Introduction

This document explains how to configure wireless LAN controllers (WLCs) for synchronizing the date and time with a Network Time Protocol (NTP) server.

Prerequisites

Requirements

Ensure that you meet these requirements before you attempt this configuration:

- Basic knowledge of the configuration of Cisco WLCs.
- Basic knowledge of NTP.

Components Used

The information in this document is based on these software and hardware versions:

- Cisco WLC 3504 that runs software version 8.8.110.0.
- Cisco Catalyst 3560-CX Series L3 Switch that runs Cisco IOS® Software release 15.2(6)E2.

The information in this document was created from the devices in a specific lab environment.
All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Managing System Date and Time on the Wireless LAN Controller

On a WLC, the system date and time can be manually configured from the WLC or configured to obtain the date and time from an NTP server.

The system date and time can be manually configured using the CLI configuration wizard or the WLC GUI/CLI.

This document provides a configuration example for synchronizing the WLC system date and time through an NTP server.

Network Time Protocol (NTP) is a networking protocol for clock synchronization between computer systems over variable-latency data networks to synchronize the clocks of computers to some time reference. RFC 1305 and RFC 5905 provides detailed information on NTPv3 and NTPv4 implementation, respectively.

An NTP network usually receives its time from an authoritative time source, such as a radio clock or an atomic clock attached to a time server. NTP then distributes this time across the network.

An NTP client makes a transaction with its server over the polling interval, which dynamically changes over time depending on the network conditions between the NTP server and the client.

NTP uses the concept of a stratum to describe how many NTP hops away a machine is from an authoritative time source. For example, a stratum 1 time server has a radio or atomic clock directly attached to it. It then sends its time to a stratum 2 time server through NTP, and so forth.

The example in this document uses a Cisco Catalyst 3560-CX Series L3 Switch as an NTP server. The WLC is configured to synchronize its date and time with this NTP server.

Configure

Network Diagram

WLC ---- 3560-CX L3 Switch ---- NTP server

Configurations

Configuring the L3 Switch as an Authoritative NTP Server

Use this command in global configuration mode if you want the system to be an authoritative NTP server, even if the system is not synchronized to an outside time source:

```
#ntp master
```
--- Makes the system an authoritative NTP server

Configuring NTP Authentication

If you want to authenticate the associations with other systems for security purposes, use the commands that follow. The first command enables the NTP authentication feature. The second command defines each of the authentication keys. Each key has a key number, a type, and a value. Currently, the only key type supported is md5. Third, a list of "trusted" authentication keys is defined. If a key is trusted, this system will be ready to synchronize to a system that uses this key in its NTP packets. In order to configure NTP authentication, use these commands in global configuration mode:

```
#ntp authenticate
--- Enables the NTP authentication feature
#ntp authentication-key number md5 value
--- Defines the authentication keys
#ntp trusted-key key-number
--- Defines trusted authentication keys
```

Here is an example NTP Server configuration on the 3560-CX L3 Switch. The switch is the NTP master, which means the router acts as the authoritative NTP server but itself is getting the time from another NTP server "pool.ntp.org".

```
(config)#ntp authentication-key 1 md5 1511021F0725 7
(config)#ntp authenticate
(config)#ntp trusted-key 1
(config)#ntp master
(config)#ntp server pool.ntp.org
```

Configure the WLC for the NTP server

Starting from version 8.6 we can enable NTPv4. We can also configure an authentication channel between the controller and the NTP server.

In order to configure NTP authentication using the controller GUI, perform these steps:

1. Choose **Controller** > **NTP** > **Keys**.
2. Click **New** to create a key.
3. Enter the key index in the **Key Index** text box.
4. Choose the **Key Checksum** (MD5 or SHA1) and the **Key Format** drop-down list.
5. Enter the Key in the **Key** text box:

```
Controller > New
Key Index
Checksum MD5
Key Format
gold
Key
```

6. Choose **Controller** > **NTP** > **Server** to open the NTP Servers page. Select version 3 or 4.
and then click **New** to add an NTP server. The **NTP Servers > New** page appears.

7. Select the **Server Index (Priority)**.

8. Enter the NTP server IP Address in the **Server IP Address** text box.

9. Enable NTP server authentication by selecting the **NTP Server Authentication** check box and select the **Key Index** configured previously.

10. Click **Apply**.

In order to configure NTP authentication using the controller CLI, follow the command tree:

```
> config time ntp version 4
> config time ntp key-auth add 1 md5 ascii cisco
> config time ntp server 1 192.168.100.254
> config time ntp auth enable 1 1
```

Verify

On the NTP server

```
# show ntp status
Clock is synchronized, stratum 3, reference is 193.136.152.72
nominal freq is 286.1023 Hz, actual freq is 286.0901 Hz, precision is 2**21
ntp uptime is 6591900 (1/100 of seconds), resolution is 3496
reference time is E007C909.80902653 (09:23:21.502 UTC Fri Feb 8 2019)
clock offset is 0.3406 msec, root delay is 59.97 msec
root dispersion is 25.98 msec, peer dispersion is 1.47 msec
loopfilter state is 'CTRL' (Normal Controlled Loop), drift is 0.000042509 s/s
system poll interval is 128, last update was 7 sec ago.
```
#show ntp associations

*~193.136.152.72 138.96.64.10 2 20 1024 17 13.634 0.024 1.626
~127.127.1.1 .LOCL. 7 9 16 377 0.000 0.000 0.232
* sys.peer, # selected, + candidate, - outlyer, x falseticker, ~ configured

#show ntp information
Ntp Software Name : Cisco-ntpv4
Ntp Software Version : Cisco-ntpv4-1.0
Ntp Software Vendor : CISCO
Ntp System Type : Cisco IOS / APM86XXX

On the WLC

In the GUI

During the establishment of the communication:

![GUI Screenshot](image1)

After connection established:

![GUI Screenshot](image2)

In the WLC CLI

(Cisco Controller) >show time

Time... Fri Feb 8 10:14:47 2019

Timezone delta............................... 0:0
Timezone location............................

NTP Servers
NTP Version................................. 4

Index NTP Key NTP Server NTP Key Polling Intervals
Troubleshoot

On the NTP server side running Cisco IOS we can use "debug ntp all enable":

```
#debug ntp all
NTP events debugging is on
NTP core messages debugging is on
NTP clock adjustments debugging is on
NTP reference clocks debugging is on
NTP packets debugging is on
#
```

```
-Feb 8 09:52:30.563: NTP message sent to 195.22.17.7, from interface 'Vlan1' (192.168.1.81).
-Feb 8 09:52:30.577: NTP message received from 195.22.17.7 on interface 'Vlan1' (192.168.1.81).
-Feb 8 09:52:30.577: NTP Core(DEBUG): ntp_receive: message received
-Feb 8 09:52:30.577: NTP Core(DEBUG): ntp_receive: peer is 0x0D284B34, next action is 1.
```

```
-Feb 8 09:53:10.421: NTP message received from 192.168.100.253 on interface 'Vlan100' (192.168.100.254).
-Feb 8 09:53:10.421: NTP Core(DEBUG): ntp_receive: message received
-Feb 8 09:53:10.421: NTP Core(DEBUG): ntp_receive: peer is 0x00000000, next action is 3.
-Feb 8 09:53:10.421: NTP message sent to 192.168.100.253, from interface 'Vlan100' (192.168.100.254).
```

```
-Feb 8 09:53:37.566: NTP message sent to 195.22.17.7, from interface 'Vlan1' (192.168.1.81).
-Feb 8 09:53:37.580: NTP message received from 195.22.17.7 on interface 'Vlan1' (192.168.1.81).
-Feb 8 09:53:37.580: NTP Core(DEBUG): ntp_receive: message received
-Feb 8 09:53:37.580: NTP Core(DEBUG): ntp_receive: peer is 0x0D284B34, next action is 1.
```

```
-Feb 8 09:54:17.421: NTP message received from 192.168.100.253 on interface 'Vlan100' (192.168.100.254).
-Feb 8 09:54:17.421: NTP Core(DEBUG): ntp_receive: message received
-Feb 8 09:54:17.421: NTP Core(DEBUG): ntp_receive: peer is 0x00000000, next action is 3.
-Feb 8 09:54:17.421: NTP message sent to 192.168.100.253, from interface 'Vlan100' (192.168.100.254).
```

On WLC side:

```
>debug ntp ?

detail Configures debug of detailed NTP messages.
low Configures debug of NTP messages.
packet Configures debug of NTP packets.
```
(at the time of writing this doc there was a DDTS CSCvo29660 on which the debugs of ntpv4 are not printed in the CLI. The below debugs are using NTPv3.)

(Cisco Controller) >debug ntp detail enable
(Cisco Controller) >debug ntp packet enable
(Cisco Controller) >*emWeb: Feb 08 11:26:53.896: ntp Auth key Info = -1

*emWeb: Feb 08 11:26:58.143: ntp Auth key Info = -1

*emWeb: Feb 08 11:26:58.143: Key Id = 1 found at Local Index = 0

*sntpReceiveTask: Feb 08 11:26:58.143: Initiating time sequence

*sntpReceiveTask: Feb 08 11:26:58.143: Fetching time from:192.168.100.254

*sntpReceiveTask: Feb 08 11:26:58.143: hostname=192.168.100.254 hostIdx=1 hostNum=0

*sntpReceiveTask: Feb 08 11:26:58.143: Looking for the socket addresses

*sntpReceiveTask: Feb 08 11:26:58.143: NTP Polling cycle: accepts=0, count=5, attempts=1, retriesPerHost=6. Outgoing packet on NTP Server on socket 0:

*sntpReceiveTask: Feb 08 11:26:58.143: sta=0 ver=3 mod=3 str=15 pol=8 dis=0.000000 ref=0.000000

*sntpReceiveTask: Feb 08 11:26:58.143: ori=0.000000 rec=0.000000

*sntpReceiveTask: Feb 08 11:26:58.143: tra=3758614018.143422 cur=3758614018.143422

*sntpReceiveTask: Feb 08 11:26:58.143: Host Supports NTP authentication with Key Id = 1

*sntpReceiveTask: Feb 08 11:26:58.143: NTP Auth Key Id = 1 Key Length = 5

*sntpReceiveTask: Feb 08 11:26:58.143: MD5 Hash and Key Id added in NTP Tx packet

*sntpReceiveTask: Feb 08 11:26:58.143: 00000000: 1b 0f 08 00 00 00 00 00 00 00 00 00 00 00 00 00

*sntpReceiveTask: Feb 08 11:26:58.143: 00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*sntpReceiveTask: Feb 08 11:26:58.143: 00000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*sntpReceiveTask: Feb 08 11:26:58.143: Flushed 0 packets totalling 0 bytes

*sntpReceiveTask: Feb 08 11:26:58.143: Packet of length 68 sent to ::ffff:192.168.100.254

*sntpReceiveTask: Feb 08 11:26:58.143: ntp Auth key Info = 0

*emWeb: Feb 08 11:26:58.143: idx != 0 : ntp key Id = 1 Msg auth Status = 66

*sntpReceiveTask: Feb 08 11:26:58.143: Packet of length 68 received from ::ffff:192.168.100.254

*sntpReceiveTask: Feb 08 11:26:58.143: Incoming packet on socket 0: has Authentication Enabled

*sntpReceiveTask: Feb 08 11:26:58.143: 00000000: 1c 04 08 eb 00 00 0e a0 00 00 0b 2e c3 16 11 07

*sntpReceiveTask: Feb 08 11:26:58.143: 00000010: e0 07 e5 f8 d3 21 bf 57 e0 07 e6 02 24 b7 50 00

*sntpReceiveTask: Feb 08 11:26:58.143: 00000020: e0 07 e6 02 24 e5 e3 b4 e0 07 e6 02 24 f3 c7 5a

*sntpReceiveTask: Feb 08 11:26:58.143: 00000030: 00 00 00 01 32 e4 26 e0 ..g.

*sntpReceiveTask: Feb 08 11:26:58.143: Flushing outstanding packets
2019 Feb 08 11:26:58.146: KeyId 1 found in received NTP packet exists as part of the trusted Key/s

2019 Feb 08 11:26:58.146: The NTP trusted Key Id 1 length = 5

2019 Feb 08 11:26:58.146: NTP Message Authentication - SUCCESS

2019 Feb 08 11:26:58.146: sta=0 ver=3 mod=4 str=4 pol=8 dis=0.043671 ref=3758614008.824734

2019 Feb 08 11:26:58.146: ori=3758614018.143422 rec=3758614018.144133

2019 Feb 08 11:26:58.146: Offset=-0.000683 +/- 0.002787 disp=1.937698

2019 Feb 08 11:26:58.146: best=-0.000683 +/- 0.002787

2019 Feb 08 11:26:58.146: accepts=1 rejects=0 flushes=0

2019 Feb 08 11:26:58.146: Correction: -0.000683 +/- 0.002787 disp=1.937698

2019 Feb 08 11:26:58.146: Setting clock to 2019 Feb 08 11:26:58.145 +/- 0.001 sec

2019 Feb 08 11:26:58.146: correction -0.001 +/- 1.938 + 0.003 sec - ignored