Advanced VXLAN with vPC: Configuration and Verification of L2VNI and L3VNI

Contents

Introduction

Prerequisites

Requirements

Components Used

Background Information

Configure

Network Diagram

Configurations

Verification

Introduction

This document describes how to set up a lab with Nexus 9Kv switches using Advanced Virtual eXtensible Local Area Network (VXLAN) with Virtual Port-Channel (vPC).

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics:

- Understanding of routing and switching, as well as Multiprotocol Label Switching (MPLS) technology
- Experience with multicast routing principles such as Rendezvous Point (RP) and Platform Independent Multicast (PIM)
- Understanding of Border Gateway Protocol (BGP) Address Family Indicator (AFI)/Subsequent Address Family Indicator (SAFI)

Components Used

This document is not restricted to specific software and hardware versions.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, ensure that you understand the potential impact of any command.

Background Information

The document also provides guidance on deploying the lab, as well as verifying configurations and operations.

For this lab, the EveNg with Nexus 9000V switches is utilized for both the Leaf and Spine.

Virtual Tunnel Endpoint (VTEP)	LEAF1, LEAF2, LEAF3, LEAF4
vPC	LEAF1 and LEAF2
LEAF1 Primary and Secondary loopback IP	Loopback0 – 1.1.1.51, Loopback1 - 10.1.1.100
LEAF2 Primary and Secondary loopback IP	Loopback0 – 1.1.1.52, Loopback1 - 10.1.1.100
LEAF3 loopback IP	1.1.1.53
LEAF4 loopback IP	1.1.1.54
SPINE1 loopback and Anycast RP	Loopback0 - 1.1.1.71, Loopback1 - 10.1.2.10 (Anycast RP)
SPINE2 loopback and Anycast RP	Loopback0 - 1.1.1.72, Loopback1 - 10.1.2.10 (Anycast RP)
HOST 1	192.168.10.10 (0000. 0000.aaaa) (VLAN 10)
HOST 2	192.168.20.10 (0000. 0000.bbbb) (VLAN 20)
HOST 3	192.168.10.20 (0000. 0000.cccc) (VLAN 10)
HOST 4	192.168.20.20 (0000. 0000.dddd) (VLAN 20)
VLAN 10	L2VNI 100010
VLAN 20	L2VNI 100020
VLAN 500	L3VNI 50000
	I

Configure

Network Diagram

Configurations

• Underlay and PIM neighborships are already established.

LEAF Switch:

```
router ospf UNDERLAY
log-adjacency-changes

interface loopback0
ip router ospf UNDERLAY area 0.0.0.0

interface Ethernet1/1
ip ospf cost 4
ip ospf network point-to-point
ip router ospf UNDERLAY area 0.0.0.0

interface Ethernet1/2
ip ospf cost 4
ip ospf network point-to-point
ip router ospf UNDERLAY area 0.0.0.0
```

Enabling Open Shortest Path First (OSPF) on Leaf Switch

```
feature pim
ip pim rp-address 10.1.2.10 group-list 224.0.0.0/4
ip pim ssm range 232.0.0.0/8

vrf context TENANT1
  ip pim ssm range 232.0.0.0/8

interface vlan10
  ip pim sparse-mode

interface vlan20
  ip pim sparse-mode

interface loopback0
  ip pim sparse-mode

interface Ethernet1/1
  ip pim sparse-mode

interface Ethernet1/2
  ip pim sparse-mode
```

```
LEAF-1# show ip ospf neighbors
OSPF Process ID UNDERLAY VRF default
Total number of neighbors: 2
Neighbor ID Pri State Up Time Address Interface
1.1.1.71 1 FULL/ - 04:32:03 192.168.11.1 Eth1/1
1.1.1.72 1 FULL/ - 04:17:47 192.168.21.2 Eth1/2
LEAF-1# sh ip pim neighbor
PIM Neighbor Status for VRF "default"
Neighbor Interface Uptime Expires DR Bidir- BFD ECMP Redirect
Priority Capable State Capable
192.168.11.1 Ethernet1/1 04:32:14 00:01:30 1 yes n/a no
192.168.21.2 Ethernet1/2 04:17:58 00:01:44 1 yes n/a no
LEAF-1#
```

OSPF Neighbor

Spine Switch:

```
feature pim
ip pim rp-address 10.1.2.10 group-list 224.0.0.0/4
ip pim ssm range 232.0.0.0/8
ip pim anycast-rp 10.1.2.10 1.1.1.71
ip pim anycast-rp 10.1.2.10 1.1.1.72
```

Enabling PIM on Spine Switch

- Underlay and PIM neighborships are already established.
- Both Spine switches will be the identical Anycast RP for the whole multicast group 224.0.0.0/4.
- Maximum Transmission Unit (MTU) is set to 9000/9216 on the interfaces between the Leaf and Spine switches.

First, lets set up a vPC between Leaf1 and Leaf2.

Step 1. vPC feature and domain enablement.

- Enable feature vPC and Link Aggregation Control Protocol (LACP).
- Configure the vPC domain.
- The mgmt 0 interfaces are used as a peer keepalive link and Eth1/3 and Eth1/4 will be the part of vPC peer link (Port-Channel 1).
- Ensure that the peer-switch command is configured to share a common MAC address with descending switches.


```
!Command: show running-config vpc
!Running configuration last done at: Sat Dec 28 07:17:18 2024
!Time: Sat Dec 28 07:39:48 2024

version 7.0(3)I7(9) Bios:version
feature vpc

vpc domain 1
   peer-switch
   role priority 100
   peer-keepalive destination 192.168.0.52
   peer-gateway

interface port-channel1
   vpc peer-link
```

Enabling vPC on Leaf Switch 1

```
!Command: show running-config vpc
!Running configuration last done at: Sat Dec 28 07:17:14 2024
!Time: Sat Dec 28 07:40:20 2024

version 7.0(3)I7(9) Bios:version
feature vpc

vpc domain 1
   peer-switch
   role priority 200
   peer-keepalive destination 192.168.0.51
   peer-gateway

interface port-channel1
   vpc peer-link
```

Enabling vPC on Leaf Switch 2

Step 2. Port member assignment.

• Assign the port member to the channel group and include them in the vPC. In this case, two vPCs are being used. vPC 20 and vPC 10.

```
LEAF-1# sh run int port-channel 10, port-channel 20 membership

!command: show running-config interface port-channel10, port-channel20 membership
!Running configuration last done at: Sat Dec 28 07:17:18 2024
!Time: Sat Dec 28 07:42:44 2024

version 7.0(3)17(9) Bios:version

interface port-channel10
    switchport mode trunk
    vpc 10

interface Ethernet1/5

    switchport mode trunk
    channel-group 10 mode active

interface port-channel20
    switchport mode trunk
    vpc 20

interface Ethernet1/6

    switchport mode trunk
    channel-group 20 mode active

LEAF-1#
```

Assigning Port Channel on Leaf Switch 1

```
LEAF-2# sh run int port-channel 10, port-channel 20 membership
!Command: show running-config interface port-channel10, port-channel20 membership
!Running configuration last done at: Sat Dec 28 07:17:14 2024
!Time: Sat Dec 28 07:43:16 2024
version 7.0(3)I7(9) Bios:version
interface port-channel10
    switchport mode trunk
    vpc 10
interface Ethernet1/5
    switchport mode active
interface port-channel20
    switchport mode trunk
    vpc 20
interface Ethernet1/6
    switchport mode trunk
    channel-group 20 mode active

LEAF-2#
```

Assigning Port Channel on Leaf Switch 2

• Here, a vPC is created, and peers begin exchanging keepalive messages in order to verify availability.

```
LEAF-1# show vpc
Legend:
                                 (*) - local vPC is down, forwarding via vPC peer-link
VPC domain id
Peer status
VPC keep-alive status
Configuration consistency status
Per-vlan consistency status
Type-2 consistency status
VPC role
Number of VPCs configured
Peer Gateway
Dual-active excluded VLANs
Graceful Consistency Check
Auto-recovery status
Delay-restore status
Delay-restore SVI status
Operational Layer3 Peer-router
vPC domain id
                                                                         1
                                                                        peer adjacency formed ok
peer is alive
success
                                                                         success
                                                                        success
primary
2
                                                                         Enabled |
                                                                         Enabled 5 4 1
                                                                     : Disabled
: Timer is off.(timeout = 30s)
: Timer is off.(timeout = 10s)
: Disabled
vPC Peer-link status
id
            Port
                          Status Active vlans
            Po1
                                        1,10,20,500
                          up
VPC status
Ιd
                                                                                                                            Active vlans
            Port
                                         Status Consistency Reason
10
            Po10
                                                                                                                            1,10,20,500
                                                       success
                                                                               success
                                        up
20
            Po20
                                        up
                                                       success
                                                                               success
                                                                                                                            1,10,20,500
Please check "show vpc consistency-parameters vpc <vpc-num>" for the consistency reason of down vpc and for type-2 consistency reasons for
any vpc.
 LEAF-1#
```

vPC Status on Leaf Switch 1

```
LEAF-2# sh vpc
Legend:
                     (*) - local vPC is down, forwarding via vPC peer-link
VPC domain id
                                              1
                                              peer adjacency formed ok
Peer status
vPC keep-alive status
                                              peer is alive
Configuration consistency status
                                              success
Per-vlan consistency status
                                              success
Type-2 consistency status
                                              success
vPC role
                                              secondary
Number of vPCs configured
Peer Gateway
Dual-active excluded VLANs
Graceful Consistency Check
                                              Enabled
                                              Enabled
Auto-recovery status
Delay-restore status
                                              Disabled
                                               Timer is off.(timeout = 30s)
Timer is off.(timeout = 10s)
Delay-restore SVI status
Operational Layer3 Peer-router
                                            : Disabled
vPC Peer-link status
id
                 Status Active vlans
       Port
                          1,10,20,500
       Po1
                 up
vPC status
Ιd
       Port
                          Status Consistency Reason
                                                                               Active vlans
10
                                                                               1,10,20,500
       Po10
                          up
                                   success
                                                   success
20
       Po20
                                                                               1,10,20,500
                          up
                                   success
                                                  success
Please check "show vpc consistency-parameters vpc <vpc-num>" for the consistency reason of down vpc and for type-2 consistency reasons for
any vpc.
LEAF-2#
```

vPC Status on Leaf Switch 2

• VLAN 10, 20, 500 is already configured and passed over the vPC member ports and vPC peer link.

Step 3. Configure the Secondary IP address.

- When vPC is included in the VXLAN fabric, both vPC VTEP peers start using virtual IP (VIP) addresses as source addresses instead of their physical IP addresses (PIP). This also means that when BGP Ethernet VPN (EVPN) advertises Route Types 2 (MAC/IP advertisement) and 5 (IP prefixroute) by default, VIP is used as a next-hop. The Loopback 0 interface in our example is set up with two IP addresses: 10.1.1.100/32 (VIP) as the secondary IP and 1.1.1.51/32 (PIP) as the primary IP.
- Here a common IP address is configured as a secondary one under the loopback 0 interface.

```
!Command: show running-config interface loopback0
!Running configuration last done at: Sat Dec 28 07:51:58 2024
!Time: Sat Dec 28 07:55:26 2024

version 7.0(3)I7(9) Bios:version

interface loopback0
    ip address 1.1.1.51/32
    ip address 10.1.1.100/32 secondary
    ip router ospf UNDERLAY area 0.0.0.0
    ip pim sparse-mode

LEAF-1#
```

Secondary IP on Leaf Switch 1

```
!Command: show running-config interface loopback0
!Running configuration last done at: Sat Dec 28 07:52:05 2024
!Time: Sat Dec 28 07:55:37 2024

version 7.0(3)I7(9) Bios:version

interface loopback0
    ip address 1.1.1.52/32
    ip address 10.1.1.100/32 secondary
    ip router ospf UNDERLAY area 0.0.0.0
    ip pim sparse-mode

LEAF-2#
```

Secondary IP on Leaf Switch 2

Step 4. Enable VXLAN and related features.

- Network Virtualization (nV) overlay enables VXLAN
- Feature nV overlay EVPN- enables EVPN Control Plane
- Feature fabric forwarding enables Host Mobility Manager
- Feature Virtual Network (VN)-segment-VLAN-based enables VLAN-based VXLAN

```
LEAF-1# sh run | sec "feature|nv over"
nv overlay evpn
feature ospf
feature bgp
feature pim
feature fabric forwarding
feature interface-vlan
feature vn-segment-vlan-based
feature lacp
feature vpc
feature nv overlay
LEAF-1#
```

Features on Leaf Switch

```
SPINE-1# sh run | sec "feature|nv over"
nv overlay evpn
feature ospf
feature bgp
feature pim
feature nv overlay
SPINE-1#
```

Features on Spine Switch

• Since the spine does not require knowledge of the VLAN information of the client, the VN-segment and fabric features does not need to be enabled.

Step 5. Bring up the BGP neighborship.

- BGP between the Leaf and Spine switches must be enabled. The spine will serve as a route reflector in the lab.
- Although, it is optional to configure Route Reflector (RR), for the sake of scalability, Cisco recommends RR.

```
!Command: show running-config bgp
!Running configuration last done at: Sat Dec 28 07:51:58 2024
!Time: Sat Dec 28 08:07:35 2024

version 7.0(3)I7(9) Bios:version
feature bgp

router bgp 65000
   router-id 1.1.1.51
   neighbor 1.1.1.71
    remote-as 65000
   update-source loopback0
   address-family l2vpn evpn
    send-community extended
neighbor 1.1.1.72
   remote-as 65000
   update-source loopback0
   address-family l2vpn evpn
   send-community extended
```

Enabling BGP on Leaf Switch

```
SPINE-1# sh run bgp
!Command: show running-config bgp
!Running configuration last done at: Sat Dec 28 07:16:33 2024
!Time: Sat Dec 28 08:08:21 2024
version 7.0(3)I7(9) Bios:version
feature bgp
router bgp 65000
  router-id 1.1.1.71
  neighbor 1.1.1.51
    remote-as 65000
    update-source loopback0
    address-family 12vpn evpn
      send-community extended
      route-reflector-client
  neighbor 1.1.1.52
    remote-as 65000
    update-source loopback0
    address-family l2vpn evpn
      send-community extended
      route-reflector-client
  neighbor 1.1.1.53
    remote-as 65000
    update-source loopback0
address-family l2vpn evpn
      send-community extended
      route-reflector-client
  neighbor 1.1.1.54
    remote-as 65000
    update-source loopback0
    address-family 12vpn evpn
send-community extended
      route-reflector-client
SPINE-1#
```

Enabling BGP on Spine Switch

```
LEAF-1# show bgp l2vpn evpn summary
BGP summary information for VRF default, address family L2VPN EVPN
BGP router identifier 1.1.1.51, local AS number 65000
BGP table version is 62, L2VPN EVPN config peers 2, capable peers 2
10 network entries and 13 paths using 2228 bytes of memory
BGP attribute entries [10/1600], BGP AS path entries [0/0]
BGP community entries [0/0], BGP clusterlist entries [4/16]

Neighbor V AS MsgRcvd MsgSent Tblver InQ OutQ Up/Down State/PfxRcd
1.1.1.71 4 65000 146 121 62 0 0 01:45:52 3
1.1.1.72 4 65000 141 114 62 0 0 01:39:12 3
LEAF-1#
```

```
SPINE-1# show bgp l2vpn evpn summary
BGP summary information for VRF default, address family L2VPN EVPN BGP router identifier 1.1.1.71, local AS number 65000 BGP table version is 98, L2VPN EVPN config peers 4, capable peers 4 9 network entries and 9 paths using 2124 bytes of memory BGP attribute entries [7/1120], BGP AS path entries [0/0] BGP community entries [0/0], BGP clusterlist entries [0/0]
                                            AS MsgRcvd MsgSent
                                                                                        Tb1ver
                                                                                                         InQ OutQ Up/Down
Neighbor
                                                                                                                                              State/PfxRcd
                                                          147
147
                                 4
                                     65000
                                                                                                98
                                                                                                            0
                                                                                                                          01:46:29
1.1.1.51
                                                                           124
                                                                                                                       0
    1.1.52
                                                                           124
                                 4
                                     65000
                                                                                                98
                                                                                                            0
                                                                                                                       0 01:46:30
                                                                           155
                                                                                                                                             1
                                 4
                                     65000
                                                          128
                                                                                                98
                                                                                                            0
                                                                                                                       0 02:01:15
1.1.1.53
  L.1.1.54
                                     65000
                                                           191
                                                                                                 98
                                                                                                             0
                                                                                                                           03:03:08
```

BGP Status on Spine Switch

Step 6. Enable VRF context on leaf switches. VRF separates customer traffic and facilitates communication between two distinct L2VNIs via L3VNI.

Allocate L3VNI 50000 under VRF TENANT1.

```
vrf context TENANT1
vni 50000
ip pim ssm range 232.0.0.0/8
rd auto
address-family ipv4 unicast
route-target both auto
route-target both auto
```

L3VNI Allocation

Step 7. Network Virtual Interface (NVE), VXLAN identifier (VNI), and VLAN configuration.

- Set up the NVE Interface, using Loopback 0 as the source. Define the Multicast group for each VNI, where Layer 2 Broadcast, Unknown unicast, and Multicast (BUM) traffic will be delivered, then attach the VNI 100010 and 100020 IDs to the NVE interface. The VXLAN header contains the information that the VNI uses in order to identify which VXLAN segments it belongs to.
- The L3VNI 50000 is linked to the VRF instance (when sending it to the spine switch, VNI 50000 was attached in the VRF table).
- The **host-reachability protocol BGP** command activates the EVPN address family in the VXLAN tunnel, which means that MAC addresses and IP addresses are learned via the BGP protocol in the control plane and not in the data plane.
- Configure **suppress-arp** under the NVE interface.
- Attach Layer 2 and Layer 3 VLAN to relevant VNI.

Suppress-Address Resolution Protocol (ARP):

The Multi-Protocol (MP)-BGP EVPN control plane offers an improvement called ARP suppression in order to lessen network flooding brought on by broadcast traffic from ARP requests. Each of a VNIs VTEPs keeps an ARP suppression cache table for known IP hosts and the MAC addresses that correspond to them in the VNI segment when ARP suppression is enabled for that VNI. Its local VTEP intercepts the ARP request and

looks for the ARP-resolved IP address in its ARP suppression cache table whenever an end host in the VNI submits an ARP request for another end-host IP address. On behalf of the remote end host, the local VTEP sends an ARP response if it discovers a match. The ARP response then provides the local host with the remote hosts MAC address. The ARP request is flooded to the other VTEPs in the VNI if the local VTEP does not have the ARP-resolved IP address in its ARP suppression table. For the first ARP request to a silent network host, this ARP flooding can take place.

```
!Command: show running-config interface nve1
!Running configuration last done at: Sat Dec 28 07:51:58 2024
!Time: Sat Dec 28 08:44:44 2024

version 7.0(3)I7(9) Bios:version

interface nve1
   no shutdown
   host-reachability protocol bgp
   source-interface loopback0
   member vni 50000 associate-vrf
   member vni 100010
      suppress-arp
      mcast-group 239.0.0.10
   member vni 100020
      suppress-arp
   mcast-group 239.0.0.20

LEAF-1#
```

NVE Interface

```
!Command: show running-config vlan
!Running configuration last done at: Sat Dec 28 07:51:58 2024
!Time: Sat Dec 28 08:46:44 2024

version 7.0(3)I7(9) Bios:version
vlan 1,10,20,500
vlan 10
vn-segment 100010
vlan 20
vn-segment 100020
vlan 500
vn-segment 50000

LEAF-1#
```

VLAN to VN-Segment Mapping

- By sending Spine a PIM join message, the NVE interface will join the multicast groups 239.0.0.10 and 239.0.0.20, respectively, as soon as it boots up.
- You can see other (S, G) tables as well (1.1.1.54,239.0.0.20) and (10.1.1.100, 239.0.0.10/239.0.0.20)

in the image and those are already registered with Spine from different Leaf Switches.

Mroute Table

Step 8. Enable EVPN instance.

• Enable EVPN instance along with address-family for EVPN and VRF under BGP.

```
LEAF-1# sh run bgp
Command: show running-config bgp
 Running configuration last don
Time: Sat Dec 28 09:43:07 2024
                                            at: Sat Dec 28 09:22:19 2024
version 7.0(3)I7(9) Bios:version
outer bgp 65000
router-id 1.1.1.51
neighbor 1.1.1.71
                ource loopback0
family l2vpn evp
         ate-source loopback0
     address-family 12vpn ev
send-community extend
                       y 12vpn evpn
     address-family ipv4 unicast redistribute direct route-map REDIST
   ni 100010 12
     rd auto
     route-target import auto
                       export auto
  vni 100020
     rd auto
     route-target import auto
                      export
```

EVPN Instance

- The only purpose of route-map REDIST is to allow everything.
- Using the redistribute direct command, the connected VRF-aware routes are promoted into MP-BGP (type 5 routes).
- The EVPN configuration displayed above is identical to the network statement used by BGP in order to advertise MAC routes (type 2 routes).

Step 9. Configure Switch Virtual Interface (SVI) for each VLAN for the end host under VRF.

• On each leaf switch, the SVI is configured for locally configured VLAN and one SVI for L3VNI VLAN in order to achieve the Symmetric Routing Information Base (RIB).

Symmetric RIB:

- When the End host sends the data packet to a different network and it receives to the Leaf Switch, it will be processed into L2VNI first and then it will be placed to L3VNI using VRF and sent to the remote Leaf.
- Remote Leaf first receives the packets in the VRF table using Routing and then bridging to L2VNI and sends it to the end host.
- By that way, the Symmetric Routing (B-R-R-B) is achieved.

```
LEAF-1# sh run interface vlan 10, vlan 20, vlan 500
!Command: show running-config interface vlan10, vlan20, vlan500
 Running configuration last done at: Sat Dec 28 09:22:19 2024
!Time: Sat Dec 28 10:00:26 2024
version 7.0(3)I7(9) Bios:version
interface Vlan10
no shutdown
  mtu 9216
  vrf member TENANT1
  no ip redirects ip address 192.168.10.254/24
  no ipv6 redirects
  ip pim sparse-mode
fabric forwarding mode anycast-gateway
interface Vlan20
no shutdown
  mtu 9216
  vrf member TENANT1
  no ip redirects
  ip address 192.168.20.254/24
no ipv6 redirects
  ip pim sparse-mode
fabric forwarding mode anycast-gateway
interface Vlan500
no shutdown
vrf member TENANT1
no ip redirects
ip forward
  no ipv6 redirects
 EAF-1#
```

VLAN Interfaces

• The **IP forward** command under the VLAN 500 is used to enable Layer 3 forwarding for all VXLANs. There is no need to configure IP address, as it just processes the packet from the L2VNI table to the L3VNI table.

```
LEAF-1# show bgp vpnv4 unicast vrf TENANT1
BGP routing table information for VRF default, address family VPNv4 Unicast
BGP table version is 15, Local Router ID is 1.1.1.51
Status: s-suppressed, x-deleted, S-stale, d-dampened, h-history, *-valid, >-best
Path type: i-internal, e-external, c-confed, l-local, a-aggregate, r-redist, I-injected
Origin codes: i - IGP, e - EGP, ? - incomplete, | - multipath, & - backup

Network

Next Hop

Network

Next Hop

Netric

LocPrf

Weight Path

Route Distinguisher: 1.1.1.51:3 (VRF TENANT1)

*>r192.168.10.0/24 0.0.0 0 100 32768 ?

*>i192.168.20.0/24 0.0.0 0 0 100 32768 ?

*>i192.168.20.0/24 0.0.0 0 0 100 32768 ?

*>i192.168.20.20/32 1.1.1.54 100 0 i

LEAF-1#
```

Learning BGP VPNv4 Routes for VRF TENANT1

• The IP address for each VLAN will be common for all the SVIs on all leaf switches. This is called anycast IP and it is used in Mobility Management where the end can communicate to another host

seamlessly without any disruption.

Step 10. Enable fabric forwarding anycast gateway MAC for the end host.

- It ensures seamless Layer 3 gateway redundancy and optimized forwarding for devices connected to the fabric.
- The Anycast Gateway MAC address is a globally consistent MAC address used for all Layer 3 gateways in a fabric.
- The concept is identical to that which is employed in First Hop Redundancy Protocol (FHRP), where each group is issued a virtual MAC.

```
!Command: show running-config fabric forwarding
!Running configuration last done at: Sat Dec 28 09:22:19 2024
!Time: Sat Dec 28 10:08:08 2024

version 7.0(3)I7(9) Bios:version
nv overlay evpn
feature fabric forwarding

fabric forwarding anycast-gateway-mac 0000.1234.5678

interface Vlan10
  fabric forwarding mode anycast-gateway

interface Vlan20
  fabric forwarding mode anycast-gateway

LEAF-1#
```

Enabling Fabric Forwarding

Step 11. Enable the Access/Trunk VLAN to the member ports.

vPC Switch:

```
!Command: show running-config interface port-channel10 membership !Running configuration last done at: Sat Dec 28 09:22:19 2024 !Time: Sat Dec 28 10:13:19 2024 version 7.0(3)I7(9) Bios:version interface port-channel10 switchport mode trunk vpc 10 interface Ethernet1/5 switchport mode trunk channel-group 10 mode active LEAF-1#
```

Non-vPC Switch:

```
LEAF-3# show running-config interface e1/3
!Command: show running-config interface Ethernet1/3
!Running configuration last done at: Sat Dec 28 09:28:18 2024
!Time: Sat Dec 28 10:14:42 2024
version 7.0(3)I7(9) Bios:version
interface Ethernet1/3
   switchport access vlan 10
   spanning-tree port type edge

LEAF-3#
```

Enabling Trunk Ports to the Non vPC Member Interface

Verification

• Check the ARP and MAC address table.

```
LEAF-1# sh ip arp vrf TENANT1
Flags: * - Adjacencies learnt on non-active FHRP router
+ - Adjacencies synced via CFSoE
# - Adjacencies Throttled for Glean
CP - Added via L2RIB, Control plane Adjacencies
PS - Added via L2RIB, Peer Sync
RO - Re-Originated Peer Sync Entry
D - Static Adjacencies attached to down interface
 IP ARP Table for context TENANT1
Total number of entries: 2
Address Age MAC Address
192.168.20.10 00:00:36 0000.0000.bbbb
192.168.10.10 00:04:19 0000.0000.aaaa
LEAF-1# sh ip arp suppression-cache deta
                                                                                                              Interface
Vlan20
                                                                                                                                                        Flags
                                                                                                              vlan10
Flags: + - Adjacencies synced via CFSoE
L - Local Adjacency
R - Remote Adjacency
L2 - Learnt over L2 interface
PS - Added via L2RIB, Peer Sync
RO - Dervied from L2RIB Peer Sync Entry
 Ip Address
                                                                 Mac Address
                                                                                                         Vlan Physical-ifindex
                                                                                                                                                                          Flags
                                          Age
                                                                                                                                                                                                  Remote Vtep Addrs
   92.168.10.10
92.168.10.20
92.168.20.10
92.168.20.20
                                         00:04:33 0000.0000.aaaa
00:55:53 0000.0000.cccc
00:00:50 0000.0000.bbbb
                                                                                                             10 port-channel10
10 (null)
20 port-channel20
20 (null)
                                                                                                                                                                                                  1.1.1.53
                                          03:26:04 0000.0000.dddd
                                                                                                                                                                                                  1.1.1.54
```

```
LEAF-2# show ip arp vrf TENANT1
Flags: * - Adjacencies learnt on non-active FHRP router
+ - Adjacencies synced_via_CFSoE
        # - Adjacencies Throttled for Glean
       CP - Added via L2RIB, Control plane Adjacencies
PS - Added via L2RIB, Peer Sync
        RO - Re-Originated Peer Sync Entry
        D - Static Adiacencies attached to down interface
IP ARP Table for context TENANT1
Total number of entries: 2
Address
                                                 Interface
                                                                    Flags
                              MAC Address
                  Age
192.168.20.10
                  00:01:28
                                                 Vlan20
                              0000.0000.bbbb
192.168.10.10
                  00:00:11
                              0000.0000.aaaa
                                                 vlan10
LEAF-2#
```

ARP and MAC Table on LEAF Switch 2

- Both peers maintain the ARP entries.
- Check the Network Virtual Interface (NVI) status.

vPC Switch:

```
LEAF-1# show nve peers
Interface Peer-IP
                                          State LearnType Uptime
                                                                                  Router-Mac
nve1
               1.1.1.53
                                                                   01:09:04 5000.0003.0007
                                                   CP
               1.1.1.54
                                                   CP
                                                                   03:39:16 5000.0004.0007
nve1
LEAF-1# show nve vni
Codes: CP - Control Plane DP - Data P

UC - Unconfigured SA - Suppres

SU - Suppress Unknown Unicast

Xconn - Crossconnect

MS-IR - Multisite Ingress Replication
                                                   DP - Data Plane
                                                           Suppress ARP
Interface VNI
                             Multicast-group
                                                          State Mode Type [BD/VRF]
                                                                                                         Flags
                                                                                [TENANT1]
[10]
[20]
               50000
100010
nve1
nve1
                              n/a
                              239.0.0.10
239.0.0.20
 ıve1
               100020
 LEAF-1#
```

NVE Peers on vPC Switch

Non-vPC Switch:

- Here, you will notice that the peer IP is 10.1.1.100 instead of the primary loopback IP address, so the return packet will be routed for that IP to any of the vPC switches.
- Check BGP EVPN routes.

BGP l2route EVPN MAC-IP

```
LEAF-1# show l2route evpn mac all
Flags -(Rmac):Router MAC (Stt):Static (L):Local (R):Remote (V):vPC link (Dup):Duplicate (Spl):Split (Rcv):Recv (AD):Auto-Delete (D):Del Pending (S):Stale (C):Clear, (Ps):Peer Sync (O):Re-Originated (Nho):NH-Override (Pf):Permanently-Frozen
Topology
                      Mac Address
                                                  Prod
                                                               Flags
                                                                                          Seq No
                                                                                                               Next-Hops
                     Local
                                                                                          000
                                                                                                               Po<sub>10</sub>
10
20
                                                  Local
                                                                                                                   20
20
                                                                  plrcv
                                                               Rmac
                                                  VXLAN
LEAF-1#
```

BGP l2route EVPN MAC

```
LEAF-1# show bgp l2vpn evpn summary
BGP summary information for VRF default, address family L2VPN EVPN
BGP router identifier 1.1.1.51, local AS number 65000
BGP table version is 134, L2VPN EVPN config peers 2, capable peers 2
12 network entries and 15 paths using 2568 bytes of memory
BGP attribute entries [12/1920], BGP AS path entries [0/0]
BGP community entries [0/0], BGP clusterlist entries [4/16]

Neighbor V AS MsgRcvd MsgSent Tblver InQ OutQ Up/Down State/PfxRcd
1.1.1.71 4 65000 312 263 134 0 0 03:46:01 3
1.1.1.72 4 65000 307 256 134 0 0 03:39:21 3
LEAF-1#
```

BGP EVPN Summary

```
best
I-injected
                                                                         Weight Path
      :[0]:[ŏ]:[48]:[
                                                                          32768 i
>1[2]:[0]:[0]:[48]:[0
                                                                          32768 i
>i[2]:[0]:[0]:[48]:|
                                                                              0 i
/>1[2]:[0]:[0]:[48]:[
                                                                          32768 i
*>i[2]:[0]:[0]:[48]:[0
/>1[2]:[0]:[0]:[48]:|
                                                                          32768 i
'>i[2]:[0]:[0]:[48]:[
                                                                              0 i
 i[2]:[0]:[0]:[48]:[
                                      c]:[32]:[192.168.10.20
                                 32787
. dddd]:[0]:[0.0.0.0]/216
 oute Distinguisher:
i[2]:[0]:[0]:[48]:[
 i[2]:[0]:[0]:[48]:[0
                                  dddd]:[32]:[192.168.20.2
>i[2]:[0]:[0]:[48]:[
/>i[2]:[0]:[0]:[48]:[0
                                                                              0 i
EAF-1#
```

BGP EVPN Routes

- It is common to question how Leaf Switches acquire MAC entries for remote hosts. This process is facilitated by Gratuitous ARP. When a network port is activated, it immediately sends an ARP request in order to verify the uniqueness of the IP address. Each Leaf Switch then records the MAC address and includes it in a BGP Update Packet. This allows other Leaf Switches to update their respective MAC address tables accordingly. But there can be a case where the end host does not generate Gratuitous ARP (Silent host), and in that case, the ARP request will be broadcast to the leaf and as it is a broadcast request, the Leaf switch will generate the multicast request to the respective group for the particular VNI. In this case, it is 239.0.0.10 and 239.0.0.20.
- Lets ping from Host-1 to Host-3 within the same VNI and look at the capture.

```
HOST-1#ping 192.168.10.20 rep 2
Type escape sequence to abort.
Sending 2, 100-byte ICMP Echos to 192.168.10.20, timeout is 2 seconds:
!!
Success rate is 100 percent (2/2), round-trip min/avg/max = 11/11/12 ms
HOST-1#
```

Pinging from HOST-1 to HOST-3

Internet Control Message Protocol (ICMP) Packet over the VXLAN:

```
> Frame 213: 164 bytes on wire (1312 bits), 164 bytes captured (1312 bits) on interface -, id 0
> Ethernet II, Src: 50:00:00:06:00:07 (50:00:00:06:00:07), Dst: 50:00:00:03:00:07 (50:00:00:03:00:07)
> Internet Protocol Version 4, Src: 10.1.1.100, Dst: 1.1.1.53
✓ User Datagram Protocol, Src Port: 50413, Dst Port: 4789
     Source Port: 50413
     Destination Port: 4789
     Length: 130
  > Checksum: 0x0000 [zero-value ignored]
     [Stream index: 24]
     [Stream Packet Number: 1]
  > [Timestamps]
     UDP payload (122 bytes)

✓ Virtual eXtensible Local Area Network

  > Flags: 0x0800, VXLAN Network ID (VNI)
     Group Policy ID: 0
     VXLAN Network Identifier (VNI): 100010
     Reserved: 0
> Ethernet II, Src: 00:00:00_00:aa:aa (00:00:00:00:aa:aa), Dst: 00:00:00_00:cc:cc (00:00:00:00:cc:cc)
Internet Protocol Version 4, Src: 192.168.10.10, Dst: 192.168.10.20
     0100 .... = Version: 4
     .... 0101 = Header Length: 20 bytes (5)
  Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
     Total Length: 100
     Identification: 0x0000 (0)
  > 000. .... = Flags: 0x0
     ...0 0000 0000 0000 = Fragment Offset: 0
     Time to Live: 255
     Protocol: ICMP (1)
     Header Checksum: 0x262a [validation disabled]
     [Header checksum status: Unverified]
     Source Address: 192.168.10.10
     Destination Address: 192.168.10.20
     [Stream index: 11]
Internet Control Message Protocol
```

Wireshark Capture Showing ICMP Request Packet Travelling Through L2VNI 10010

- As you can see, the source IP is 10.1.1.100 with port 4789 as the UDP destination.
- Since it is an intra-VNI communication, VLAN 10 will use VNI 100010, and VLAN 20 will use VNI 1000.
- Lets ping from Host-1 to Host-4 with different VNI and look at the capture.

```
HOST-1#ping 192.168.20.20
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.20.20, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 11/13/21 ms
HOST-1#
```

Pinging from HOST-1 to HOST-4

ICMP Packet over the VXLAN:

```
> Frame 27: 164 bytes on wire (1312 bits), 164 bytes captured (1312 bits) on interface -, id 0
> Ethernet II, Src: 50:00:00:05:00:07 (50:00:00:05:00:07), Dst: 50:00:00:04:00:07 (50:00:00:04:00:07)
> Internet Protocol Version 4, Src: 10.1.1.100, Dst: 1.1.1.54

✓ User Datagram Protocol, Src Port: 54712, Dst Port: 4789

     Source Port: 54712
     Destination Port: 4789
     Length: 130
   > Checksum: 0x0000 [zero-value ignored]
     [Stream index: 3]
     [Stream Packet Number: 1]
   > [Timestamps]
     UDP payload (122 bytes)
Virtual eXtensible Local Area Network
   Flags: 0x0800, VXLAN Network ID (VNI)
     Group Policy ID: 0
     VXLAN Network Identifier (VNI): 50000
     Reserved: 0
Ethernet II, Src: 50:00:00:01:00:07 (50:00:00:01:00:07), Dst: 50:00:00:04:00:07 (50:00:00:04:00:07)
Internet Protocol Version 4, Src: 192.168.10.10, Dst: 192.168.20.20
Internet Control Message Protocol
```

Wireshark Capture Showing ICMP Request Packet Travelling Through L3VNI 50000

- Since it is an inter-VNI communication, the L3VNI 50000 will be used.
- Check the ARP table for end host.

```
HOST-1#sh ip arp
           Address
                               Age (min)
                                           Hardware Addr
Protocol
                                                                      Interface
                                                              Туре
                                                                      GigabitEthernet0/0
GigabitEthernet0/0
Internet
           192.168.10.10
                                           0000.0000.aaaa
                                                              ARPA
           192.168.10.20
                                      18
                                            0000.0000.cccc
Internet
                                                              ARPA
           192.168.10.254
                                           0000.1234.5678
                                                                      GigabitEthernet0/0
                                       3
                                                              ARPA
Internet
HOST-1#
```

HOST-1 ARP Entries

```
HOST-2#sh ip arp
                                                                               Interface
GigabitEthernet0/0
GigabitEthernet0/0
                                   Age (min)
Protocol
            Address
                                                 Hardware Addr
                                                                      Type
ARPA
            192.168.20.10
192.168.20.20
                                                 0000.0000.bbbb
Internet
                                                 0000.0000.dddd
Internet
                                          44
                                                                      ARPA
            192.168.20.254
                                            4
                                                 0000.1234.5678
                                                                      ARPA
                                                                               GigabitEthernet0/0
Internet
HOST-2#
```

HOST-2 ARP Entries

```
HOST-3#sh ip arp
Protocol
          Address
                            Age (min)
                                        Hardware Addr
                                                         Туре
                                                                 Interface
                                        0000.0000.aaaa
          192.168.10.10
                                                         ARPA
                                                                 GigabitEthernet0/0
Internet
                                  103
                                        0000.0000.cccc
Internet
          192.168.10.20
                                                         ARPA
                                                                 GigabitEthernet0/0
                                        0000.1234.5678
          192.168.10.254
                                   10
                                                         ARPA
Internet
                                                                 GigabitEthernet0/0
HOST-3#
```

HOST-3 ARP Entries

```
HOST-4#sh
          ip arp
          Address
                                        Hardware Addr
Protocol
                            Age (min)
                                                                 Interface
                                                          туре
                                                         AŘPA
                                                                 GigabitEthernet0/0
          192.168.20.10
                                   43
                                        0000.0000.bbbb
Internet
          192.168.20.20
                                                          ARPA
                                                                 GigabitEthernet0/0
Internet
                                        0000.0000.dddd
          192.168.20.254
Internet
                                    6
                                        0000.1234.5678
                                                         ARPA
                                                                 GigabitEthernet0/0
HOST-4#
```

```
HOST-4*tclsh
HOST-4(tcl)#set ip_list {192.168.10.10 192.168.10.20 192.168.20.10 192.168.20.20}
192.168.10.10 192.168.10.20 192.168.20.10 192.168.20.20
HOST-4(tcl)#foreach ip $ip_list {
HOST-4(tcl)#foreach ip $i
```

Pinging from HOST-4 to All Other End Hosts