Introduction

This article explains details regarding EAP-FAST implementations on Cisco AnyConnect Network Access Manager (NAM) and Identity Services Engine (ISE). It further explains how specific features work together and provides typical use cases and examples.

Prerequisites
Requirements

Cisco recommends that you have knowledge of these topics:

- Basic knowledge of EAP framework and EAP-FAST methods
- Basic knowledge of Identity Services Engine (ISE)
- Basic knowledge of AnyConnect NAM and Profile Editor
- Basic knowledge of Cisco Catalyst configuration for 802.1x services

Components Used

The information in this document is based on these software versions:

- Windows 7 with Cisco AnyConnect Secure Mobility Client, Release 3.1 and 4.0
- Cisco Catalyst 3750X switch with software 15.2.1 and later
- Cisco ISE, Release 1.4

Theory

Phases

EAP-FAST is a flexible EAP method which allows mutual authentication of a supplicant and a server. It is similar to EAP-PEAP, but typically does not require the use of client or even server certificates. One advantage of EAP-FAST is the ability to chain multiple authentications (using multiple inner methods) and bind it cryptographically together (EAP Chaining). Cisco implementations use this for user and machine authentications.

EAP-FAST utilizes Protected Access Credentials (PAC) in order to quickly establish the TLS tunnel (session resume) or to authorize the user/machine (skip inner method for authentication).

There are 3 phases for EAP-FAST:

- phase 0 (PAC provisioning)
- phase 1 (TLS tunnel establishment)
- phase 2 (Authentication)

EAP-FAST supports PAC-less and PAC-based conversation. PAC-based consists of PAC provisioning and PAC-based authentication. PAC provisioning can be based on anonymous or authenticated TLS session.

PAC

PAC is Protected Access Credentials generated by the server and provided to client. It consists of:

- PAC key (random secret value, used to derive TLS master and session keys)
- PAC opaque (PAC key + user identity - all encrypted by EAP-FAST server master key)
- PAC info (server identity, TTL timers)

The server issuing the PAC will encrypt the PAC key and identity using the EAP-FAST server master key (that is PAC opaque) and sends the whole PAC to the client. It does not keep/store
any other information (except master key which is the same for all PACs).

Once the PAC opaque is received, it is decrypted using the EAP-FAST server master key and validated. The PAC key is used to derive the TLS master and session keys for an abbreviated TLS tunnel.

New EAP-FAST server master keys are generated when the previous master key expires. In some cases, a master key can be revoked.

There are a few types of PAC’s being used currently:

- **Tunnel PAC**: used for TLS tunnel establishment (without the need of client or server certificate). Sent in TLS Client Hello
- **Machine PAC**: used for TLS tunnel establishment and immediate machine authorization. Sent in TLS Client Hello
- **User Authorization PAC**: used for immediate user authentication (skip inner method) if allowed by server. Sent inside TLS tunnel using TLV.
- **Machine Authorization PAC**: used for immediate machine authentication (skip inner method) if allowed by server. Sent inside TLS tunnel using TLV.
- **Trustsec PAC**: used for authorization when performing environmental or policy refresh.

All of those PAC’s are usually delivered automatically in phase 0. Some of the PAC’s (Tunnel, Machine, Trustsec) can be also delivered manually.

When PACs are generated

- **Tunnel PAC**: provisioned after a successful authentication (inner method) if not used previously.
- **Authorization PAC**: provisioned after successful authentication (inner method) if not used previously.
- **Machine PAC**: provisioned after successful machine authentication (inner method) if not used previously and when an Authorization PAC is not used. It will be provisioned when the Tunnel PAC expires; however, not when the Authorization PAC expires. It will be provisioned when EAP-Chaining is enabled or disabled.

Note:

Each PAC provisioning requires successful authentication except of the following use case: authorized user asks for the Machine PAC for a machine that doesn't have an AD account.

The following table summarizes provisioning and proactive update functionality:

<table>
<thead>
<tr>
<th>PAC Type</th>
<th>Tunnel v1/v1a/CTS</th>
<th>Machine</th>
<th>Authorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide PAC on request on provisioning</td>
<td>yes</td>
<td>only on authenticated provisioning</td>
<td>only on authenticated provisioning and if Tunnel PAC is requested also if it was not used in this authentication</td>
</tr>
<tr>
<td>Provide PAC on request on authentication</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Proactive update</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When falling back to PAC provisioning after failed PAC-based authentication (e.g. when PAC is expired)</td>
<td>reject and don't provide the new one</td>
<td>no</td>
<td>reject and don't provide the new one</td>
</tr>
</tbody>
</table>

When falling back to PAC provisioning after failed PAC-based authentication (e.g. when PAC is expired)
EAP-FAST Server Master Key ACS 4.x vs ACS 5x and ISE

There is a slight difference in Master key handling when comparing ACS 4.x and ISE

<table>
<thead>
<tr>
<th>Feature</th>
<th>ACS 4.1.2</th>
<th>ACS 5.x / ISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Key</td>
<td>Master key has TTL, can be active, retired or expired</td>
<td>Master key is automatically generated from seed at every configured period of time. Specific Master Key is always accessible and then never expired</td>
</tr>
<tr>
<td>PAC Refresh</td>
<td>PAC update is sent by server when PAC is expired, unless Master Key used for PAC encryption is expired</td>
<td>PAC update is sent by server after first successful authentication that is performed in specific configurable period of time before PAC expiration moment.</td>
</tr>
</tbody>
</table>

In other words, ISE will keep all old master keys and generate a new one by default once per week. As the Master Key cannot expire, only the PAC TTL will be validated.

The ISE Master Key generation period is configured from Administration -> Settings -> Protocol -> EAP-FAST -> EAP-FAST Settings.

Session Resume

This is an important component allowing for Tunnel PAC usage. It allows for TLS tunnel renegotiation without usage of certificates.

There are two session resume types for EAP-FAST: Server state based and stateless (PAC based).

Server State

Standard TLS based method is based on the TLS SessionID cached on the server. The client sending the TLS Client Hello attaches the SessionID in order to resume the session. The session is only used for PAC provisioning when using an anonymous TLS tunnel:
Stateless (PAC based)

User/Machine Authorization PAC is used to store the previous authentication and authorization states for the peer.

Client side resume is based on RFC 4507. The server doesn’t need to cache any data; instead the client attaches the PAC in the TLS Client Hello SessionTicket extension. In turn, the PAC is validated by the server. Example based on Tunnel PAC delivered to the server:

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Length</th>
<th>Info</th>
<th>User-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 10.62.148.169</td>
<td>10.48.17.14</td>
<td>RADIUS</td>
<td>301</td>
<td>Access-Request{1} (id=91, l=259)</td>
<td>anonymous</td>
</tr>
<tr>
<td>24 10.48.17.14</td>
<td>10.62.148.169</td>
<td>RADIUS</td>
<td>193</td>
<td>Access-Challenge{11} (id=91, l=151)</td>
<td>anonymous</td>
</tr>
<tr>
<td>25 10.62.148.169</td>
<td>10.48.17.14</td>
<td>RADIUS</td>
<td>668</td>
<td>Access-Request{1} (id=92, l=624)</td>
<td>anonymous</td>
</tr>
<tr>
<td>26 10.48.17.14</td>
<td>10.62.148.169</td>
<td>RADIUS</td>
<td>311</td>
<td>Access-Challenge{11} (id=92, l=269)</td>
<td>anonymous</td>
</tr>
<tr>
<td>27 10.62.148.169</td>
<td>10.48.17.14</td>
<td>RADIUS</td>
<td>437</td>
<td>Access-Request{1} (id=93, l=395)</td>
<td>anonymous</td>
</tr>
<tr>
<td>28 10.48.17.14</td>
<td>10.62.148.169</td>
<td>RADIUS</td>
<td>226</td>
<td>Access-Challenge{11} (id=93, l=184)</td>
<td>anonymous</td>
</tr>
<tr>
<td>29 10.62.148.169</td>
<td>10.48.17.14</td>
<td>RADIUS</td>
<td>468</td>
<td>Access-Request{1} (id=94, l=426)</td>
<td>anonymous</td>
</tr>
<tr>
<td>30 10.48.17.14</td>
<td>10.62.148.169</td>
<td>RADIUS</td>
<td>258</td>
<td>Access-Challenge{11} (id=94, l=216)</td>
<td>anonymous</td>
</tr>
<tr>
<td>31 10.62.148.169</td>
<td>10.48.17.14</td>
<td>RADIUS</td>
<td>516</td>
<td>Access-Request{1} (id=95, l=474)</td>
<td>anonymous</td>
</tr>
<tr>
<td>32 10.48.17.14</td>
<td>10.62.148.169</td>
<td>RADIUS</td>
<td>258</td>
<td>Access-Challenge{11} (id=95, l=216)</td>
<td>anonymous</td>
</tr>
<tr>
<td>33 10.62.148.169</td>
<td>10.48.17.14</td>
<td>RADIUS</td>
<td>452</td>
<td>Access-Request{1} (id=96, l=410)</td>
<td>anonymous</td>
</tr>
</tbody>
</table>

Secure-Handshake Layer:

- TLSv1 Record Layer: Handshake Protocol: Client Hello
 - Content Type: Handshake (22)
 - Version: TLS 1.0 (0x0301)
 - Length: 281

Handshake Protocol: Client Hello
 - Handshake Type: Client Hello (1)
 - Length: 277
 - Version: TLS 1.0 (0x0301)

 ▶ Random
 - Session ID Length: 0
 - Cipher Suites Length: 52

 ▶ Cipher Suites (26 suites)
 - Compression Methods Length: 1
 - Compression Methods (1 method)

 ▶ Extensions Length: 184

 ▶ Extension: SessionTicket TLS
 - Type: SessionTicket TLS (6x0023)
 - Length: 180
 - Data (180 bytes): AVP: l=18 t=Message-Authenticator(89): 6cb2477c076ea96d3ba156245e6291e8

AnyConnect NAM implementation

It’s enabled on client side (AnyConnect NAM) via Fast Reconnect - but it’s used to control only authorization PAC usage.
With the setting disabled, NAM will still use the tunnel PAC to build the TLS tunnel (no certificates needed). However, this will not use authorization PACs in order to perform immediate user and machine authorization. As a result, phase 2 with the inner method will be always required.

ISE has an option to enable Stateless Session Resume. And as on NAM it's just for Authorization PAC. Tunnel PAC usage is controlled with options "Use PACs".

- Allow EAP-FAST

 EAP-FAST Inner Methods
 - Allow EAP-MS-CHAPv2
 - Allow EAP-GTC
 - Allow EAP-TLS

- Use PACs

 Tunnel PAC Time To Live

 Proactive PAC update will occur after ___ % of PAC Time To Live has expired
 - Allow Anonymous In-Band PAC Provisioning
 - Allow Authenticated In-Band PAC Provisioning
 - Server Returns Access Accept After Authenticated Provisioning
 - Accept Client Certificate For Provisioning
 - Allow Machine Authentication

 Machine PAC Time To Live

 - Enable Stateless Session Resume

 Authorization PAC Time To Live

 - Enable EAP Chaining
 - Preferred EAP Protocol EAP-FAST

NAM will try to use PAC's if the option is enabled. If "Don't Use PACs" is configured in ISE and ISE receives a Tunnel PAC in the TLS extension the following error will be reported and an EAP Failure is returned:

In ISE, it's also necessary to enable session resume based on TLS SessionID (from Global EAP-FAST settings). It's disabled by default:

EAP FAST Settings

- Authority Identity Info Description: Identity Services Engine
- Master Key Generation Period: 1 Weeks
- Revoke all master keys and PACs

PAC-less Session Resume

- Enable PAC-less Session Resume

* PAC-less Session Timeout: 7,200

Save Reset
Please keep in mind that only one type of session resume can be used. SessionID based is used only for PAC-less deployments, RFC 4507 based is used only for PAC deployments.

PAC provisioning (phase 0)

PACs can be automatically provisioned in phase0. Phase 0 consists of:

- TLS tunnel establishment
- Authentication (inner method)

PACs are delivered after a successful authentication inside the TLS tunnel via PAC TLV (and PAC TLV Acknowledgement)

Anonymous TLS tunnel

For deployments without a PKI infrastructure, it's possible to use an anonymous TLS tunnel. The anonymous TLS tunnel will be built using the Diffie Hellman cipher suite - without the need of a server or client certificate. This approach is prone to Man in the Middle attacks (impersonation).

To use this option, NAM requires the following configured option:

"If using PACs allow for unauthenticated PAC provisioning" (that makes sense only for password-based inner method because without PKI infrastructure it's not possible to use certificate-based inner method).

Also, ISE will need the following configured under the Authentication Allowed Protocols:

"Allow Anonymous In-band PAC Provisioning"

Anonymous in-band PAC provisioning is being used in TrustSec NDAC deployments (EAP-FAST session negotiated between network devices).

Authenticated TLS tunnel

This is the most secure and recommended option. The TLS tunnel is built based on the server certificate which is validated by the supplicant. This requires a PKI infrastructure on the server side only, which is required for ISE (on NAM it's possible to disable option "Validate Server Identity").

For ISE there are two additional options:

- Allow Anonymous In-Band PAC Provisioning
- Allow Authenticated In-Band PAC Provisioning
 - Server Returns Access Accept After Authenticated Provisioning
 - Accept Client Certificate For Provisioning

Normally, after PAC provisioning, an Access-Reject should be sent forcing the supplicant to reauthenticate using PACs. But since PACs were delivered in the TLS tunnel with authentication, it's possible to shorten the whole process and return Access-Accept immediately after PAC provisioning.

The second option builds the TLS tunnel based on client certificate (this requires PKI deployment
on the endpoints). This allows the TLS tunnel to be built with mutual authentication, which skips the inner method and goes directly to the PAC provisioning phase. It’s important to be careful here - sometimes the supplicant will present a certificate which is not trusted by ISE (intended for other purposes) and the session will fail.

EAP-Chaining

Allows user and machine authentication within one Radius/EAP session. Multiple EAP methods can be chained together. After the first authentication (typically machine) has finished successfully, the server will send an Intermediate-Result TLV (inside TLS tunnel) indicating success. That TLV must be accompanied by a Crypto-Binding TLV Request. Cryptobinding is used to prove that both the server and peer have participated in the specific sequence of authentications. The Cryptobinding process uses the keying material from phase 1 and phase 2. Additionally, one more TLV is attached: EAP-Payload - this is initiating the new session (typically for the user). Once the radius server (ISE) receives the Crypto-Binding TLV Response and validates it, the following will be shown in the log and the next EAP method will be tried (typically for user authentication):

```
12126 EAP-FAST cryptobinding verification passed
```

If cryptobinding validation fails, the whole EAP session fails. If one of the authentications within failed then it’s still fine - as a result, ISE allows an administrator to configure multiple chaining results based on Authorization Condition NetworkAccess:EapChainingResult:

- No chaining
- User and machine both succeeded
- User failed and machine succeeded
- User succeeded and machine failed

EAP-Chaining is enabled on NAM automatically when EAP-FAST user and machine authentication is enabled.

EAP-Chaining must be configured in ISE.

Where PAC files are stored

By default, Tunnel and Machine PACs are stored in C:\ProgramData\Cisco\Cisco AnyConnect Secure Mobility Client\Network Access Manager\system\internalConfiguration.xml in sections <credential>. Those are stored in encrypted form.
Authorization PACs are stored only in memory and are removed after reboot or NAM service restart.

A service restart is required to remove the Tunnel or Machine PAC.

AnyConnect NAM 3.1 vs 4.0

AnyConnect 3.x NAM profile editor allowed the administrator to configure PACs manually. This feature has been removed from AnyConnect 4.x NAM profile editor.

The decision to remove that functionality is based on [CSCuf31422](https://cisco.com) and [CSCua13140](https://cisco.com).

Examples

Network Diagram

All the examples were tested using the following network topology. The same applies also when using wireless.
EAP-Fast without EAP chaining with user and machine PAC

By default, EAP_chaining is disabled on ISE. However, all other options are enabled including Machine and Authorization PACs. The supplicant already has a valid Machine and Tunnel PAC. In this flow, there will be two separate authentications - one for the machine and one for the user - with separate logs on ISE. The main steps as logged by ISE. First authentication (machine):

- Supplicant sends TLS Client Hello with Machine PAC.
- Server validates the Machine PAC and builds the TLS tunnel (no certificates used).
- Server validates the Machine PAC and performs the account lookup in Active Directory and skips the inner method.

12102 Extracted EAP-Response containing EAP-FAST challenge-response and accepting EAP-FAST as negotiated
12800 Extracted first TLS record; TLS handshake started
12174 Received Machine PAC
12805 Extracted TLS ClientHello message
12806 Prepared TLS ServerHello message
12801 Prepared TLS ChangeCipherSpec message

12816 TLS handshake succeeded
12132 EAP-FAST built PAC-based tunnel for purpose of authentication

24351 Account validation succeeded
24420 User’s Attributes retrieval from Active Directory succeeded - example.com
22037 Authentication Passed
12124 EAP-FAST inner method skipped
11503 Prepared EAP-Success
11002 Returned RADIUS Access-Accept

The second authentication (user):

- Supplicant sends the TLS Client Hello with Tunnel PAC.
- Server validates the PAC and builds the TLS tunnel (no certificates used).
- As supplicant does not have any Authorization PAC, the inner method (EAP-MSCHAP) is used for authentication.

12102 Extracted EAP-Response containing EAP-FAST challenge-response and accepting EAP-FAST as negotiated
12800 Extracted first TLS record; TLS handshake started
12175 Received Tunnel PAC
12805 Extracted TLS ClientHello message
12806 Prepared TLS ServerHello message
12801 Prepared TLS ChangeCipherSpec message

12816 TLS handshake succeeded
12132 EAP-FAST built PAC-based tunnel for purpose of authentication
12125 EAP-FAST inner method started
11806 Prepared EAP-Request for inner method proposing EAP-MSCHAP with challenge

24402 User authentication against Active Directory succeeded - example.com
22037 Authentication Passed
11503 Prepared EAP-Success
11002 Returned RADIUS Access-Accept

In the "Other Attributes" section of the detailed report in ISE, the following is noted for both user and machine authentications:
EapChainingResult: No chaining

EAP-Fast with EAP chaining with PAC Fast Reconnect

In this flow, the supplicant already has a valid Tunnel PAC along with the User and Machine Authorization PACs:

- Supplicant sends the TLS Client Hello with Tunnel PAC.
- Server validates the PAC and builds the TLS tunnel (no certificates used).
- ISE starts EAP Chaining, supplicant attaches Authorization PACs for user and Machine using TLV inside the TLS tunnel.
- ISE validates the Authorization PACs (no inner method needed), verifies that accounts exist in Active Directory (no additional authentication), returns success.

12102 Extracted EAP-Response containing EAP-FAST challenge-response and accepting EAP-FAST as negotiated
12800 Extracted first TLS record; TLS handshake started
12175 Received Tunnel PAC
12805 Extracted TLS ClientHello message
12806 Prepared TLS ServerHello message
12801 Prepared TLS ChangeCipherSpec message

12816 TLS handshake succeeded
12132 EAP-FAST built PAC-based tunnel for purpose of authentication
12209 Starting EAP chaining
12210 Received User Authorization PAC
12211 Received Machine Authorization PAC

24420 User's Attributes retrieval from Active Directory succeeded - example.com
22037 Authentication Passed

24439 Machine Attributes retrieval from Active Directory succeeded - example.com
22037 Authentication Passed

11503 Prepared EAP-Success
11002 Returned RADIUS Access-Accept

In the "Other Attributes" section of the detailed report in ISE, the following is noted:

EapChainingResult: EAP Chaining

Additionally, both user and machine credentials are included in the same log as seen below:

EAP-Fast with EAP chaining without PAC

In this flow, NAM is configured to not use a PAC, ISE is also configured to not use PAC (but with EAP Chaining)

- Supplicant sends TLS Client Hello without Tunnel PAC.
- Server responds with the TLS Certificate and Certificate Request payloads.
- Supplicant must trust server certificate, will not send any client certificate (certificate payload is zero), TLS tunnel is built.
- ISE send a TLV request for the client certificate inside the TLS tunnel, but supplicant does not (it's not necessary to have it in order to continue).
- Starts EAP Chaining for user, using inner method with MSCHAPv2 authentication.
- Continues with machine authentication, using inner method with MSCHAPv2 authentication.
• No PACs are being provisioned.

12102 Extracted EAP-Response containing EAP-FAST challenge-response and accepting EAP-FAST as negotiated
12800 Extracted first TLS record; TLS handshake started
12805 Extracted TLS ClientHello message
12806 Prepared TLS ServerHello message
12807 Prepared TLS Certificate message
12809 Prepared TLS CertificateRequest message
12811 Extracted TLS Certificate message containing client certificate
12812 Extracted TLS ClientKeyExchange message

12816 TLS handshake succeeded
12207 Client certificate was requested but not received during tunnel establishment. Will renegotiate and request client certificate inside the tunnel.
12226 Started renegotiated TLS handshake

12104 Extracted EAP-Response containing EAP-FAST challenge-response
12811 Extracted TLS Certificate message containing client certificate
12812 Extracted TLS ClientKeyExchange message
12804 Extracted TLS Finished message
12801 Prepared TLS ChangeCipherSpec message
12802 Prepared TLS Finished message
12226 Started renegotiated TLS handshake
12205 Client certificate was requested but not received inside the tunnel. Will continue with inner method.
12176 EAP-FAST PAC-less full handshake finished successfully

12209 Starting EAP chaining
12218 Selected identity type 'User'
11806 Prepared EAP-Request for inner method proposing EAP-MSCHAP with challenge

24402 User authentication against Active Directory succeeded - example.com
22037 Authentication Passed

12219 Selected identity type 'Machine'
11806 Prepared EAP-Request for inner method proposing EAP-MSCHAP with challenge

24470 Machine authentication against Active Directory is successful - example.com
22037 Authentication Passed

11503 Prepared EAP-Success
11002 Returned RADIUS Access-Accept

EAP-Fast with EAP chaining authorization PAC expiration

In this flow, the Supplicant has a valid Tunnel PAC but has expired Authorization PACs:

• Supplicant sends the TLS Client Hello with Tunnel PAC.
• Server validates the PAC and builds the TLS tunnel (no certificates used).
• ISE starts EAP Chaining, supplicant attaches Authorization PACs for User and Machine using TLV inside the TLS tunnel.
• As the PACs are expired, the inner method for both user and machine is started (EAP-MSCHAP).
• Once both authentications are successful, both user and machine Authorization PACs are provisioned.

12102 Extracted EAP-Response containing EAP-FAST challenge-response and accepting EAP-FAST as
negotiated
12800 Extracted first TLS record; TLS handshake started
12175 Received Tunnel PAC
12805 Extracted TLS ClientHello message
12806 Prepared TLS ServerHello message
12801 Prepared TLS ChangeCipherSpec message

12816 TLS handshake succeeded
12132 EAP-FAST built PAC-based tunnel for purpose of authentication
12209 Starting EAP chaining
12227 User Authorization PAC has expired - will run inner method
12228 Machine Authorization PAC has expired - will run inner method
12218 Selected identity type 'User'
11806 Prepared EAP-Request for inner method proposing EAP-MSCHAP with challenge
24402 User authentication against Active Directory succeeded - example.com
22037 Authentication Passed
12219 Selected identity type 'Machine'
24470 Machine authentication against Active Directory is successful - example.com
22037 Authentication Passed
12171 Successfully finished EAP-FAST user authorization PAC provisioning/update
12179 Successfully finished EAP-FAST machine authorization PAC provisioning/update
11503 Prepared EAP-Success
11002 Returned RADIUS Access-Accept

EAP-Fast with EAP chaining tunnel PAC expired

In this flow when no valid tunnel PAC exists, full TLS negotiation with inner phase occurs.

- Supplicant sends the TLS Client Hello without Tunnel PAC.
- Server responds with the TLS Certificate and Certificate Request payloads.
- Supplicant must trust server certificate, will not send client certificate (certificate payload is zero), TLS tunnel built.
- ISE sends TLV request for the client certificate inside the TLS tunnel, but supplicant does not (it's not necessary to have it in order to continue).
- Starts EAP Chaining for user, using inner method with MSCHAPv2 authentication.
- Continues with machine authentication, using inner method with MSCHAPv2 authentication.
- Successfully provisioned all PACs (enabled in ISE config).

12102 Extracted EAP-Response containing EAP-FAST challenge-response and accepting EAP-FAST as negotiated
12800 Extracted first TLS record; TLS handshake started
12805 Extracted TLS ClientHello message
12806 Prepared TLS ServerHello message
12807 Prepared TLS Certificate message
12809 Prepared TLS CertificateRequest message
12105 Prepared EAP-Request with another EAP-FAST challenge
11006 Returned RADIUS Access-Challenge
11001 Received RADIUS Access-Request

12816 TLS handshake succeeded
12207 Client certificate was requested but not received during tunnel establishment. Will renegotiate and request client certificate inside the tunnel.
12226 Started renegotiated TLS handshake
EAP-Fast with EAP chaining and anonymous TLS tunnel PAC provisioning

In this flow, ISE and NAM anonymous TLS tunnel is configured for PAC provisioning (ISE authenticated TLS tunnel for PAC provisioning is disabled) PAC provisioning request looks like:

- Supplicant sends TLS Client Hello without multiple ciphersuites.
- Server responds with the TLS Server Hello and TLS anonymous Diffie Hellman ciphers (for example TLS_DH_anon_WITH_AES_128_CBC_SHA).
- Supplicant accepts it and the anonymous TLS tunnel is built (no certificates exchanged).
- Starts EAP Chaining for user, using inner method with MSCHAPv2 authentication.
- Continues with machine authentication, using inner method with MSCHAPv2 authentication.
- Since the anonymous TLS tunnel is being built Authorization PACs are not allowed.
- Radius Reject is returned to force supplicant to reauthenticate (using provisioned PAC).

12104 Extracted EAP-Response containing EAP-FAST challenge-response
12800 Extracted first TLS record; TLS handshake started
12802 Prepared TLS Finished message
12801 Prepared TLS ChangeCipherSpec message
12804 Extracted TLS Finished message
12811 Extracted TLS Certificate message containing client certificate
12812 Extracted TLS ClientKeyExchange message
12105 Prepared EAP-Request with another EAP-FAST challenge
11006 Returned RADIUS Access-Challenge
11001 Received RADIUS Access-Request
11018 RADIUS is re-using an existing session
12104 Extracted EAP-Response containing EAP-FAST challenge-response
12209 Starting EAP chaining
12149 EAP-FAST built authenticated tunnel for purpose of PAC provisioning
12218 Selected identity type 'User'
12104 Extracted EAP-Response containing EAP-FAST challenge-response
12219 Selected identity type 'Machine'
11006 Received RADIUS Access-Request
11806 Prepared EAP-Request for inner method proposing EAP-MSCHAP with challenge
24470 Machine authentication against Active Directory is successful - example.com
22037 Authentication Passed
12119 Successfully finished EAP-FAST machine authorization PAC provisioning/update
12179 Successfully finished EAP-FAST machine authorization PAC provisioning/update
11806 Prepared EAP-Request for inner method proposing EAP-MSCHAP with challenge
24402 User authentication against Active Directory succeeded - example.com
22037 Authentication Passed
11503 Prepared EAP-Success
11002 Returned RADIUS Access-Accept
Prepared TLS ServerKeyExchange message
Prepared TLS ServerDone message

Extracted TLS ClientKeyExchange message
Prepared TLS ChangeCipherSpec message
Prepared TLS Finished message

TLS handshake succeeded

EAP-FAST built anonymous tunnel for purpose of PAC provisioning

Starting EAP chaining
Selected identity type 'User'

Prepared EAP-Request for inner method proposing EAP-MSCHAP with challenge

User authentication against Active Directory succeeded - example.com

Authentication Passed

Cannot provision Authorization PAC on anonymous provisioning. Authorization PAC can be provisioned only on authenticated provisioning

Approved EAP-FAST client Tunnel PAC request
Selected identity type 'Machine'

Machine authentication against Active Directory is successful - example.com

Authentication Passed

Cannot provision Authorization PAC on anonymous provisioning. Authorization PAC can be provisioned only on authenticated provisioning

Successfully finished EAP-FAST tunnel PAC provisioning/update

Successfully finished EAP-FAST machine PAC provisioning/update

Prepared EAP-Failure

Returned RADIUS Access-Reject

Wireshark packet captures for anonymous TLS tunnel negotiation:

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Length</th>
<th>Info</th>
<th>User-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.62.148.109</td>
<td>10.48.17.14</td>
<td>RADIUS</td>
<td>301</td>
<td>Access-Request(1) [id=198, anonymous]</td>
<td></td>
</tr>
<tr>
<td>10.62.148.109</td>
<td>10.48.17.14</td>
<td>RADIUS</td>
<td>498</td>
<td>Access-Request(1) [id=191, anonymous]</td>
<td></td>
</tr>
<tr>
<td>10.62.148.109</td>
<td>10.48.17.14</td>
<td>RADIUS</td>
<td>706</td>
<td>Access-Request(1) [id=192, anonymous]</td>
<td></td>
</tr>
<tr>
<td>10.62.148.109</td>
<td>10.48.17.14</td>
<td>RADIUS</td>
<td>378</td>
<td>Access-Request(1) [id=193, anonymous]</td>
<td></td>
</tr>
<tr>
<td>10.62.148.109</td>
<td>10.48.17.14</td>
<td>RADIUS</td>
<td>468</td>
<td>Access-Request(1) [id=194, anonymous]</td>
<td></td>
</tr>
</tbody>
</table>

Code: Request (1)
Id: 161
Length: 622
Type: Flexible Authentication via Secure Tunneling EAP (EAP-FAST) (43)
EAP-TLS Flags: 0x81

Secure Sockets Layer

TLSv1 Record Layer: Handshake Protocol: Server Hello
 Content Type: Handshake (22)
 Version: TLS 1.0 (0x0301)
 Length: 74

Handshake Protocol: Server Hello
 Handshake Type: Server Hello (2)
 Length: 70
 Version: TLS 1.0 (0x0301)
 Random
 Session ID Length: 32
 Session ID: 41ae5d6a65f48165c56144a09dcd9f9f67167fba995393...

Cipher Suites: TLS DH anan WITH AES 128_CBC_SHA (0x0034)
 Compression Method: null (0)

TLSv1 Record Layer: Handshake Protocol: Server Key Exchange
 Content Type: Handshake (22)
EAP-Fast with EAP chaining user authentication only

In this flow, AnyConnect NAM with EAP-FAST and User (EAP-TLS) and Machine authentication (EAP-TLS) is configured. The Windows PC is booted but user credentials are not provided. Switch initiates 802.1x session, NAM must respond however, user credentials are not provided, (no access to user store and certificate yet) therefore, user authentication will fail while the machine will be successful - ISE authz condition "

- Supplicant sends TLS Client Hello with Machine PAC.
- Server responds with the TLS Change Cipher Spec - TLS tunnel is immediately build based on that PAC.
- ISE initiates EAP Chaining and asking for user identity.
- Supplicant provides the machine identity instead (user not yet ready), finishes EAP-TLS inner method.
- ISE asks for user identity again, supplicant can not provide it.
- ISE sends TLV with intermediate result = failure (for user authentication).
- ISE returns the final EAP success message, ISE condition Network Access:EapChainingResult EQUALS User failed and machine succeeded is satisfied.

12102 Extracted EAP-Response containing EAP-FAST challenge-response and accepting EAP-FAST as negotiated
12800 Extracted first TLS record; TLS handshake started
12174 Received Machine PAC

12805 Extracted TLS ClientHello message
12806 Prepared TLS ServerHello message
12801 Prepared TLS ChangeCipherSpec message
12802 Prepared TLS Finished message

12816 TLS handshake succeeded
12132 EAP-FAST built PAC-based tunnel for purpose of authentication

12209 Starting EAP chaining
12218 Selected identity type 'User'

12213 Identity type provided by client is not equal to requested type
12215 Client suggested 'Machine' identity type instead

12104 Extracted EAP-Response containing EAP-FAST challenge-response
12523 Extracted EAP-Response/NAK for inner method requesting to use EAP-TLS instead

12805 Extracted TLS ClientHello message
12806 Prepared TLS ServerHello message
12807 Prepared TLS Certificate message
12809 Prepared TLS CertificateRequest message

12816 TLS handshake succeeded
12509 EAP-TLS full handshake finished successfully

22070 Identity name is taken from certificate attribute
15013 Selected Identity Source - Test-AD
24323 Identity resolution detected single matching account
22037 Authentication Passed

12202 Approved EAP-FAST client Authorization PAC request
12218 Selected identity type 'User'
12213 Identity type provided by client is not equal to requested type
12216 Identity type provided by client was already used for authentication
Sent EAP Intermediate Result TLV indicating failure

Successfully finished EAP-FAST machine authorization PAC provisioning/update

EAP-FAST authentication phase finished successfully
Prepared EAP-Success
Returned RADIUS Access-Accept

EAP-Fast with EAP chaining and inconsistent anonymous TLS tunnel settings

In this flow, ISE is configured for PAC provisioning only via anonymous TLS tunnel, but NAM is using an authenticated TLS tunnel, the following will be logged by ISE:

Extracted EAP-Response containing EAP-FAST challenge-response and accepting EAP-FAST as negotiated
Extracted first TLS record; TLS handshake started
Extracted TLS ClientHello message
Prepared TLS Alert message
TLS handshake failed
Client didn't provide suitable ciphers for anonymous PAC-provisioning

Prepared EAP-Failure
Returned RADIUS Access-Reject

This occurs when NAM is trying to build an authenticated TLS tunnel with it's specific TLS ciphers - and those are not accepted by ISE which is configured for anonymous TLS tunnel (accepting DH ciphers only)

Troubleshoot

ISE

For detailed logs, Runtime-AAA debugs should be enabled on the corresponding PSN node. Below are a few example logs from prrt-server.log:

Machine PAC generation:

```
DEBUG,0x7fd5332fe700,cntx=0001162745,sesn=mgarcarz-ise14/223983918/29245,CPMSessionID=0A3E946D00000FE5131F9D26,CallingStationID=00-50-B6-11-ED-31,FramedIPAddress=10.0.13.127,Using IID from PAC request for machine,EapFastTlv.cpp:1234
```

```
DEBUG,0x7fd5332fe700,cntx=0001162745,sesn=mgarcarz-ise14/223983918/29245,CPMSessionID=0A3E946D00000FE5131F9D26,CallingStationID=00-50-B6-11-ED-31,FramedIPAddress=10.0.13.127,Adding PAC of type=Machine Authorization,EapFastProtocol.cpp:3610
```

```
DEBUG,0x7fd5332fe700,cntx=0001162745,sesn=mgarcarz-ise14/223983918/29245,CPMSessionID=0A3E946D00000FE5131F9D26,CallingStationID=00-50-B6-11-ED-31,FramedIPAddress=10.0.13.127,Eap-Fast: Generating Pac, Issued PAC type=Machine Authorization with expiration time: Fri Jul 3 10:38:30 2015,EapFastProtocol.cpp:3610
```

PAC request approval:

```
INFO ,0x7fd5330fc700,cntx=0001162745,sesn=mgarcarz-ise14/223983918/29245,CPMSessionID=0A3E946D00000FE5131F9D26,CallingStationID=00-50-B6-11-ED-31,FramedIPAddress=10.0.13.127,Eap-Fast: client PAC request approved for PAC type - Requested PAC type=Machine,EapFastProtocol.cpp:955
```

```
INFO ,0x7fd5330fc700,cntx=0001162745,sesn=mgarcarz-ise14/223983918/29245,CPMSessionID=0A3E946D00000FE5131F9D26,CallingStationID=00-50-B6-11-ED-31,FramedIPAddress=10.0.13.127,Eap-Fast: client PAC request approved for PAC type - Requested PAC type=Machine Authorization,EapFastProtocol.cpp:955
```
PAC validation:

Eap, 2015-07-03 09:34:39, 208, DEBUG, 0x7fd5330fc700, contx=0001162499, sesn=mgarcarz-ise14/223983918/29243, CPMSessionID=0A3E946D00000FE5131F9D26, user=anonymous, CallingStationID=00-50-B6-11-ED-31, FramedIPAddress=10.0.13.127, Authorization PAC is valid, EapFastProtocol.cpp:3403

Example of successful summary for PAC generation:

Example of successful summary for PAC validation:

DART logs from NAM provide the following details:

Example for non EAP-Chaining session, Machine authentication without fast reconnect:

EAP: Identity requested
Auth[eap-fast-pac: machine-auth]: Performing full authentication
Auth[eap-fast-pac: machine-auth]: Disabling fast reauthentication

Example of Authorization PAC lookup (machine authentication for non EAP-Chaining session):

Looking for matching pac with iid: host/ADMIN-PC2
Requested machine pac was sent

All states of inner method (for MSCHAP) can be verified from the logs below:

EAP (0) EAP-MSCHAP-V2: State: 0 (eap_auth_mschapv2.c.c 731
EAP (0) EAP-MSCHAP-V2: State: 2 (eap_auth_mschapv2.c.c 731
EAP (0) EAP-MSCHAP-V2: State: 1 (eap_auth_mschapv2.c.c 731
EAP (0) EAP-MSCHAP-V2: State: 4 (eap_auth_mschapv2.c.c 73

NAM allows the configuration of the extended logging feature which will capture all EAP packets and save them in pcap file. This is especially helpful for Start Before Logon functionality (EAP packets are captured even for authentications which occur before user logon). For feature activation ask your TAC engineer.

References

- Cisco AnyConnect Secure Mobility Client Administrator Guide, Release 4.0 EAP-FAST configuration
- Cisco Identity Services Engine Administrator Guide, Release 1.4 EAP-FAST recommendations
- Cisco Identity Services Engine Design Guides
Deploying EAP Chaining with AnyConnect NAM and Cisco ISE
Technical Support & Documentation - Cisco Systems