Configuring MAC-Based Authentication on a Switch through the Command Line Interface

Objective

802.1X is an administration tool to whitelist devices, ensuring no unauthorized access to your network. This document shows you how to configure MAC based authentication on a switch using the Command Line Interface (CLI).

How Does Radius Work?

There are three main components to 802.1X authentication, a supplicant (client), an authenticator (network device such as a switch), and an authentication server (RADIUS). The Remote Authentication Dial-In User Service (RADIUS) is an access server that uses authentication, authorization, and accounting (AAA) protocol that help manage network access. RADIUS uses a client-server model in which secure authentication information is exchanged between the RADIUS server and one or more RADIUS clients. It validates the identity of the client and notifies the switch whether or not the client is authorized to access the LAN.

An authenticator or a switch works between the client and the authentication server. First, it will request identity information from the client. In response, the authenticator would verify the information with the authentication server. Lastly, it would relay a response to the client. In this article, the authenticator would be a switch that includes the RADIUS client. The switch would be able to encapsulate and decapsulate the Extensible Authentication Protocol (EAP) frames to interact with the authentication server.

What is MAC Based Authentication?

MAC authentication can use the MAC address of the host to authenticate when the supplicant does not understand how to talk to the authenticator or unable to do so. MAC based supplicants are authenticated using pure RADIUS (without using EAP). The RADIUS server has a dedicated host database that contains only allowed MAC addresses. Instead of treating the MAC based Authentication request as a Password Authentication Protocol (PAP) authentication, the servers recognize such a request by Attribute 6 [Service-Type] = 10. RADIUS attribute are used to define specific AAA elements in a user profile. Here, attribute 6 means Service-Type and the value 10 is Call-Check. Attribute 6 with the value of 10 tells the application to perform certain tasks like compare the MAC address in the Calling-Station-Id attribute to the MAC addresses stored in the host database. Click here for more information about RADIUS attributes and click here for more information about MAC Authentication Bypass (MAB).

Firmware version 2.4 adds the ability to configure the format of the username sent for MAC based supplicants and be defined either EAP authentication method or pure RADIUS authentication method. In this version, you can also configure the format of the username as well as configure a specific password, different from username, for MAC based supplicants.

Note: To configure MAC based authentication using the Graphical User Interface (GUI), click here.
Note: In this article, we will be using the SG550X-24 for both the RADIUS server and the authenticator. The RADIUS server has a static IP address of 192.168.1.100 and the authenticator has a static IP address of 192.168.1.101.

Applicable Devices

- Sx350X Series
- SG350XG Series
- Sx550X Series
- SG550XG Series

Software Version

- 2.4.0.94

Configure RADIUS Server on a Switch

Step 1. SSH to your switch that is going to be the RADIUS server. The default username and password is cisco/cisco. If you have configured a new username or password, enter the credentials instead.

Note: To learn how to access an SMB switch through SSH or Telnet, click here.
Step 2. From the Privileged EXEC mode of the switch, enter the Global Configuration mode by entering the following:

```
RADIUS# configure
RADIUS(config)#
```

Step 3. Use the `radius server enable` command to enable RADIUS server.

```
RADIUS(config)# radius server enable
```

Step 4. To create a secret key, use the `radius server nas secret key` command in Global
Configuration mode. The parameters are defined as:

- **key** — Specifies the authentication and encryption key for communications between the device and users of the given group. This ranges from 0-128 characters.

- **default** — Specifies the default secret key that will be applied to communicate with NAS that do not have a private key.

- **ip-address** — Specifies the RADIUS client host IP address. The IP address can be an IPv4, IPv6 or IPv6z address.

In this example, we will be using **example** as our key and **192.168.1.101** as the IP address of our authenticator.

```
RADIUS(config)#radius server nas secret key example 192.168.1.101
```

Step 5. To enter into RADIUS Server Group Configuration mode and create a group if it doesn’t exist, use the radius server group command in Global Configuration mode.

In this article, we will be using **MAC802** as our group name.

```
RADIUS(config)#radius server group MAC802
```
Step 6. To create a user, use the radius server user command in Global Configuration mode. The parameters are defined as:

- **user-name** — Specifies the user name. The length is 1-32 characters.
- **group-name** — Specifies the user group name. The length of the group name is from 1-32 characters.
- **unencrypted-password** — Specifies the user password. The length can be from 1-64 characters.

For this example, we will be using the MAC address of our Ethernet port as our **user-name**, **MAC802** as our **group-name**, and the **unencrypted-password** as **example**.

Note: Some of the octets in the MAC address is blurred out. The password **example** is not a strong password. Please use a stronger password as this was only used as an example. Also, note that the command was too long in the picture that it auto wrapped the command.

Step 7. (Optional) To end the current configuration session and return to the Privileged EXEC mode, use the **end** command.
Step 8. (Optional) To copy any file from a source to a destination, use the **copy** command in Privileged EXEC mode. In this example, we will be saving our running configuration to the startup-config.

```
RADIUS#copy running-config startup-config
```

Step 9. (Optional) A message will appear asking if you would like to overwrite your startup-config file. Type **Y** for yes or **N** for no. We will be typing **Y** to overwrite our startup-config file.

```
RADIUS#copy running-config startup-config
Overwrite file [startup-config].... {Y/N} [N] ?Y
```

Configuring Authenticator Switch

Step 1. SSH to the switch that is going to be the authenticator. The default username and password is cisco/cisco. If you have configured a new username or password, enter those credentials instead.

Note: To learn how to access an SMB switch through SSH or Telnet, click [here](#).
Step 2. From the Privileged EXEC mode of the switch, enter the Global Configuration mode by entering the following:

```
login as: cisco

User Name:cisco
Password:*****

Authenticator#configure
Authenticator(config)#
```

Step 3. To enable 802.1X globally, use the dot1x system-auth-control command in Global Configuration mode.

```
login as: cisco

User Name:cisco
Password:*****

Authenticator#configure
Authenticator(config)#dot1x system-auth-control
Authenticator(config)#
```
Step 4. Use the **radius-server host** Global Configuration mode command to configure a RADIUS server host. The parameters are defined as:

- **ip-address** — Specifies the RADIUS server host IP address. The IP address can be an IPv4, IPv6, or IPv6z address.
- **hostname** — Specifies the RADIUS server host name. Translation to IPv4 addresses only is supported. The length is from 1-158 characters and the maximum label length of each part of the hostname is 63 characters.
- **auth-port auth-port-number** — Specifies the port number for authentication requests. If the port number is set to 0, the host is not used for authentication. The range is from 0-65535.
- **Acc-port acct-port-number** — Port number for accounting requests. The host is not used for accounting if set to 0. If unspecified, the port number defaults to 1813.
- **timeout timeout** — Specifies the timeout value in seconds. This ranges from 1-30.
- **retransmit retries** — Specifies the number of retry retransmissions. The range is from 1-15.
- **deadtime deadtime** — Specifies the length of time in minutes during which a RADIUS server is skipped over by transaction requests. It ranges from 0-2000.
- **key key-string** — Specifies the authentication and encryption key for all RADIUS communications between the device and the RADIUS server. This key must match the encryption used on the RADIUS daemon. To specify an empty string, enter “”. The length can be from 0-128 characters. If this parameter is omitted, the globally-configured radius key will be used.
- **key encrypted-key-string** — Same as key-string, but the key is in encrypted format.
- **priority priority** — Specifies the order in which servers are used, where 0 has the highest priority. The priority range is from 0-65535.
- **usage {login|dot1.x|all}** — specifies the RADIUS server usage type. The possible values are:
 - login — Specifies that the RADIUS server is used for user login parameters authentication.
 - dot1.x — Specifies that the RADIUS server is used for 802.1x port authentication.
 - all — Specifies that the RADIUS server is used for user login authentication and 802.1x port authentication.

In this example, only the host and key parameters are used. We will be using the IP address **192.168.1.100** as the RADIUS server IP address and the word **example** as the key-string.
Step 5. In MAC-based authentication, the username of the supplicant is based on the supplicant device MAC address. The following defines the format of this MAC-based username, which is sent from the switch to the RADIUS server, as part of the authentication process. The following fields are defined as:

- **mac-auth type** — choose an MAC authentication type
 - eap — Use RADIUS with EAP encapsulation for the traffic between the switch (RADIUS client) and the RADIUS server, which authenticates a MAC-based supplicant.
 - radius — Use RADIUS without EAP encapsulation for the traffic between the switch (RADIUS client) and the RADIUS server, which authenticates a MAC-based supplicant.
- **groupsize** — Number of ASCII characters between delimiters of the MAC address sent as a user name. The option are 1, 2, 4, or 12 ASCII characters between delimiters.
- **separator** — Character used as a delimiter between the defined groups of characters in the MAC address. The options are hyphen, colon, or dot as the delimiter.
- **case** — Send username in lower or upper case. The options are lowercase or uppercase.

```
In this example, we will be using eap as our mac-authentication type, a groupsize of 2, the colon as our separator, and sending our username in uppercase.
```

```
dot1x mac-auth
   mac-auth type
   username groupsize
   groupsize
   separator
   separator
   case.
```

Step 6. Use the command below to define the password that the switch will use for MAC-based authentication instead of the host MAC address. We will be using the word example as our password.

```
login as: cisco
User Name:cisco
Password:*****
Authenticator#configure
Authenticator(config)#dot1x system-auth-control
Authenticator(config)#radius-server host 192.168.1.100 key example
Authenticator(config)#dot1x eap username groupsize 2 separator : uppercase
```

```
dot1x mac-auth
   mac-auth type
   username groupsize
   groupsize
   separator
   separator
   case.
```

```
In this example, we will be using eap as our mac-authentication type, a groupsize of 2, the colon as our separator, and sending our username in uppercase.
```

```
Authenticator(config)#dot1x system-auth-control
Authenticator(config)#radius-server host 192.168.1.100 key example
```

```
login as: cisco
User Name:cisco
Password:*****
Authenticator(config)#dot1x system-auth-control
Authenticator(config)#radius-server host 192.168.1.100 key example
Authenticator(config)#dot1x eap username groupsize 2 separator : uppercase
```

Step 6. Use the command below to define the password that the switch will use for MAC-based authentication instead of the host MAC address. We will be using the word example as our password.
Step 7. To enter Interface Configuration mode in order to configure an interface, use the `interface` Global Configuration mode command. We will be configuring GigabitEthernet1/0/1 because our end host is connected to it.

Note: Do not configure the port that is connected to your RADIUS server.

```
login as: cisco
User Name:cisco
Password:****
```

Authenticator(config)#interface GigabitEthernet1/0/1

Note: If you want to configure multiple ports at the same time, use the `interface range` command.

See the example below to configure ports 1-4 using the range command:

```
Authenticator(config)#interface range GigabitEthernet1/0/1-4
```

Step 8. To allow a single host (client) or multiple hosts on an IEEE802.1X-authorized port, use the `dot1x host-mode` command in Interface Configuration mode. The parameters are defined as:

- **multi-host** — Enable multiple hosts mode

 - A port is authorized if there is at least one authorized client.

 - When a port is unauthorized and a guest VLAN is enabled, untagged traffic is remapped to the guest VLAN. Tagged traffic is dropped unless it belongs to the guest VLAN or to an unauthenticated VLAN. If guest VLAN is not enabled on a port, only tagged traffic belonging to unauthenticated VLANs is bridged.

 - When a port is authorized, untagged and tagged traffic from all hosts connected to the port is bridged, based on the static VLAN membership port configuration.

 - You can specify that untagged traffic from the authorized port will be remapped to a VLAN that is assigned by a RADIUS server during the authentication process. Tagged traffic is dropped unless it belongs to the RADIUS-assigned VLAN or to the unauthenticated VLANs. Radius VLAN assignment on a port is set in the Port Authentication page.

- **single-host** — Enable single host mode
A port is authorized if there is an authorized client. Only one host can be authorized on a port.

When a port is unauthorized and the guest VLAN is enabled, untagged traffic is remapped to the guest VLAN. Tagged traffic is dropped unless it belongs to the guest VLAN or to an unauthenticated VLAN. If a guest VLAN is not enabled on the port, only tagged traffic belonging to the unauthenticated VLANs is bridged.

When a port is authorized, untagged and tagged traffic from the authorized host is bridged based on the static VLAN membership port configuration. Traffic from other hosts is dropped.

A user can specify that untagged traffic from the authorized host will be remapped to a VLAN that is assigned by a RADIUS server during the authentication process. Tagged traffic is dropped unless it belongs to the RADIUS-assigned VLAN or the unauthenticated VLANs. Radius VLAN assignment on a port is set in the Port Authentication Page.

- multi-sessions — Enable multiple-sessions mode

Unlike the single-host and multi-host modes, a port in the multi-session mode does not have an authentication status. This status is assigned to each client connected to the port.

Tagged traffic belonging to an unauthenticated VLAN is always bridged regardless of whether the host is authorized or not.

Tagged and untagged traffic from unauthorized hosts not belonging to an unauthenticated VLAN is remapped to the guest VLAN if it is defined and enabled on the VLAN, or is dropped if the guest VLAN is not enabled on the port.

You can specify that untagged traffic from the authorized port will be remapped to a VLAN that is assigned by a RADIUS server during the authentication process. Tagged traffic is dropped unless it belongs to the RADIUS-assigned VLAN or to the unauthenticated VLANs. Radius VLAN assignment on a port is set in the Port Authentication page.

In this example, we will be configuring the host-mode to be multi-sessions.

```
login as: cisco

User Name: cisco
Password: *****

Authenticator#configure
Authenticator(config)#dot1x system-auth-control
Authenticator(config)#radius-server host 192.168.1.100 key example
Authenticator(config)#$th eap username groupsize 2 separator : uppercase
Authenticator(config)#dot1x mac-auth password example
Authenticator(config)#interface GigabitEthernet1/0/1
Authenticator(config-if)#dot1x host-mode multi-sessions
Authenticator(config-if)#
```
Step 9. To configure the authentication method on a port, use the command below to enable MAC-based authentication.

```
Authentication(config-if)#dot1x authentication mac
```

Step 10. To enable port-based authentication and authorization on the device, use the `port-control` command to configure the port-control value. We will be selecting the administrative port authorization state as `auto`. This will allow us to enable port-based authentication and authorization on the device. The interface moves between an authorized or unauthorized state based on the authentication exchange between the device and the client.

```
Authentication(config-if)#dot1x port-control auto
```

Step 11. (Optional) To end the current configuration session and return to the Privileged EXEC mode, use the `end` command.

```
Authentication(config-if)#end
```
Step 12. (Optional) To copy any file from a source to a destination, use the `copy` command in Privileged EXEC mode. In this example, we will be saving our running configuration to the startup-config.

```plaintext
[Login as: cisco]
User Name: cisco
Password: ****

Authenticator#configure
Authenticator(config)#dot1x system-auth-control
Authenticator(config)#radius-server host 192.168.1.100 key example
Authenticator(config)#802.1x username groupsize 2 separator : uppercase
Authenticator(config)#dot1x mac-auth password example
Authenticator(config)#interface GigabitEthernet1/0/1
Authenticator(config-if)#dot1x host-mode multi-sessions
Authenticator(config-if)#dot1x authentication mac
Authenticator(config-if)#dot1x port-control auto
Authenticator(config-if)#end

authenticator#copy running-config startup-config
Overwrite file [startup-config].... (Y/N) [N] ? Y
```

Step 13. (Optional) A message will appear and ask if you would like to overwrite your startup-config file. Type `Y` for yes or `N` for no. We will be typing `Y` to overwrite our startup-config file.

```
[Login as: cisco]
User Name: cisco
Password: ****

Authenticator#configure
Authenticator(config)#dot1x system-auth-control
Authenticator(config)#radius-server host 192.168.1.100 key example
Authenticator(config)#802.1x username groupsize 2 separator : uppercase
Authenticator(config)#dot1x mac-auth password example
Authenticator(config)#interface GigabitEthernet1/0/1
Authenticator(config-if)#dot1x host-mode multi-sessions
Authenticator(config-if)#dot1x authentication mac
Authenticator(config-if)#dot1x port-control auto
Authenticator(config-if)#end

Authenticator#copy running-config startup-config
Overwrite file [startup-config].... (Y/N) [N] ? Y
31-May-2018 03:35:43 %COPY-I-FILECOPY: Files Copy - source URL running-config destination URL flash:///system/configuration/startup-config
31-May-2018 03:35:45 %COPY-N-TRAP: The copy operation was completed successfully
```

Conclusion

You should now have configured MAC-based authentication on your switch using the CLI. Follow the steps below to verify that the MAC-based authentication is working.

Step 1. To display active 802.1X authorized users for the device, use the `show dot1x users` command in Privileged EXEC mode.

```
Authenticator#configure
Authenticator(config)#dot1x system-auth-control
Authenticator(config)#radius-server host 192.168.1.100 key example
Authenticator(config)#802.1x username groupsize 2 separator : uppercase
Authenticator(config)#dot1x mac-auth password example
Authenticator(config)#interface GigabitEthernet1/0/1
Authenticator(config-if)#dot1x host-mode multi-sessions
Authenticator(config-if)#dot1x authentication mac
Authenticator(config-if)#dot1x port-control auto
Authenticator(config-if)#end

Authenticator#show dot1x users
```

You should now have configured MAC-based authentication on your switch using the CLI. Follow the steps below to verify that the MAC-based authentication is working.
Step 2. To display the 802.1X interfaces or specified interface status, use the `show dot1x` command in Privileged EXEC mode.

```
Authenticator#show dot1x interface GigabitEthernet1/0/1

Authenticator is enabled
Authenticator Global Configuration:
Authenticating Servers: Radius
MAC-Based Authentication:
  Type: Eap
  Username Groupsize: 2
  Username Separator: 
  Username case: Uppercase
  Password: MD5 checksum 1a79a4d60de6718e8e5b326e338ae533
Unauthenticated VLANs:
  Authentication failure traps are disabled
  Authentication success traps are disabled
  Authentication quiet traps are disabled
Supplicant Global Configuration:
  Supplicant Authentication success traps are disabled
  Supplicant Authentication failure traps are disabled
g1/0/1
  Authenticator is enabled
  Supplicant is disabled
  Authenticator Configuration:
    Host mode: multi-sessions
    Authentication methods: mac
    Port Administrated Status: auto
    Guest VLAN: disabled
    VLAN Radius Attribute: disabled
    Open access: disabled
    Server timeout: 30 sec
    Maximum Hosts: unlimited
    Maximum Login Attempts: 0
    Reauthentication is disabled
    Reauthentication period: 3600 sec
    Silence period: 0 sec
    Quiet period: 60 sec
  Interfaces 802.1X-Based Parameters
    TX period: 30 sec
    Supplicant timeout: 30 sec
    Max req: 2
    Authentication success: 1
    Authentication fails: 0
    Number of Authorized Hosts: 1
```