Introduction

This document describes the introduction, configuration of Next Generation Encryption (NGE) from Cisco Unified Communications Manager (CUCM) 11.0 and later, to meet the enhanced security and performance requirements.

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics:

- Cisco Call Manager security basics
- Cisco Call Manager certificate management

Components Used
The information in this document is based on Cisco CUCM 11.0, where EDCSA certificates are only supported for CallManager (CallManager-EDCSA)

Note: CUCM 11.5 onwards supports tomcat-EDCSA certificates as well

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Related Products

This document can also be used with these software products and versions that support EDCSA certificates:

- Cisco Unified CM IM and Presence 11.5
- Cisco Unity Connection 11.5

Background Information

Elliptic curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. One of the main benefits in comparison with non-ECC cryptography is the same level of security provided by keys of smaller size.

Common Criteria provides assurance that security features operate correctly within the solution being evaluated. This is achieved through testing and meeting extensive documentation requirements.

Accepted and supported by 26 Countries Worldwide via Common Criteria Recognition Arrangement (CCRA)

Cisco Unified Communications Manager Release 11.0 supports Elliptic Curve Digital Signature Algorithm (ECDSA) certificates.

These certificates are stronger than the RSA-based certificates and are required for products that have Common Criteria (CC) certifications. The US government Commercial Solutions for Classified Systems (CSfC) program requires the CC certification and so, it is included in Cisco Unified Communications Manager Release 11.0 onwards.

The ECDSA certificates are available along with the existing RSA certificates in these areas:

- Certificate Management
- Certificate Authority Proxy Function (CAPF)
- Transport Layer Security (TLS) Tracing
- Secure SIP Connections
- Computer Telephony Integration (CTI) Manager
- HTTP and
- Entropy
Next sections provide more detailed information on each of the above 7 areas.

Certificate Management

Generating Certificates with EC encryption

Support for ECC from CUCM 11.0 onwards to generate CallManager Certificate with EC encryption

- New option **CallManager-ECDSA** available as shown in the image.
- Requires the host portion of the common name to end in –EC, to prevent having the same common name as the CallManager certificate.
- In case of Multi Server SAN certificate, this must end in –EC-ms.

- Both the self-signed certificate request and the CSR request limit the hash algorithm choices depending on the EC key size.
- For an EC 256 key size the hash algorithm can be SHA256, SHA384 or SHA512. For an EC 384 key size the hash algorithm can be SHA384 or SHA512. For an EC 521 key size the only
option is SHA512.
- The default key size is 384 and default hashing algorithm is SHA384, which can be changed using drop down. The options available are based on the chosen Key size.

CLI Configuration

A new certificate unit named **CallManager-ECDSA** has been added for the cli commands

- set cert regen [unit] – regenerates self-signed certificate

```bash
admin:set cert regen
Syntax:
set cert regen [name]
name mandatory unit name
admin:set cert regen CallManager-ECDSA
WARNING: This operation will overwrite any CA signed certificate previously imported for CallManager-
ECDSA
Proceed with regeneration (yes\no)?
```

- set cert import own\trust [unit] – imports CA signed certificate

```bash
admin:set cert import trust CallManager-ECDSA
Paste the Certificate and Hit Enter
```

- set csr gen [unit] – generates certificate signing request(CSR) for specified unit

```bash
admin:set csr gen CallManager-ECDSA
Successfully Generated CSR for CallManager-ECDSA
admin:
```

- set bulk export|consolidate|import tftp – When tftp is the unit name, CallManager-ECDSA certificates get auto-included with CallManager RSA certificates in bulk operations.

CTL and ITL Files

- Both CTL and ITL files have **CallManager-ECDSA** present.
- The CallManager-ECDSA certificate have the Function of CCM+TFTP in both the ITL and CTL file.
- You can use **show ctl** or **show itl** commands to view this information as shown in the image:
You can use `utils ctl update` to generate CTL file.

Certificate Authority Proxy Function (CAPF)

- The CAPF Version 3.0 in CUCM 11 provides support for EC Key Sizes along with RSA.
- The Additional CAPF options provided in addition to the existing CAPF fields are Key Order and EC Key Size (bits).
- The existing Key Size (bits) option has been changed to RSA Key Size (bits).
- The Key Order provides support for RSA Only, EC Only and EC Preferred, RSA backup options.
- The EC Key Size provides support for Key sizes of 256, 384 and 521 bits.
- The RSA Key Size provides support for 512, 1024 and 2048 bits.
- When Key Order of RSA Only is selected, only RSA Key Size can be selected. When EC only is selected, only EC Key Size can be selected. When EC Preferred, RSA backup is selected, both RSA and EC Key Size can be selected.
Note: Currently, no Cisco endpoint supports CAPF version 3 so avoid selecting the EC Only option. However, the administrators who want to support ECDSA LSCs later can configure their devices with EC Preferred RSA Backup option. When the endpoints begin to support CAPF version 3 for ECDSA LSCs, the administrators need to reinstall their LSC.

Additional CAPF Options for Phone, Phone Security Profile, End User and Application User Pages

Device > Phone > Related Links

Navigate to **System > Security > Phone security profile**

User Management > User Settings > Application User CAPF Profile

Phone Security Profile CAPF Information

- **Authentication Mode**: By Null String
- **Key Order**: RSA Only
- **RSA Key Size (Bits)**: 2048
- **EC Key Size (Bits)**: < None >

Note: These fields are related to the CAPF Information settings on the Phone Configuration page.
Navigate to User Management > User Settings > End User CAPF Profile.

TLS Ciphers Enterprise Parameters

- The Enterprise Parameter TLS Ciphers has been updated to support ECDSA Ciphers.
- The Enterprise Parameter TLS Ciphers now sets the TLS Ciphers for SIP Line, SIP Trunk and Secure CTI Manager.
SIP ECDSA Support

- Cisco Unified Communications Manager Release 11.0 includes ECDSA support for SIP lines and SIP trunk interfaces.
- The connection between Cisco Unified Communications Manager and an endpoint phone or video device is a SIP line connection whereas the connection between two Cisco Unified Communications Managers is a SIP trunk connection.
- All SIP connections support the ECDSA ciphers and use ECDSA certificates.

The Secure SIP interface was updated to support these two ciphers

`TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384`

`TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256`

These are the scenarios when SIP makes (Transport Layer Security) TLS connections:

- When SIP acts as a TLS server
 When the SIP trunk interface of Cisco Unified Communications Manager acts as a TLS server for incoming secure SIP connection, the SIP trunk interface determines if the CallManager-ECDSA certificate exists on disk. If the certificate exists on the disk, the SIP trunk interface uses the CallManager-ECDSA certificate if the selected cipher suite is

 `TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA256` or
 `TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA384`

- When SIP acts as a TLS client
 When the SIP trunk interface acts as a TLS client, the SIP trunk interface sends a list of requested cipher suites to the server based on the TLS Ciphers field (which also includes the ECDSA ciphers option) in the CUCM Enterprise Parameters The TLS Ciphers. This configuration determines the TLS client cipher suite list and the supported cipher suites in order of preference.

Note: 1. Devices that use an ECDSA cipher to make a connection to CUCM must have the
CallManager-ECDSA certificate in their Identity Trust List (ITL) file.

Note: 2. The SIP trunk interface support RSA TLS cipher suites for connections from clients that do not support ECDSA cipher suites or when a TLS connection is established with an earlier version of CUCM, that do not support ECDSA.

Secure CTI Manager ECDSA Support

The Secure CTI Manager interface was updated to support these four ciphers:

- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

- The Secure CTI Manager interface load both the CallManager and CallManager-ECDSA certificate. This allows the Secure CTI Manager interface to support the new ciphers along with the existing RSA cipher.
- Similar to the SIP interface, the Enterprise Parameter TLS Ciphers option in Cisco Unified Communications Manager is used to configure the TLS ciphers that are supported on the CTI Manager secure interface.

HTTPS Support for Configuration Download

- For secure configuration download (for example Jabber clients), Cisco Unified Communications Manager Release 11.0 is enhanced to support HTTPS in addition to the HTTP and TFTP interfaces that were used in the earlier releases.
- If required, both client and server use mutual authentication. However, the clients that are enrolled with ECDSA LSCs and Encrypted TFTP configurations are required to present their LSC.
- The HTTPS interface uses both the CallManager and the CallManager-ECDSA certificates as the server certificates.

Note: 1. When you update CallManager, CallManager ECDSA, or Tomcat certificates, you must deactivate and reactivate the TFTP service.

Note: 2. Port 6971 is used for authentication of the CallManager and CallManager-ECDSA certificates, used by Phones.

Note: 3. Port 6972 is used for the authentication of the Tomcat certificates, used by Jabber.
Entropy

Entropy is a measure of randomness of data and helps in determining the minimum threshold for common criteria requirements. To have strong encryption, a robust source of entropy is required. If a strong encryption algorithm, such as ECDSA, uses a weak source of entropy, the encryption can be easily broken.

In Cisco Unified Communications Manager Release 11.0, the entropy source for Cisco Unified Communications Manager is improved.

Entropy Monitoring Daemon is a built-in feature that does not require configuration. However, you can turn it off through the Cisco Unified Communications Manager CLI.

Use the following CLI commands to control the Entropy Monitoring Daemon service:

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>util service start Entropy Monitoring Daemon</code></td>
<td>Starts the Entropy Monitoring Daemon service.</td>
</tr>
<tr>
<td><code>util service stop Entropy Monitoring Daemon</code></td>
<td>Stops the Entropy Monitoring Daemon service.</td>
</tr>
<tr>
<td><code>util service active Entropy Monitoring Daemon</code></td>
<td>Activates the Entropy Monitoring Daemon service, which further loads the kernel module.</td>
</tr>
<tr>
<td><code>util service deactive Entropy Monitoring Daemon</code></td>
<td>Deactivates the Entropy Monitoring Daemon service, which further unloads the kernel module.</td>
</tr>
</tbody>
</table>

Related Information

- http://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cucm/security/11_5_1/secud/CUCM_BK_SEE2CFE1_00_cucm-security-guide-1151/CUCM_BK_SEE2CFE1_00_cucm-security-guide-1151_chapter_011.html#CUCM_RF_C0383C35_00l