
Understand CAPWAP AP PMTU Discovery

Contents
Introduction

Scenario and Scope

CAPWAP Control vs. Data (What is Negotiated)

Facts: Maximum Sized CAPWAP Packet

Three-Stage PMTU Checks

CAPWAP PMTU Discovery Mechanism

IOS AP Behavior

AP Join Phase

RUN State Phase

COS AP Behaviour

AP Join Phase

RUN State Phase

Conclusion (Algorithm Summary)

Related CDETs

Introduction

This document describes the CAPWAP Access Point Path Maximum Transmission Unit (PMTU) discovery 
mechanism on IOS® XE and COS, issues, and resolution.

Scenario and Scope

You typically see PMTU issues when a CAPWAP access point (AP) at a remote site registers to a wireless 
LAN controller (WLC) across a WAN especially when the path includes VPN, GRE, or any network 
segment with an MTU lower than the standard 1500 bytes.

We also examine authentication with Extensible Authentication Protocol Transport Layer Security (EAP-
TLS). Because EAP-TLS exchanges large certificates, a reduced path MTU increases fragmentation risk.

All logs were captured on code version 17.9.3. Outputs are truncated to show only relevant lines.

CAPWAP Control vs. Data (What is Negotiated)

CAPWAP Control: 
The control channel handles critical management messages such as join requests, configuration exchanges, 
and keepalive signals. These messages are secured using DTLS and are the primary focus of the Path MTU 
(PMTU) negotiation process to ensure reliable and efficient control plane communication.

CAPWAP Data: 
This channel carries encapsulated client traffic, typically also protected by DTLS in most deployments. 
While PMTU negotiation occurs on the control channel, the resulting PMTU values indirectly determine the 
maximum packet size for data plane encapsulation, impacting client data transmission reliability and 
fragmentation.



Examples

Control Packets: Join requests and responses, configuration updates, and echo/keepalive messages.•
Data Packets: Encapsulated client frames transmitted between the Access Point (AP) and Wireless 
LAN Controller (WLC).

•

Facts: Maximum Sized CAPWAP Packet

IOS AP (example)

Sent PMTU packet size: 1499 bytes = Ethernet + CAPWAP PMTU

Ethernet = 14 Bytes•
CAPWAP PMTU = 1485 Bytes 

Outer IP = 20 Bytes○

UDP = 25 Bytes○

DTLS = 1440 Bytes○

•

 
AP-COS (Example)

Sent PMTU packet size: 1483 Bytes = Ethernet + CAPWAP PMTU

Ethernet = 14 bytes•
CAPWAP PMTU = 1469 bytes

Outer IP = 20 bytes○

UDP = 25 bytes○

DTLS = 1424 bytes○

•

Three-Stage PMTU Checks

Both platforms probe three hard-coded PMTU values: 576, 1005, and 1485. The difference is how each 
platform counts the Ethernet header: 

IOS APs do not include the Ethernet header in the 576/1005/1485 values.

Total frame = Ethernet (14) + PMTU (576/1005/1485) ⇒ 590, 1019, 1499 bytes (wire size).○

•

AP-COS does include the Ethernet header in the 576/1005/1485 values.

Total frame = PMTU (already includes Ethernet). These packets are 14 bytes smaller on the 
wire than IOS AP equivalents.

○

•

CAPWAP PMTU Discovery Mechanism

IOS AP Behavior

AP Join Phase

During CAPWAP join, the AP negotiates a maximum CAPWAP PMTU of 1485 bytes with the DF bit set. It 
waits 5 seconds for a response.

If no response or an ICMP “Fragmentation Needed” arrives, the AP falls back to 576 bytes to •



complete join quickly, then tries to raise PMTU after it reaches RUN.

Packet capture (example)

Packet number 106 You see a 1499-byte probe (DF set). No same-size response indicates the packet could 
not traverse the path without fragmentation. You then see ICMP “Fragmentation Needed.”

The corresponding AP level Debug ("debug capwap client path-mtu") shows that the AP tried first with 
1485 bytes and waited 5 seconds for a response. If no response, it sends another join request packet with a 
smaller length, as this is still in the join phase and we do not have time to waste. It goes to the minimum 
value to get the AP to join the WLC, as indicated in the debug log:

 

*Jul 11 18:27:15.000: CAPWAP_PATHMTU: CAPWAP_DTLS_SETUP: MTU = 1485 
*Jul 11 18:27:15.000: CAPWAP_PATHMTU: Setting default MTU: MTU discovery can start with 576 
*Jul 11 18:27:15.235: %CAPWAP-5-DTLSREQSUCC: DTLS connection created sucessfully peer_ip: 10.201.234.34 peer_port: 5246 
*Jul 11 18:27:15.235: CAPWAP_PATHMTU: Sending Join Request Path MTU payload, Length 1376, MTU 576 
*Jul 11 18:27:15.235: %CAPWAP-5-SENDJOIN: sending Join Request to 10.201.234.34 
... 
*Jul 11 18:27:20.235: %CAPWAP-5-SENDJOIN: sending Join Request to 10.201.234.34 
*Jul 11 18:27:21.479: %CAPWAP-5-JOINEDCONTROLLER: AP has joined controller c9800-CL

 

And if you run #show capwap client rcb in this moment, you see that the CAPWAP AP MTU at 576 bytes:

 

3702-AP#show capwap client rcb  
AdminState : ADMIN_ENABLED  
Primary SwVer : 17.9.3.50  
.. 
MwarName : c9800-CL  
MwarApMgrIp : 10.201.234.34 
OperationState : JOIN  
CAPWAP Path MTU : 576 

 

RUN State Phase

After The AP successfully Join the Wireless LAN Controller. you see the PMTU Discovery Mechanism in 
play, where after 30 seconds you can see the AP start to negotiate a higher PMTU value by sending another 
CAPWAP Packet with DF bit set of that size of the next highest PMTU value.

In this example, the AP tried 1005 bytes value. Because IOS excludes the Ethernet from the PMTU field, 
you see 1019 bytes on the wire. If the WLC responds, the AP updates PMTU to1005 bytes. If not, it waits 
30 seconds and tries again. 



This screenshot displays a successful AP negotiation of 1005 PMTU (see packets #268 and #269). Notice 
that these packets have different sizes, which is due to the WLC having a different algorithm for PMTU 
calculation.

Here, the corresponding AP level Debug (debug capwap client pmtu) shows where the AP successfully 
negotiated the 1005 bytes PMTU and updated the AP PMTU value.

 

*Jul 11 18:28:39.911: CAPWAP_PATHMTU: PMTU Timer Expired: Trying to send higher MTU packet 576 
*Jul 11 18:28:39.911: CAPWAP_PATHMTU: PMTU Timer:Sending Path MTU packet of size 1005 
*Jul 11 18:28:39.911: CAPWAP_PATHMTU: MTU = 1005 for current MTU path discovery 
*Jul 11 18:28:39.911: CAPWAP_PATHMTU: Ap Path MTU payload with MTU 1005 sent 888 
*Jul 11 18:28:39.911: CAPWAP_PATHMTU: Stopping the message timeout timer 
*Jul 11 18:28:39.911: CAPWAP_PATHMTU: Setting MTU to : 1005, it was 576 
*Jul 11 18:28:39.911: CAPWAP_PATHMTU: Updating MTU to DPAA 
*Jul 11 18:28:39.915: CAPWAP_PATHMTU: Sending MTU update to WLC 
*Jul 11 18:28:39.915: CAPWAP_PATHMTU: MTU = 1005 for current MTU path discovery 
*Jul 11 18:28:39.915: CAPWAP_PATHMTU: Ap Path MTU payload with MTU 1005 sent 21

 

And if you do (#show capwap client rcb) in this moment you find that the CAPWAP AP MTU at 1005 
bytes, Here is the show output:

 

3702-AP#show capwap client rcb  
AdminState : ADMIN_ENABLED  
Primary SwVer : 17.9.3.50  
Name : 3702-AP  
MwarName : c9800-CL  
MwarApMgrIp : 10.201.234.34 
OperationState : UP  
CAPWAP Path MTU : 1005 

 

After 30 seconds, the AP tries again to negotiate the next higher value of 1485 bytes, yet, the AP received 
ICMP unreachable while AP status is in RUN state. The ICMP unreachable has a next hop value, and the 
AP honors this value and uses it to calculate its own PMTU as we can see in the debugs.

 

*Jul 11 18:29:45.911: CAPWAP_PATHMTU: PMTU Timer:Sending Path MTU packet of size 1485 
*Jul 11 18:29:45.911: CAPWAP_PATHMTU: MTU = 1485 for current MTU path discovery 
*Jul 11 18:29:45.911: CAPWAP_PATHMTU: Ap Path MTU payload with MTU 1485 sent 1368 
*Jul 11 18:29:45.911: CAPWAP_PATHMTU: Received ICMP Dst unreachable 
*Jul 11 18:29:45.911: CAPWAP_PATHMTU: Src port:5246 Dst Port:60542, SrcAddr:10.201.166.185 Dst Addr:10.201.234.34 
*Jul 11 18:29:45.911: CAPWAP_PATHMTU: Calculated MTU 1293, last_icmp_mtu 1300 
*Jul 11 18:29:48.911: CAPWAP_PATHMTU: Path MTU message could not reach WLC, Removing it from the Reliable Queue

 

The Corresponding AP level Captures



Notice the ICMP unreachable packet number 281 and then the AP tries to negotiate an PMTU with 
honoring the ICMP next hop value on 1300 bytes on packets number 288 and response on 289:

COS AP Behaviour

There are differences in the discovery mechanism for AP-COS APs. We start at AP join.

AP Join Phase

At join, the AP sends a Join Request with the maximum value and waits five seconds.

If no response, it tries again and waits another five seconds. 

If still no response, it sends another Join Request with 1005 bytes. If that succeeds, it updates PMTU and 
proceeds (for example, image download). If the 1005-byte DF probe still cannot reach the controller, it 
drops to the minimum 576 and retries.

 
Here is the debug capwap client pmtu on the AP level:

 

Jul 11 19:06:10 kernel: [*07/11/2023 19:06:10.7065] AP_PATH_MTU_PAYLOAD_msg_enc_cb: request pmtu 1485, update FALSE 
Jul 11 19:06:10 kernel: [*07/11/2023 19:06:10.7066] Sending Join request to 10.201.234.34 through port 5248, packet size 1376 
Jul 11 19:06:10 kernel: [*07/11/2023 19:06:10.7066] Sending Join Request Path MTU payload, Length 1376 
.. 
Jul 11 19:06:15 kernel: [*07/11/2023 19:06:15.3235] AP_PATH_MTU_PAYLOAD_msg_enc_cb: request pmtu 1485, update FALSE 
Jul 11 19:06:15 kernel: [*07/11/2023 19:06:15.3235] Sending Join request to 10.201.234.34 through port 5248, packet size 1376 
Jul 11 19:06:15 kernel: [*07/11/2023 19:06:15.3235] Sending Join Request Path MTU payload, Length 1376 
Jul 11 19:06:15 kernel: [*07/11/2023 19:06:15.3245] chatter: chkcapwapicmpneedfrag :: CheckCapwapICMPNeedFrag ICMP_NEED_FRAG sent to capwapd, needfrag_count 9184 
.. 
Jul 11 19:06:20 kernel: [*07/11/2023 19:06:20.0794] AP_PATH_MTU_PAYLOAD_msg_enc_cb: request pmtu 1005, update FALSE 
Jul 11 19:06:20 kernel: [*07/11/2023 19:06:20.0794] Sending Join request to 10.201.234.34 through port 5248, packet size 896 
Jul 11 19:06:20 kernel: [*07/11/2023 19:06:20.0794] Sending Join Request Path MTU payload, Length 896 
Jul 11 19:06:20 kernel: [*07/11/2023 19:06:20.0831] Join Response from 10.201.234.34, packet size 917 
Jul 11 19:06:20 kernel: [*07/11/2023 19:06:20.0832] AC accepted previous sent request with result code: 0 
Jul 11 19:06:20 kernel: [*07/11/2023 19:06:20.0832] Received wlcType 0, timer 30 
Jul 11 19:06:20 kernel: [*07/11/2023 19:06:20.5280] WLC confirms PMTU 1005, updating MTU now. 
Jul 11 19:06:20 kernel: [*07/11/2023 19:06:20.5702] PMTU: Set capwap_init_mtu to TRUE and dcb's mtu to 1005 
Jul 11 19:06:20 kernel: [*07/11/2023 19:06:20.5816] CAPWAP State: Image Data 
Jul 11 19:06:20 kernel: [*07/11/2023 19:06:20.5822] AP image version 17.9.3.50 backup 17.6.5.22, Controller 17.9.3.50

 

Notice that the packet size is 1483 bytes which is the pmtu value without the ethernet header as expected for AP-COS. You see this 

on packet number 1168 here:



RUN State Phase

After the AP reaches RUN state. it continues attempting to improve the PMTU every 30 seconds, sending CAPWAP packets with DF 

set and the next hard-coded value.

Here is the AP level debug (debug capwap client pmtu)

 

Jul 11 19:08:15 kernel: [*07/11/2023 19:08:15.1341] wtpEncodePathMTUPayload: Total Packet Size: 1485 
Jul 11 19:08:15 kernel: [*07/11/2023 19:08:15.1341] wtpEncodePathMTUPayload: Capwap Size is 1376. 
Jul 11 19:08:15 kernel: [*07/11/2023 19:08:15.1341] [ENC]AP_PATH_MTU_PAYLOAD: pmtu 1485, len 1352, buffer len 1376 
Jul 11 19:08:15 kernel: [*07/11/2023 19:08:15.1341] capwap_build_and_send_pmtu_packet: packet length = 1485 for current path MTU discovery 
Jul 11 19:08:15 kernel: [*07/11/2023 19:08:15.1343] Ap Path MTU payload sent, length 1368 
Jul 11 19:08:15 kernel: [*07/11/2023 19:08:15.1343] WTP Event Request: AP Path MTU payload sent to 10.201.234.34, seq num 53 
Jul 11 19:08:15 kernel: [*07/11/2023 19:08:15.1351] pmtu icmp pkt(ICMP_NEED_FRAG) from click received 
Jul 11 19:08:15 kernel: [*07/11/2023 19:08:15.1351] chatter: chkcapwapicmpneedfrag :: CheckCapwapICMPNeedFrag ICMP_NEED_FRAG sent to capwapd, needfrag_count 9187 
Jul 11 19:08:15 kernel: [*07/11/2023 19:08:15.1351] PMTU data: dcb->mtu 1005, pmtu_overhead:1184 capwapsize_mtu: 1293 next_hop_mtu 1300, last_icmp_mtu 0 router_path_mtu 0 
Jul 11 19:08:15 kernel: [*07/11/2023 19:08:15.1351] PMTU: Last try for next hop MTU failed 
Jul 11 19:08:17 kernel: [*07/11/2023 19:08:17.9850] wtpCleanupPMTUPacket: PMTU: Found matching PMTUpacket at:50 position of the Q 
.. 
Jul 11 19:08:43 kernel: [*07/11/2023 19:08:43.6435] wtpEncodePathMTUPayload: Total Packet Size: 1485 
Jul 11 19:08:43 kernel: [*07/11/2023 19:08:43.6435] wtpEncodePathMTUPayload: Capwap Size is 1376. 
Jul 11 19:08:43 kernel: [*07/11/2023 19:08:43.6436] [ENC]AP_PATH_MTU_PAYLOAD: pmtu 1485, len 1352, buffer len 1376 
Jul 11 19:08:43 kernel: [*07/11/2023 19:08:43.6436] capwap_build-and-send_pmtu_packet: packet length = 1485 for current path MTU discovery 
Jul 11 19:08:43 kernel: [*07/11/2023 19:08:43.6437] Ap Path MTU payload sent, length 1368 
Jul 11 19:08:43 kernel: [*07/11/2023 19:08:43.6438] WTP Event Request: AP Path MTU payload sent to 10.201.234.34, seq num 59 
Jul 11 19:08:43 kernel: [*07/11/2023 19:08:43.6446] pmtu icmp pkt(ICMP_NEED_FRAG) from click received 
Jul 11 19:08:43 kernel: [*07/11/2023 19:08:43.6446] chatter: chkcapwapicmpneedfrag :: CheckCapwapICMPNeedFrag ICMP_NEED_FRAG sent to capwapd, needfrag_count 9188 
Jul 11 19:08:43 kernel: [*07/11/2023 19:08:43.6446] PMTU data: dcb->mtu 1005, pmtu_overhead:1184 capwapsize_mtu: 1293 next_hop_mtu 1300, last_icmp_mtu 0 router_path_mtu 0 
Jul 11 19:08:43 kernel: [*07/11/2023 19:08:43.6447] PMTU: Last try for next hop MTU failed 
Jul 11 19:08:46 kernel: [*07/11/2023 19:08:46.4945] wtpCleanupPMTUPacket: PMTU: Found matching PMTUpacket at:55 position of the Q

 

Here are the corresponding AP captures. look at packet number 1427 and 1448:



Conclusion (Algorithm Summary)

In summary, the CAPWAP PMTUD algorithm on Access Points works like this.

Step 1. Initial CAPWAP PMTU is negotiated during the AP join phase.

Step 2. 30 seconds later, the AP attempts to improve the current CAPWAP PMTU by sending the next predefined higher value (576, 

1005, 1485 bytes).

Step 3 (option 1). If the WLC responds, adjust the current CAPWAP PMTU to the new value and repeat step 2.

Step 3 (option 2). If there is no response, keep the current CAPWAP PMTU and repeat step 2.

Step 3 (option 3). If there is no response and an ICMP Unreachable (Type 3, Code 4) includes a next-hop MTU, adjust the CAPWAP 

PMTU to that value and repeat step 2.

NOTE: See the fixes to ensure that the right CAPWAP PMTU is used when an ICMP next-hop value is provided.

Related CDETs

Issue Number 1:

Cisco bug ID CSCwf52815

AP-COS APs not honoring the ICMP Unreachable next-hop value when higher-value probes fail. 
Fixes: 8.10.190.0, 17.3.8, 17.6.6, 17.9.5, 17.12.2. 
IOS APs honor the next-hop value and update PMTU.

Issue Number 2:

Cisco bug ID CSCwc05350

Asymmetric MTU (WLC→AP differs from AP→WLC) led to PMTU flapping when ICMP did not reflect the maximum bidirectional PMTU. 
Fixes: 8.10.181.0, 17.3.6, 17.6.5, 17.9.2, 17.10.1. 
Workaround: configure the same MTU in both directions on devices controlling MTU (router, firewall, VPN concentrator) between 

WLC and AP.

Related AP Side Cisco bug ID CSCwc05364: COS-AP improve PMTU mechanism to be able to identify max directional MTU size 

for asymmetric MTUs 

Related WLC side Cisco bug ID CSCwc48316: Improve PMTU calculations for AP to be able to have two different MTUs one 

upstream and other  (marked Closed by DE as they have no plans to address this)

https://tools.cisco.com/bugsearch/bug/CSCwf52815
https://tools.cisco.com/bugsearch/bug/CSCwc05350
https://tools.cisco.com/bugsearch/bug/CSCwc05364
https://tools.cisco.com/bugsearch/bug/CSCwc48316


Issue Number 3:

Cisco bug ID CSCwf91557

AP-COS stops PMTU discovery after reaching the maximum hard-coded value.

Fixed in 17.13.1; also via Fixed via Cisco bug ID CSCwf52815 in 17.3.8, 17.6.6, 17.9.5, 17.12.2.

Issue Number 4:

Cisco bug ID CSCwk70785

AP-COS not updating the MTU value for PMTU probe, causing disconnections.

fixed in Cisco bug ID CSCwk90660  - APSP6 17.9.5]  Target 17.9.6, 17.12.5, 17.15.2, 17.16.

Issue Number 5:

Cisco bug ID CSCvv53456

9800 Static CAPWAP Path MTU configuration (parity with AireOS).

This allow the 9800 to have a static CAPWAP path MTU configured on a per AP join profile basis.  Going into 17.17.

https://cdetsng.cisco.com/webui/#view=CSCwf91557
https://tools.cisco.com/bugsearch/bug/CSCwf52815
https://tools.cisco.com/bugsearch/bug/CSCwk70785
https://tools.cisco.com/bugsearch/bug/CSCwk90660
https://tools.cisco.com/bugsearch/bug/CSCvv53456

