Understand Hardware Resources on Catalyst 9000 Switches

Contents

Introduction
Prerequisites
Requirements
Components Used
Background Information
Terminology
ASIC Version Information (UADP 2.0 versus 3.0)
General Hardware Validation Commands
Cisco IOS XE 17.x General Hardware Validation Commands
Cisco IOS XE 16.x General Hardware Validation Commands
Per-Feature Hardware Validation Commands
Scenario: IPv4 Prefixes
IPv4 Syslogs
Scenario: ACL
ACL Syslogs
Scenario: NAT
NAT Syslogs
Scenario: MPLS
MPLS Syslogs
Scenario: QoS
QoS Syslogs
Related Information
<u>Cisco Bug IDs</u>

Introduction

This document describes how to understand and troubleshoot hardware resources on Catalyst 9000 series switches.

Prerequisites

Requirements

There are no specific requirements for this document.

Components Used

The information in this document is based on these software and hardware versions:

- Cisco Catalyst 9200, 9300, 9400, 9500 non-HP series switches on Cisco IOS® XE 16.x & 17.x software
- Cisco Catalyst 9500HP, 9600 series switches on Cisco IOS® XE 16.x & 17.x software

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, ensure that you understand the potential impact of any command.

Background Information

- Various features on Catalyst 9000 Series Switches consume limited hardware resources. These resources exist to accelerate the performance of those features, and to deliver the expected high forward rates expected from a switch.
- The size of these tables can vary from switch model to switch model, but the basic troubleshooting methodology remains the same.
- Commonly, the primary limited hardware resource in LAN switching is referred to as TCAM (TCAM is a memory technology especially suited to store Longest Prefix Match (LPM) information for fast lookup or other types of OR logic lookups).
- In Catalyst 9000 Series switches, multiple memory types are used beyond just TCAM, suited to specific needs of a given feature (HASH is another type of simplified memory. The MAC address table is an example of this memory type).

When you troubleshoot a feature that does not operate as expected, a good starting point is to confirm that hardware is not beyond the scale of the switch in question. While switches can vary in the size of these tables, the verification and troubleshoot methodology remains mostly the same.

Note: This page is also a reference page where you can find information on various features, and how to check their hardware scale.

Note: Per-platform, the CLI sometimes includes the term switch and sometimes does not. (show platform hardware fed <number|active|standby> fwd-asic resource tcam utilization versus show platform hardware fed <active> fwd-asic resource tcam utilization

Terminology

ЕМ	Exact Match	An entry in Hash memory that is a 1:1 match (host route, Directly Connected host)
LPM	Longest Prefix Match	Any route that is /31 or shorter (/32 routes are EM type)
ТСАМ	Ternary Content- Addressable Memory	A type of memory that stores and queries entries with three different inputs: 0, 1 and X. This type of memory must be used in cases where there can be multiple matches to the same entry, and the resulting Hash for each would not be unique. This table includes a mask or X value that allows it to know if it matches or does not match this entry.

САМ	Content- Addressable Memory	General term for hardware memory (Hash/TCAM)
RIB	Routing Information Base	The routing table seen in show ip route.
FIB	Forwarding Information Base	Simplified table with prefixes added by the RIB and ARP tables with a pointer to the ADJ table.
Directly Connected	Directly Connected Route	A locally connected host prefix (ARP adjacent).
Indirectly Connected	Indirectly Connected Route	A route that is via a remote next hop to reach.
ADJ	Adjacency (table)	Stores next hop information used for packet rewrite.
ЕМ	Exact Match	Connected hosts, indirect /32 host prefixes
ТСАМ	Ternary Content- Addressable Memory	Indirect prefixes /31 or shorter
FED	Forward Engine Driver	The ASIC (hardware) layer
FMAN-FP	Forward Manager- Forwarding Plane	FMAN-FP manages software objects that add, delete, or modify FED information.
SI	Station Index	Station Index = packet rewrite information (RI = Rewrite Index) and outbound interface information (DI = Destination Index)
RI	Rewrite Index	MAC address rewrite information for layer 3 forwarding to the next hop adjacency.
DI	Destination Index	Index that points to the outbound interface.
UADP	Cisco Unified Access [™] Data Plane	The ASIC architecture used in the switch.
-	•	

ASIC Version Information (UADP 2.0 versus 3.0)

The key difference between the 2.0 and 3.0 versions of the Catalyst 9000 series ASICs is how FIB hardware is populated or used.

In UADP 3.0 memory called EM/LPM is used:

- host routes (/32 mask length) and directly connected (ARP adjacent)
- /31 or shorter prefixes (Where a mask comparison is required to make a forward decision.)

In UADP 3.0 TCAM, it still exists for FIB, but is used only for special cases or exceptions where EM/LPM cannot be used.

• An example of this would be if the IP address space is not contiguous or multiple address spaces used, and merge into EM/LPM is not possible.

In UADP 2.0 memory is split into two sections EM & TCAM:

- EM is used for /32 host routes and directly connected (ARP adjacent) hosts.
- TCAM is used for /31 or shorter prefixes where a prefix mask comparison is required.

Compare these outputs between the two ASIC types:

In this example, the 9500-12Q has significantly more TCAM space. But, the 9500-48Y4C (9500H) has an even greater scale of EM/LPM.

- LPM the same logic applies to the TCAM of the 9500-12Q, but, its not specifically called out.
- The EM/LPM on 9500H indicates that this shared memory space is used for both Exact Match (EM) and LPM (prefix-based) entries. The system uses an optimized memory system to achieve both scale, performance, and flexibility.
- The significantly reduced TCAM on 9500H exists to store special entries, particularly Hash Collisions (when a unique hash cannot be generated for a particular entry).

9500-48Y4C (9500H / High Performance - UADP 3.0 based switch)

```
<#TOOL>
Switch#
show platform hardware fed active fwd-asic resource tcam utilization
Codes: EM - Exact_Match, I - Input, O - Output, IO - Input & Output, NA - Not Applicable
CAM Utilization for ASIC [0]
Table
Subtype Dir Max Used %Used V4 V6 MPLS Other
```

IP Route Table

EM/LPM									
I									
212992									
3	0.01%	2	0 1	0					
	ches now store								
IP Route Ta	ble								
TCAM									
I	1536	15	0.02%	6	6	2	1		
< Used fo	r exception ca	ases							
9500-12Q (U	JADP 2.0 based	d switch)							
<#root>									
Switch#									
show platfo	rm hardware fe	ed active f	wd-asic res	source tca	m utiliza	tion			
Codes: EM -	Exact_Match,	I - Input,	0 - Output	z, IO - In	put & Out	put, NA -	Not Appl:	icable	
CAM Utiliza	tion for ASIC	[0]							
Table									
	Subtype	e Dir	Max	Used	%Used	V4	V6	MPLS	Other
IP Route Ta	ble								
EM	_	-		-		-			
	I 49152	2 3	0.01%	2	0	1	0		
IP Route Ta	ble								
TCAM		15	0.02%	C	C	2	1		
I		15 	0.02%	0	0	2	1		
< LPM mat	ches are store	ed nere							

Note: For more information on the UADP Architecture see <u>Cisco Catalyst 9500 Architecture White</u> <u>Paper</u>

General Hardware Validation Commands

These commands show high level usage statistics for Hash, TCAM, Interface, Rewrite resources used.

- These resources are related, and exhaustion of a dependent resource can affect the ability to fully use other available resources.
- Changes to the outputs from these commands in 17.x train makes the ability to read hardware, and diagnose specific issues much easier.

Example: A switch can have available Hash / TCAM, but run out of Adjacencys.

• Packet ability to forward can be impacted to some destination prefix not because hardware cannot program FIB but because it cannot program a new rewrite entry.

<#root>

show platform hardware fed <switch> active fwd-asic resource tcam utilization

<-- Hash & TCAM

show platform hardware fed <switch> active fwd-asic resource utilization

<-- SI/RI/DI/etc (other related resources)</pre>

show platform hardware fed <switch> active fwd-asic resource rewrite utilization

<-- IP Adjacency. LISP adjacency, Tunnel Adjacency, etc

17.x train CLI displays multiple resources in one place (these are not available in 16.x)
New CLI combines aspects of all 3 commands into one table for easier diagnosis of all resources related
show platform hardware fed active fwd-asic resource features ip-adjacency utilization

Cisco IOS XE 17.x General Hardware Validation Commands

show platform hardware fed active fwd-asic resource tcam utilization command is the first place you want to look to evaluate if you have a hardware scale issue. (It displays information on a per-ASIC basis).

Codes:

- EM Exact_Match <-- Consult Terminology table for definition
- I Input, O Output, IO Input & Output, <-- If resource is directional it is noted
- NA Not Applicable <-- If direction is not applicable

<#root>

Switch#

show platform hardware fed active fwd-asic resource tcam utilization

Codes: EM - Exact_Match, I - Input, O - Output, IO - Input & Output, NA - Not Applicable

CAM Utilization for ASIC [0]

Table

Table									
9	Subtype	Dir	Max Use	ed %Us	ed	V4 N	6 MPLS	Other	
< CAM usage broke	en down per	resource &	memory type	(EM ver	sus TCAM))			
Mac Address Table Mac Address Table	EM	I I	65536	18	0.03%		0	0	18
L3 Multicast	TCAM EM	I	1024 16384	21 0	2.05% 0.00%		0 0	0 0	21 0
L3 Multicast	TCAM	I	1024	9	0.88%		6	0	0
L2 Multicast	EM	I	16384	0	0.00%		0	0	0
L2 Multicast	TCAM	I	1024	11	1.07%	-	8	0	0
IP Route Table									
EM	I	49152	3 0.01	%	2	0	1 0		
< Data from RIB/H	FIB populat	ed here							
IP Route Table									
TCAM	I	65536	15 0.0)2%	6	6	2 1	-	
< Data from RIB/H	FIB populat	ed here							
QOS ACL	TCAM	IO	18432	85	0.46%	28	38	0	19
Security ACL	TCAM	IO	18432	129	0.70%	26	58	0	45
Netflow ACL	TCAM	I	1024	6	0.59%	2	2	0	2
PBR ACL									
ТСАМ	I	204	8 22	1.07%	16	6	0	0	
< Data for PBR &	NAT popula	ted here							
Netflow ACL	TCAM	0	2048	6	0.29%	2	2	0	2
Flow SPAN ACL	TCAM	IO	1024	13	1.27%		6	0	4
Control Plane	TCAM	I	512	276	53.91%		106	0	44
Tunnel Termination	TCAM	I	1024	18	1.76%	8	10	0	0
Lisp Inst Mapping	TCAM	I	2048	1	0.05%	0	0	0	1
Security Associatio	on TCAM	I	512	4	0.78%	2	2	0	0

CTS Cell Matrix/VPN

EM									
0									
8192	0 0.00%	0	0	0	0				
< Outbound resour	rce used to read	ch remote '	VPNv4 pref:	ixes					
CTS Cell Matrix/VP	N								
cro cerr nacrix, vi	IN								
Label	TCAM	0	512	1	0.20%	0	0	0	
		0 I	512 4096	1 0	0.20% 0.00%	0 0	0 0	0 0	
Label	TCAM	-	-				-		
Label Client Table	TCAM EM	I	4096	0	0.00%	0	0	0	
Label Client Table Client Table	TCAM EM TCAM	I I	4096 256	0 0	0.00% 0.00%	0 0	0 0	0 0	
Label Client Table Client Table Input Group	TCAM EM TCAM LE TCAM	I I I	4096 256 1024	0 0 0	0.00% 0.00% 0.00%	0 0 0	0 0 0	0 0 0	

<...snip...>

Label

If hardware scale from command **show platform hardware fed active fwd-asic resource tcam utilization** looks okay, check other dependent resources

Note: There are many shared resources. This is just a few that are commonly used. (This table appearance does not change between 16.x & 17.x)

<#root>

Switch#

show platform hardware fed active fwd-asic resource utilization

Resource Info for ASIC Instance: 0 Resource Name Allocated

Free <-- Number available. If this is at max (or very close) possible issues can occur

RSC_DI	61	41805
< DI = Destination Ir	ldex	
RSC_RI	3	57317
< RI = Rewrite Index		
RSC_RI_REP	10	49143
< RI_REP = Multicast	Rewrite/Repl	ication Index
RSC_SI	519	64849
< SI = Station Index		

<....snip...>

<#root> Switch# show platform hardware fed switch active fwd-asic resource rewrite utilization Resource Info for ASIC Instance: 0 Rewrite Data Allocated Free <-- Rewrite specific hardware resources _____ 0 32000 PHF_EGRESS_destMacAddress <-- Destination MAC (Layer 3 next hop MAC rewrite) IPV4_TUNNEL_SRC_IP_ADDR 0 16 <-- IPv4 Tunnel Source IP IPV4_TUNNEL_DEST_IP_ADDR 0 256 <-- IPv4 Tunnel Destination IP IPV4_GRE_TUNNEL_DEST_IP_ADDR 0 1024 <-- GRE specific tunnel Destination IP GRE_HEADER 684 0 GRE_KEY 0 684 <-- GRE keys NAT_L3_DEST_IPV4 0 7168 <-- NAT Layer 3 IPv4 Destination 0 NAT_DST_PORT_UNICAST 8192 <-- NAT Destination Ports NAT_L3_SRC_IPV4 0 8192 <-- NAT Layer 3 IPv4 Source NAT_SRC_PORT_UNICAST 0 8192 <-- NAT Source Ports

<....snip...>

<#root>

Switch#

show platform hardway	re fed active f	wd-asic resour	ce features ip-adjac	ency utilization
IPv4 unicast adjacen Resource Info for ASI		ō		
[A:0, C:0]			< Per-ASIC & Co	ore [Asic 0, Core 0]
Shared Resource Name				
A	llocated	Free	Usage%	
< Shared resources				
RSC_RI				
		3	57317	0.01
< RI = Rewrite Inde	ex			
RSC_SI				
		519	64849	0.79
< SI = Station Inde	ex			
< These are tables < These resources a				details to send packets
Describe Data				
Rewrite Data	A]]	d Tree		
< Doumito mogouro	Allocate	ed Free	Usage%	
< Rewrite resource	es (Dest MAC)			
PHF_EGRESS_destMacAdo	dress			
0	32	000	0.00	
< Destination MAC w	usage			
< When a packet is	sent to a next	hop, it must]	be written with a de	stination MAC address
CAM Table Utilization	n Info			
Alloca	ated Fre	e	Usage%	
< EM (Hash) & TCAM			-	

IP Route table Host/Network	0/ 0	0/32768	0.00/ 0.00

<-- Resource that programs prefixes, either local/host routes (EM/Hash) or Shorter /31 or less prefixes

Note: 9500H & 9600 ASIC have the ability to store shorter prefix mask in Hash memory (called EM/LPM) versus TCAM. See the IPv4 specific scenario for more details

Cisco IOS XE 16.x General Hardware Validation Commands

show platform hardware fed active fwd-asic resource tcam utilization command is the first place you want to look to evaluate if you have a hardware scale issue. (It displays information on a per-ASIC basis). You can see that in 16.x train the output is less granular, and some of the descriptions vary.

In most cases, the Table list is clear with a couple exceptions:

- Directly or indirectly connected routes. This needed improvement, as it was not clear that directly means both ARP adjacent routes AND /32 host routes. Indirectly means any route /31 or shorter
- Policy Based Routing ACEs include NAT related configuration. Keep this in mind when NAT is the feature of concern.

<#root>

Switch#

show platform hardware fed switch active fwd-asic resource tcam utilization

CAM Utilization for ASIC [0] Table	Max Values	Used Values
Unicast MAC addresses	32768/1024	19/21
L3 Multicast entries	8192/512	0/9
L2 Multicast entries	8192/512	0/11
Directly or indirectly connected routes	24576/8192	3/19 < First value 24576 = EM
QoS Access Control Entries	5120	85
Security Access Control Entries	5120	126
Ingress Netflow ACEs	256	8
Policy Based Routing ACEs	1024	22
Egress Netflow ACEs	768	8
Flow SPAN ACEs	1024	13
Control Plane Entries	512	255
Tunnels	512	17
Lisp Instance Mapping Entries	2048	3
Input Security Associations	256	4
SGT_DGT	8192/512	0/1
CLIENT_LE	4096/256	0/0
INPUT_GROUP_LE	1024	0
OUTPUT_GROUP_LE	1024	0
Macsec SPD	256	2

Note: The commands listed here did not have a CLI change between 16 and 17 code trains, and they are only described once in the 17.x section of this document.

<#root>

show platform hardware fed <switch> active fwd-asic resource utilization
<-- SI/RI/DI/etc (other related resources)
show platform hardware fed <switch> active fwd-asic resource rewrite utilization
<-- IP Adjacency. LISP adjacency, Tunnel Adjacency, etc</pre>

Per-Feature Hardware Validation Commands

Scenario: IPv4 Prefixes

IPv4 hardware validation can be found on this page <u>Understand IPv4 Hardware Resources on Catalyst 9000</u> <u>Switches</u>

Symptom the resource is beyond scale.

- 1. Device or prefix reachability issues. While routes that exist or devices can remain reachable, any new or updated prefixes are not reachable.
- 2. Log messages indicate the hardware is not able to take new object updates.
- 3. Object layer, which programs software into hardware become congested.
- 4. Absent entries at the impacted hardware layer (in this case the FIB is the impacted layer).

IPv4 Syslogs

If you run out of a particular IPv4 FIB or Adjacency resource, SYSLOG message are generated by the system

IPv4 FIB Log Message	Definition	Recovery Action
%FED_L3_ERRMSG-3- RSRC_ERR: Switch 1 R0/0: fed: "Failed to allocate hardware resource for fib entry due to hardware resource exhaustion" error.	entries has run out of space (EM or TCAM).	Summarize routes or take some other action to reduce the scale of FIB entries (this can be exact match or TCAM, whichever one is exhausted).
%FED_L3_ERRMSG-3- RSRC_ERR: R0/0: fed: "Failed to allocate hardware resource for adj entry - rc:1"error.	next hop destination MAC	Reduce the scale number of directly connected (ARP adjacent) hosts

Scenario: ACL

ACL hardware validation can be found on this page Validate Security ACLs on Catalyst 9000 Switches

ACL Syslogs

If you run out of a particular Security ACL resource, SYSLOG message is generated by the system (interface, Vlan, label, and so on values can differ).

ACL Log message	Definition	Recovery Action
%ACL_ERRMSG-4-UNLOADED: Switch 1 fed: Input <acl> on interface <interface> could not be programmed in hardware and traffic can be dropped.</interface></acl>	ACL is Unloaded (held in software).	Investigate TCAM scale. If beyond scale, redesign ACLs.
%ACL_ERRMSG-6-REMOVED: 1 fed: The unloaded configuration for Input <acl> on interface <interface> has been removed for label <label>asic<number></number></label></interface></acl>	Unloaded ACL configuration is removed from interface.	ACL is already removed, no action to take.
%ACL_ERRMSG-6-RELOADED: 1 fed: Input <acl> on interface <interface> has now been loaded into the hardware for label <label> on asic<number></number></label></interface></acl>	ACL is now installed in Hardware.	Issue with ACL is now in hardware resolved, no action to take.
%ACL_ERRMSG-3-ERROR: 1 fed: Input <acl> IP ACL <name> configuration could not be applied on <interface> at bindorder <number></number></interface></name></acl>	Other type ACL error (such as dot1x ACL install failure)	Confirm ACL configuration is supported, and TCAM is not beyond scale
%ACL_ERRMSG-6-GACL_INFO: Switch 1 R0/0: fed: Logging is not supported for GACL	GACL has log option configured.	GACL do not support log. Remove log statements from GACL.
%ACL_ERRMSG-6-PACL_INFO: Switch 1 R0/0: fed: Logging is not supported for PACL	PACL has log option configured.	PACL do not support log. Remove log statements from PACL.
%ACL_ERRMSG-3-ERROR: Switch 1 R0/0: fed: Input IPv4 Group ACL implicit_deny: <name>: configuration could not be applied on Client MAC 0000.0000.0000</name>	(dot1x) ACL fails to apply on target port.	Confirm ACL configuration is supported, and TCAM is not beyond scale.

Scenario: NAT

NAT hardware validation can be found on this page Configure and Verify NAT on Catalyst 9000 Switches

NAT Syslogs

NAT Feature does not have any syslog that prints when hardware resources are out of scale. Cisco bug ID <u>CSCvz46804</u> was filed as an enhancement to add these logs.

If you experience NAT issues and want to verify hardware resource usage, check **show platform hardware fed switch active fwd-asic resource tcam utilization** (the PBR ACL region is highly utilized when NAT TCAM is depleted).

Also verify you have configured NAT in accordance with the limitations noted here: Limitations of NAT

Scenario: MPLS

MPLS hardware validation can be found on this page <u>Configure and Verify MPLS on Catalyst 9000</u> <u>Switches</u>

MPLS Syslogs

If you run out of a particular resource, such as MPLS labels, SYSLOG message are generated by the system.

Key points to remember:

- MPLS LABEL is used for label disposition. (This resource is consumed when prefixes are learned from a local CE)
- LSPA is used for label imposition. (This resource is consumed when prefixes are learned from a remote PE)

MPLS Log Message	Definition	Recovery Action
%FED_L3_ERRMSG-3-RSRC_ERR: Switch 1 R0/0: fed: "Failed to allocate hardware resource for fib entry" error due to hardware resource exhaustion.	Hardware reserved for IP prefixes has run out of space (EM or TCAM).	Take one of these actions to reduce the number of prefixes learned by the local or remote PE: 1. Summarize prefixes at CE. 2. Change label allocation mode from per-prefix to per-vrf.
%FED_L3_ERRMSG-3- mpls_out_of_resource: Switch 1 R0/0: fed: "Out of resource for MPLS LABEL ENTRY" error. Failed to program local label:8205 (8192/8192) in hardware.	Local label Allocation: Hardware reserved for MPLS local labels has run out of space (EM or TCAM).	Take one of these actions to reduce number of labels used on local PE: 1. Summarize prefixes at local CE or local PE. 2. Change label allocation mode from per-prefix to per-vrf on the local PE.
%FED_L3_ERRMSG-3- MPLS_LENTRY_PAUSE: Switch 1 R0/0: fed: Critical limit reached for MPLS LABEL ENTRY resource. Lentry	Local label Allocation: Hardware reserved for MPLS local labels has run out of space (EM or TCAM).	Take one of these actions to reduce number of labels used on local PE: 1. Summarize prefixes at local CE or local PE.

Create PAUSED.	2. Change label allocation mode from per-prefix to per-vrf on the local PE.
mpls_out_of_resource: Switch 1 R0/0:	 Take one of these actions to reduce number of labels used on remote PE: 1. Summarize prefixes at remote CE or remote PE. 2. Change label allocation mode from per-prefix to per-vrf on the remote PE.

Scenario: QoS

QoS hardware validation can be found on this page <u>Understand QoS Hardware Resources on Catalyst 9000</u> <u>Switches</u>

QoS Syslogs

If you run out of QoS related resources, SYSLOG messages are generated by the system:

QoS related Syslog Message	Definition	Recovery Actions
%FED_QOS_ERRMSG-4- TCAM_OVERFLOW: Switch 1 R0/0: fed: "Failed to program"error TCAM for policy-map ingress_pmap2 on GigabitEthernet1/0/10.	Hardware (TCAM) reserved for QoS entires has run out of space.	 Ensure you have a valid / supported configuration. Review the remainder of this document to validate the current scale utilization of your switch and possible steps to reduce if it is overutilized.
%FED_QOS_ERRMSG-3- QUEUE_SCHEDULER_HW_ERROR: Switch 1 R0/0: fed: "Failed to configure queue scheduler"error for GigabitEthernet1/0/27.	Installation to hardware of QoS queue scheduler has failed.	 Verify your configuration is supported Review the QoS configuration guide for your specific platform and version of software. For 9200LONLY: Review Cisco bug ID<u>CSCvz54607</u>and Cisco bug ID<u>CSCvz76172</u>
FED_QOS_ERRMSG-3- QUEUE_BUFFER_HW_ERROR: R0/0: fed: "Failed to configure default queue buffer" error.	Installation to hardware of QoS queue buffers has failed.	 Verify your configuration is supported. Review the QoS configuration guide for your specific platform

		and version of software. 3. Review Cisco bug ID <u>CSCvs49401</u>
--	--	---

Related Information

Technical Support & Documentation - Cisco Systems

Cisco Catalyst 9200 Series Switches Data Sheet

Cisco Catalyst 9300 Series Switches Data Sheet

Cisco Catalyst 9400 Series Switches Data Sheets

Cisco Catalyst 9500 Series Switches Data Sheets

Cisco Catalyst 9600 Series Switches Data Sheet

Cisco Catalyst 9500 Architecture White Paper

Cisco Bug IDs

Cisco bug ID <u>CSCvg60292</u> (When maximum routes in TCAM are hit, no routes are able to be installed in Hash table.)

Cisco bug ID <u>CSCvx57822</u> (Hardware Tables need 90% utilization watermark.)

Cisco bug ID CSCvs49401

Cisco bug ID CSCvz54607

Cisco bug ID CSCvz76172