state.

Different Types of Crash

1. Assertion failure:

********************* CRASH #22 ***********************
SW Version : 21.26.13
Similar Crash Count : 33
Time of First Crash : 2023-Apr-12+22:40:01

Assertion failure at sess/smgr/sessmgr_snx.c:9568 >>>>
 Function: sessmgr_snx_send_drop_call()
 Expression: result == SN_STATUS_SUCCESS
 Proclet: sessmgr (f=87000,i=261)
 Process: card=5 cpu=0 arch=X pid=12724 cpu=~0% argv0=sessmgr

2. Segmentation fault:

********************* CRASH #69 ***********************
SW Version : 21.13.3
Similar Crash Count : 2
Time of First Crash : 2019-Nov-25+07:53:54
Fatal Signal 11: Segmentation fault >>>>
Faulty address: 0x7ff6b4801036
Signal from: kernel
Signal detail: address not mapped to object
Process: card=8 cpu=1 arch=X pid=7316 argv0=vpp
Crash time: 2020-Feb-11+04:04:23 UTC
Build_number:

3. Fatal Signal:

********************* CRASH #01 ***********************
SW Version : 21.23.12
Similar Crash Count : 2
Time of First Crash : 2023-Jan-27+05:22:46

Fatal Signal 11: 11 >>>>>
 PC: [04be6859/X] sessmgr_pgw_create_bearers()
 Faulty address: 0x297116e4
 Signal from: kernel
 Signal detail: address not mapped to object
 Process: card=9 cpu=1 arch=X pid=10383 cpu=~8% argv0=sessmgr

Initial Logs Requirement

The crash log serves as a valuable source of crash event information. When a software crash occurs, StarOS
captures and stores relevant data that can help determine the cause of the crash. This information can be
stored in system memory or transferred and saved on a network server.

Core File or Mini Core File: Note that core files correspond to the PID(s) where the crash occurred. Core
files are named in the format "crash-<card no>-<cpu>-<pid>-<unixtime>-core". You can find this
information in the "show crash list" command output.

Minicore File: This file contains information about the failing task, including the current stack trace, past
profiler samples, past memory-activity samples, and other bundled data in a proprietary file format.

Core Dump (or Full Core): A core dump provides a complete memory dump of the process immediately
after the crash occurred. This memory dump is often essential in identifying the root cause of the software
crash.

Crash Signatures: The crash signatures can be reviewed from the shared Show Support Details (SSD) or
other relevant sources.

 ******** show crash list *******

Saturday April 15 05:05:56 SAST 2023
=== ==================== ======== ========== =============== =======================
Time Process Card/CPU/ SW HW_SER_NUM
 PID VERSION CF / Crash Card
=== ==================== ======== ========== =============== =======================

1 2022-Dec-02+14:08:46 confdmgr 02/0/19342 21.26.13 NA
2 2022-Dec-02+14:48:08 confdmgr 02/0/31546 21.26.13 NA
3 2022-Dec-04+19:10:50 sessmgr 03/0/12321 21.26.13 NA

Now if you want to know the signature for crash 1, search in SSD with CRASH #01 or in CLI use show
crash number 1.

From SSD

********************* CRASH #01 ***********************
SW Version : 21.26.13
Similar Crash Count : 1
Time of First Crash : 2022-Dec-02+14:08:46

Assertion failure at confdmgr/src/confdmgr_fsm.c:758
 Note: State machine failure, state = 5
 Function: confdmgr_fsm_state_wait_p1_handler()
 Expression: 0
 Code: CRASHâ€‹

Using CLI

[local]abc# show crash number 1
Friday June 09 06:41:53 CDT 2023
********************* CRASH #01 ***********************
SW Version : 21.12.20.77760
Similar Crash Count : 1
Time of First Crash : 2021-Mar-31+15:58:06

Fatal Signal 6: Aborted
 PC: [ffffe430/X] __kernel_vsyscall()
 Note: User-initiated state dump w/core.
 Signal from: sitmain pid=6999 uid=0
 Process: card=9 cpu=0 arch=X pid=9495 cpu=~0% ar

Examine the Show Support Details (SSD) and syslogs during the specific timestamp when the problem
occurred.

Analysis Steps

1. Need to check the crash stack/signature and to check if there are any bugs for that particular crash
signature.

2. Need to parse the corefile/minicore to analyze the backtrace and to get a clue for what function the facility
crashed.

3. Once corefile debugging is done, you need to verify the symptoms with the software defect and if there is
any existing software defect for a similar crash signature and backtrace.

Session Recovery

StarOs software is designed to handle both foreseen conditions/events and unforeseen conditions/events.
While Cisco strives to have perfect software, inevitably mistakes do exist and crashes are possible. That is
why the session recovery feature is so important.

The Session Recovery feature provides seamless failover and reconstruction of subscriber session
information in the event of a hardware or software fault within the system preventing a fully connected user
session from being disconnected. Session recovery is performed by mirroring key software processes (for
example, session manager and AAA manager) within the system. These mirrored processes remain in an
idle state (standby mode) wherein they perform no processing until they can be needed in the event of a
software failure (for example, a session manager task aborts).

Tasks such as demux tasks, AAA manager, and VPN manager have built-in automatic recovery mechanisms
in our systems, specifically for handling subscriber information. Session recovery primarily refers to
scenarios where there is a failure in the sessmgr task or a card-level failure, and sessions need to be
recovered without any call loss.

In the system, a standby session manager is active on each processing card and can quickly take over
as the primary sessmgr in case of a failure. A new standby sessmgr is then created on the processing
card.

•

When a sessmgr process unexpectedly fails, the standby sessmgr retrieves backed-up information
from the aaamgr (AAA manager) and rebuilds its sessions.

•

If the aaamgr fails, the standby aaamgr queries the sessmgr to synchronize the relevant subscriber
information.

•

In the event of demux-mgr failure, it queries all sessmgrs and reconstructs its database of call
distribution information.

•

To ensure card-level redundancy, one processing card serves as a standby, ready to take over in case
of hardware or software failure. The standby card then recovers the sessions from a peer aaamgr
running on a different card.

•

 ******** show session recovery status verbose *******
Saturday April 15 05:11:17 SAST 2023
Session Recovery Status:
 Overall Status : Ready For Recovery >>>>
 Last Status Update : 5 seconds ago

 ----sessmgr--- ----aaamgr---- demux
 cpu state active standby active standby active status
---- ------- ------ ------- ------ ------- ------ -------------------------
 3/0 Active 40 1 40 1 0 Good
 4/0 Active 40 1 40 1 0 Good
 5/0 Active 40 1 40 1 0 Good
 6/0 Active 40 1 40 1 0 Good
 7/0 Active 0 0 0 0 10 Good (Demux)
 8/0 Active 40 1 40 1 0 Good
 9/0 Active 40 1 40 1 0 Good
10/0 Active 40 1 40 1 0 Good
11/0 Standby 0 40 0 40 0 Good

