Use iPerf on Catalyst 9000 Switches to Perform Bandwidth Tests

Contents

Introduction

Prerequisites

Requirements

Components Used

Related Products

Background Information

Video

iPerf Installation

Restrictions

Installation Steps

Verification

Bandwidth Tests

Network Diagram

Method 1: Switch as a Client

Method 2: PC as a Client

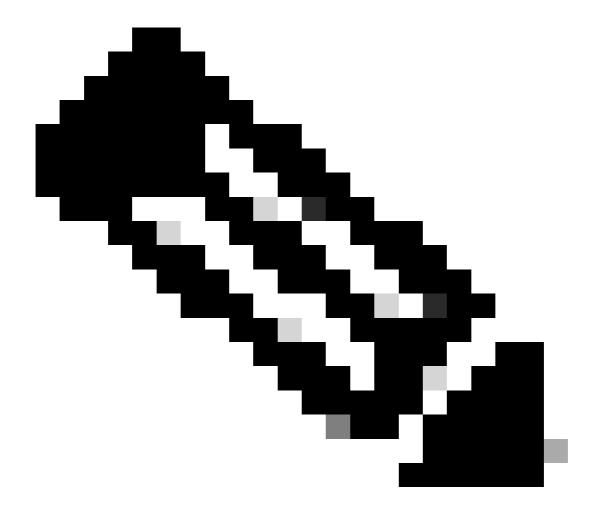
Related Information

Introduction

This document describes how to use iPerf on Catalyst 9000 series switches to perform bandwidth tests.

Prerequisites

Requirements


Cisco recommends that you have knowledge of these topics:

- Application Hosting on Catalyst 9000 series switches
- Linux

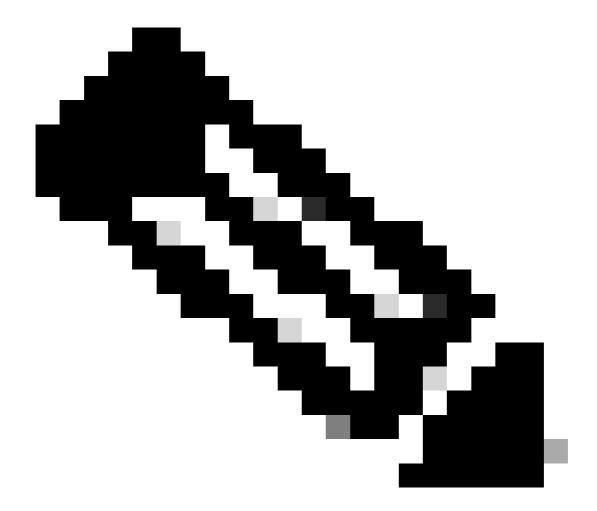
Components Used

The information in this document is based on these software and hardware versions:

- C9300
- Cisco IOS® XE 17.3.5
- Cisco IOS® XE 17.6.4

Note: Consult the appropriate configuration guide for the commands that are used to enable these features on other Cisco platforms.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, ensure that you understand the potential impact of any command.


Related Products

This document can also be used with these hardware and software versions:

- C9300X
- C9400

Background Information

iPerf3 is a tool for active measurements of the maximum achievable bandwidth on IP networks. iPerf uses

Note: Consult iPerf official documentation for more information related with this tool.

Video

iPerf Installation

Restrictions

- Application hosting is not virtual routing and forwarding aware (VRF-aware).
- In releases prior to Cisco IOS® XE Amsterdam 17.3.3, application hosting requires dedicated storage allocations, and is disabled on the bootflash.
- In Cisco IOS® XE Amsterdam 17.3.3 and later releases, application hosting is enabled on the bootflash, however, only Cisco-signed applications are hosted.
- The front-panel Universal Serial Bus (USB) stick is not supported.
- Cisco Catalyst 9300 Series Switches support only back-panel Cisco-certified USB.
- Cisco Catalyst 9500-High Performance Series Switches and Cisco Catalyst 9600 Series Switches do

- not support front-panel USB for application hosting.
- Cisco Catalyst 9500 and 9500-High Performance Series Switches and Cisco Catalyst 9600 Series Switches do not support AppGigabitEthernet interfaces.
- Cisco Catalyst 9410R Switches do not support application-hosting in release prior to Cisco IOS® XE Bengaluru 17.5.1.
- Configure the enable command on the AppGigabitEthernet interfaces to enable application hosting on Cisco Catalyst 9410R Switches.

Installation Steps

1. Download the latest iPerf image and verify it is stored into the USB SSD:

```
C9300-AC1#dir usbflash1:/
Directory of usbflash1:/

12 -rw- 6043136 Jan 26 2023 21:55:35 +00:00 iPerf.tar
```

2. Choose a VLAN or configure a new one for iPerf connectivity:

```
C9300-AC1(config)#interface vlan 10
C9300-AC1(config-if)#ip add 192.168.10.11 255.255.255.0
```

3. Configure the AppGigabitEthernet interface:

```
C9300-AC1(config)#int Ap1/0/1
C9300-AC1(config-if)#switchport mode trunk
```

4. Configure iPerf docker and associate it with a VLAN:

```
C9300-AC1(config)#app-hosting appid iPerf
C9300-AC1(config-app-hosting)#app-vnic AppGigabitEthernet trunk
C9300-AC1(config-config-app-hosting-trunk)#vlan 10 guest-interface 0
C9300-AC1(config-config-app-hosting-vlan-access-ip)#guest-ipaddress 192.168.10.21 netmask 255.255.255.0
```

5. Configure as a default gateway for the application the IP of the SVI that you chose for iPerf connectivity:

```
C9300-AC1(config)#app-hosting appid iPerf
C9300-AC1(config-app-hosting)#app-default-gateway 192.168.10.11 guest-int
```

6. Start the IOX service and verify it is in running state with show iox-service privileged EXEC command:

C9300-AC1(config)#iox
C9300-AC1(config)#do show iox-service

IOx Infrastructure Summary:

IOx service (CAF) : Running
IOx service (HA) : Running
IOx service (IOxman) : Not Ready
IOx service (Sec storage) : Not Running
Libvirtd 5.5.0 : Running
Dockerd 18.03.0 : Running
Sync Status : Disabled

7. Install iPerf application from SSD and verify it is deployed:

C9300-AC1#app-hosting install appid iPerf package usbflash1:iPerf.tar Installing package 'usbflash1:iPerf.tar' for 'iPerf'. Use 'show app-hosting list' for progress.

C9300-AC1#show app-hosting list

App id State

iPerf DEPLOYED

8. Activate and start iPerf application:

C9300-AC1#app-hosting activate appid iPerf

iPerf activated successfully Current state is: ACTIVATED

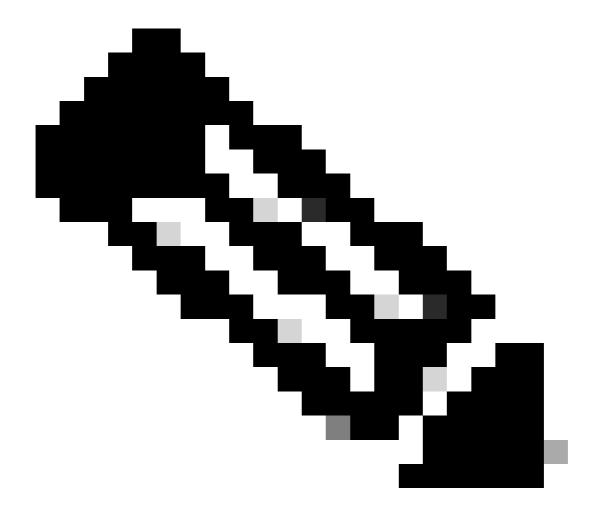
C9300-AC1#show app-hosting list

App id State

iPerf ACTIVATED

C9300-AC1#app-hosting start appid iPerf

iPerf started successfully Current state is: RUNNING


C9300-AC1#

C9300-AC1#show app-hosting list

App id State

iPerf RUNNING

Note: Once iPerf is in runningstate, it runs as a server by default.

Verification

In order to verify application details, you can use show app-hosting utilization appid [app-name] privileged EXEC command:

C9300-AC1#show app-hosting detail appid iPerf

App id : iPerf
Owner : iox
State : RUNNING

Application

Type : docker

Name : mlabbe/iperf3

Version : latest

Description : Author :

Path : usbflash1:iPerf.tar

URL Path :

Activated profile name : default

Resource reservation

Memory : 409 MB Disk : 10 MB : 1480 units CPU : 20 % CPU-percent

VCPU : 1

Platform resource profiles

Profile Name CPU(unit) Memory(MB) Disk(MB)

Attached devices

Type	Name	Alias
serial/shell serial/aux serial/syslog	iox_console_shell iox_console_aux iox_syslog	serial0 serial1 serial2
serial/trace	iox_trace	serial3

Network interfaces

eth0:

MAC address : 52:54:dd:d2:df:af
IPv4 address : 192.168.10.21
IPv6 address : ::
Network name : mgmt-bridge-v10

Docker _____

Run-time information

Command Entry-point : iperf3 -s

Run options in use : Package run options :

Application health information Status : 0 Last probe error : Last probe output :

In order to verify application utilization, you can use show app-hosting utilization appid [app-name] privileged EXEC command:

C9300-AC1# show app-hosting utilization appid iPerf

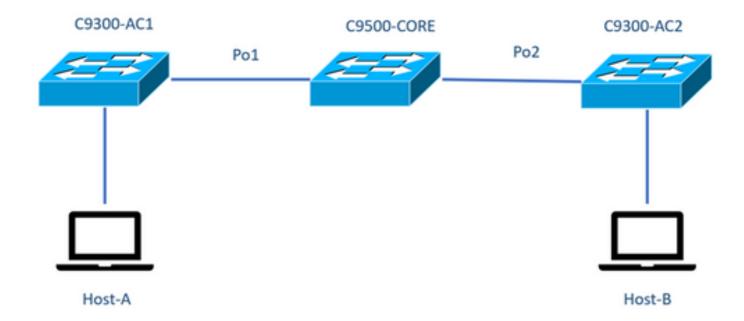
Application: iPerf CPU Utilization:

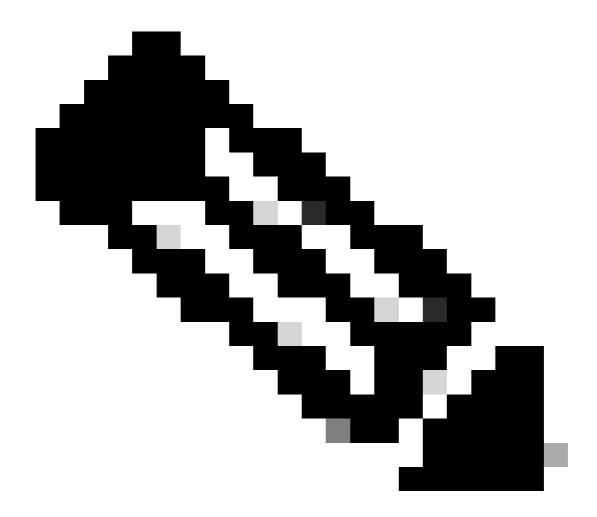
CPU Allocation: 1480 units CPU Used: 0.00 %

CPU Cores: Memory Utilization:

Memory Allocation: 409 MB 1064 KB Memory Used:

Disk Utilization:

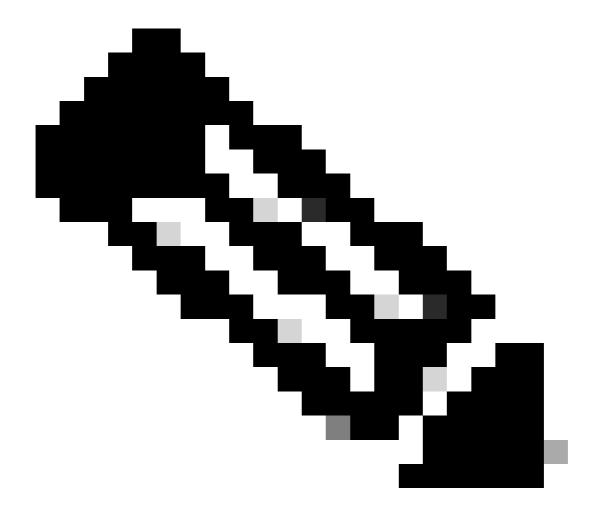

Disk Allocation: 10 MB Disk Used: 0.00 MB In order to verify details in the application container, you can use app-hosting connect appid [app-name] sessionprivileged EXEC command:


```
C9300-AC1#app-hosting connect appid iPerf session
/ $ #Verify IP address assigned
/ $
/ $ ifconfig
eth0
          inet addr:192.168.10.21 Bcast:0.0.0.0 Mask:255.255.255.0
          <snip>
/ $
/ $ #Verify iPerf is running as server
/ $
/ $ ps
PID
     USER
               TIME COMMAND
    1 iperf
               0:00 iperf3 -s
               0:00 /bin/sh
 390 iperf
 398 iperf
               0:00 ps
/ $
```

Bandwidth Tests

Network Diagram

The methods to perform bandwidth tests explained in this document are based on the network diagram below:



Note: Configuration examples from section **iPerf installation** were taken from the same lab environment.

IP address assignment for devices above:

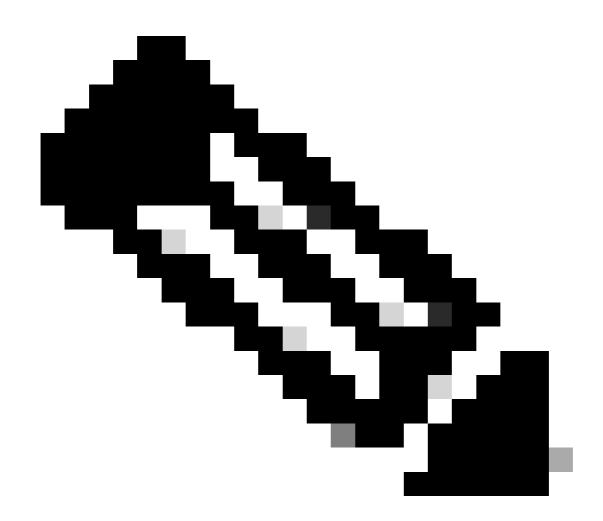
	C9300-AC1	C9300-AC2
SVI 192.168.10.11 SVI 192.168.10.1 iPerf 192.168.10.21 iPerf 192.168.10.2		

Note: All devices used in these examples are in the same VLAN domain, VLAN 10.

Method 1: Switch as a Client

In this example, bandwidth from C9300-AC1 to C9300-AC2 is measured. C9300-AC1 is the client.

1. Run command app-hosting connect appid iPerf session to enter application container prompt:


```
C9300-AC1#app-hosting connect appid iPerf session / $
```

2. Once you are in application container prompt, use iperf3 -c command to start the bandwidth test:

```
/ $ iperf3 -c 192.168.10.22
Connecting to host 192.168.10.22, port 5201
[ 5] local 192.168.10.21 port 34906 connected to 192.168.10.22 port 5201
```

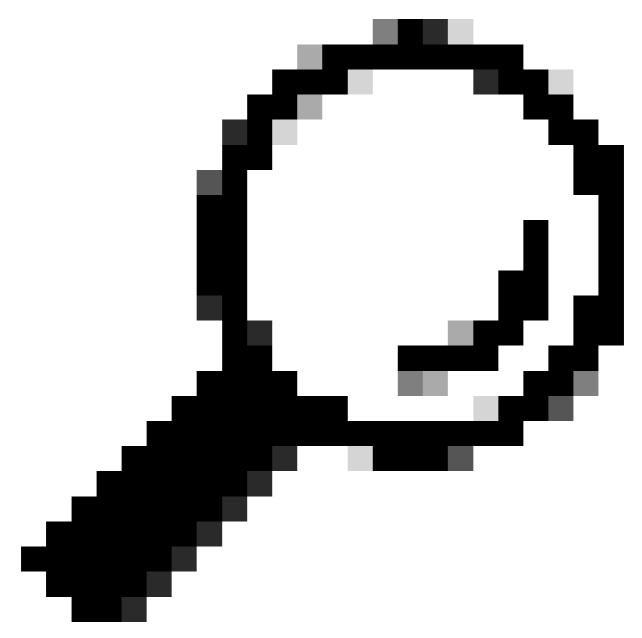
```
[ ID] Interval
                           Transfer
                                          Bitrate
                                                           Retr Cwnd
Γ
   5]
        0.00-1.00
                            114 MBytes
                                         955 Mbits/sec 2
                                                                   833 KBytes
                      sec
Γ
  5]
                                                            3
        1.00-2.00
                     sec
                            113 MBytes 947 Mbits/sec
                                                                   923 KBytes
                                                                   974 KBytes
Γ
        2.00-3.00
                            111 MBytes 934 Mbits/sec
                                                            77
  5]
                      sec
                            113 MBytes 945 Mbits/sec
3.00-4.00
                                                                  1.03 MBytes
   5]
                                                           1
                      sec
                            112 MBytes 940 Mbits/sec 109
111 MBytes 931 Mbits/sec 395
111 MBytes 933 Mbits/sec 198
5]
        4.00-5.00
                      sec
                                                                  1.08 MBytes
5]
        5.00-6.00
                                                                   820 KBytes
                      sec
        6.00-7.00
                                                                   882 KBytes
5]
                      sec
                            112 MBytes 944 Mbits/sec 2
                                                                   970 KBytes
Γ
  5]
        7.00-8.00
                      sec
                                                             9
Γ
        8.00-9.00
                            111 MBytes
                                          933 Mbits/sec
                                                                  1.02 MBytes
   5]
                      sec
        9.00-10.00 sec
                            111 MBytes
                                          933 Mbits/sec 524
                                                                  1.04 MBytes
   5]
[ ID] Interval
                           Transfer
                                          Bitrate
                                                           Retr
        0.00\text{--}10.00 \quad \text{sec} \quad 1.09 \; \text{GBytes} \quad 940 \; \text{Mbits/sec} \quad 1320
Γ
  5]
                                                                              sender
  5]
        0.00-10.01 sec 1.09 GBytes
                                          937 Mbits/sec
                                                                             receiver
iperf Done.
/ $
```

3. After the test finishes, type exitto return to switch CLI.

Note: Since iPerf runs as server by default, no further command is needed on server side.

Method 2: PC as a Client

In this example, bandwidth from Host-A to C9300-AC2 (iPerf server) is measured.


- 1. Ensure you have iPerf downloaded in your PC.
- 2. Once you have iPerf stored in your PC, navigate to iperf3.exe from your command prompt:

C:\Users\user\Downloads\iperf-3.1.3-win64\iperf-3.1.3-win64>iperf3.exe

3. From your PC use **-c** option. This indicates the PC is the client:

```
C:\Users\user\Downloads\iperf-3.1.3-win64\iperf-3.1.3-win64>iperf3.exe -c 192.168.10.22
Connecting to host 192.168.10.22, port 5201
  4] local 192.168.10.2 port 56009 connected to 192.168.10.22 port 5201
[ ID] Interval
                     Transfer
                                Bandwidth
 4]
      0.00-1.00 sec 109 MBytes 916 Mbits/sec
      1.00-2.00 sec 0.00 Bytes 0.00 bits/sec
  4]
      2.00-3.00 sec 0.00 Bytes 0.00 bits/sec
  4]
4]
      3.00-4.00 sec 93.6 MBytes 786 Mbits/sec
  4]
      4.00-5.00 sec 15.1 MBytes 127 Mbits/sec
4]
      5.00-6.02 sec 0.00 Bytes 0.00 bits/sec
Γ
  4]
      6.02-7.00 sec 78.2 MBytes 666 Mbits/sec
Γ
 4]
      7.00-8.00 sec 42.9 MBytes 360 Mbits/sec
      8.00-9.00 sec 0.00 Bytes 0.00 bits/sec
Γ
 4]
      9.00-10.00 sec 49.4 MBytes 414 Mbits/sec
  4]
      ______
                     Transfer Bandwidth
[ ID] Interval
[ 4]
      0.00-10.00 sec 388 MBytes 326 Mbits/sec
                                                          sender
      0.00-10.00 sec 388 MBytes 326 Mbits/sec
                                                          receiver
```

iperf Done.

Tip: For traditional method, you need to use 2 PCs, one as a server and one as a client. For the PC acting as a server, use iperf3.exe -s command.

Related Information

- Application Hosting on the Cisco Catalyst 9000 Series Switches White paper
- Programmability Configuration Guide, Cisco IOS® XE Bengaluru 17.6.x
- Network Performance Monitoring with Catalyst 9300 Application Hosting