

Advanced Memory Features and Troubleshooting on UCS M7 and M8 Platforms

Contents

[Introduction](#)

[Prerequisites](#)

[Requirements](#)

[Components Used](#)

[Background Information](#)

[Overview of memory errors](#)

[Cisco UCS M7/M8 Memory RAS features](#)

[System-level ECC](#)

[Virtual Lock-Step \(VLS\) / Adaptive Double Device Data Correction \(ADDDC\) Sparing](#)

[On-die ECC](#)

[Error Check and Scrub \(ECS\)](#)

[Post Package Repair \(PPR\)](#)

[PMIC \(Power Management Integrated Circuit\)](#)

[Log Analysis](#)

[Files to Check in Tech Support](#)

[Troubleshooting RAS Faults](#)

[Notable Bugs](#)

Introduction

This document describes new memory features introduced in UCS M7 and M8 Generation Servers and steps to Understand & Troubleshoot memory errors

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics.

- Basic understanding of UCS.
- Basic understanding of Memory Architecture.

Components Used

The information in this document is based on these software and hardware versions:

- UCS Family Servers M7 and M8
- UCS Manager
- Cisco Integrated Management Controller (CIMC)
- Cisco Intersight Managed Mode (IMM)

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, ensure that you understand the potential impact of any command.

Background Information

Overview of memory errors

Memory errors are among the most common types of errors on modern servers. Errors are often discovered when an attempt is made to read a memory location and the value read does not match the value last written.

Memory errors can be soft or hard. Some errors are correctable, but multiple simultaneous soft or hard errors on a single memory access can be uncorrectable.

Cisco UCS M7/M8 Memory RAS features

Cisco UCS M7 & M8 servers have a robust set of RAS features, as detailed here. These minimize the impact of memory errors on performance and system uptime.

System-level ECC

All Cisco UCS M7 servers use memory modules with ECC codes that can correct any error confined to a single x4 DRAM chip and detect any double-bit error in up to two devices. This is now referred to as system-level ECC, as in older-generation servers

Virtual Lock-Step (VLS) / Adaptive Double Device Data Correction (ADDDC) Sparing

ADDDC Sparing can correct two successive DRAM failures if they reside in the same region. This feature tracks correctable errors and dynamically maps out failing bits by spare-copying (“sparing”) contents into a “buddy” cache line. This mechanism can mitigate correctable errors that, if left untreated, could become uncorrectable. This feature uses virtual lockstep (VLS) to assign cache-line buddy pairs within the same memory channel at either the DRAM bank-level using bank VLS or the DRAM device-level using rank VLS.

On-die ECC

On-die ECC is a new feature in DDR5. This feature is enabled by default. All single-bit errors (hard and soft) are corrected by DRAM before data is transmitted to the host. However, this corrected data is not written back to DRAM. Error Check and Scrub (ECS) is the feature used to scrub and correct single-bit errors in memory.

Error Check and Scrub (ECS)

ECS checks for errors in the background by scrubbing each DRAM die periodically (every 24 hours), correcting them by writing data back to the array and providing a count of the errors found during the scrub. This feature is enabled by default.

Post Package Repair (PPR)

Post package repair is a feature where spare rows are used to replace a bad cell or row in a DRAM device.

There are three types:**Soft PPR**(reconfigurable),**Hard PPR**(permanent), and**Runtime PPR**.

- Cisco UCS M7 servers with Intel CPUs support “hard” PPR. This is a permanent repair and is carried out during reboot based on the error data collected during the previous runtime or if any row errors are encountered during EMT.
- Repairs typically occur during warm/cold resets or AC cycles.
- On the UCS M8 support all three type of PPR ,**Hard PPR is enabled by default**, while**Runtime PPR is disabled**.
- **Runtime PPR**allows repairs to happen during system operation without affecting uptime.
- If both Hard and Runtime PPR are enabled, all PPR features are utilized. If Hard PPR is disabled but Runtime PPR is enabled, the system defaults to Soft PPR.
- PPR is closely linked with correctable errors, and each correctable error generate a SEL record when PPR is enabled.

PMIC (Power Management Integrated Circuit)

The **PMIC on a DIMM** is a key feature of **DDR5 memory modules**. This integration moves the power management function from the motherboard onto the memory module itself, offering several significant advantages.

For DDR5 memory, PMIC error handling is enabled.

- PMIC failures generate CELL records during both runtime and post-boot.
- During memory training, if a PMIC failure is detected in a memory channel, the affected DIMM is mapped out, and the system continues to boot with reduced memory

Log Analysis

Files to Check in Tech Support

UCSM_X_TechSupport > sam_techsupportinfo provides information about DIMM and memory array.

Chassis/server tech support

CIMCX_TechSupport\temp\ICIMX_TechSupport.txt -> Generic tech support information about sever X.

CIMCX_TechSupport\obfl\obfl-log -> OBFL logs provide an ongoing logs about status and boot of server X.

CIMCX_TechSupport\var\log\sel -> SEL logs for server X.

Based on the platform/version, navigate to the files in tech support bundle.

RAS -For ECS (error Check and Scrub) CE error locationetc. collected during runtime on every scrub
/nv/etc/BIOS/bt/DDR5_CISCO_ECS

AMT Auto Executes in the next boot if hits CE & UCE Error on DIMMs

nv/etc/BIOS/bt/MrcOut.

AMT_TEST_PATTERN:
ADV_MT_SAMSUNG

AMT_RESULT: PASSED.

PMIC error: /nv/etc/DIMM-PMIC.txt

M8 server contains :-

nv/etc/BIOS/bt >MrcOut

These files provide information about memory as seen from BIOS level.

Information there can be cross-referenced again with DIMM states report tables.

Example from AMD server :-

nv/etc/BIOS/bt >MrcOut

It contains :

- BIOS version, build date and time
- PSP firmware versions
- DIMM Presence and status (indicates DIMM is present or not)
- DIMM configuration details.

2025/08/14 13:44:34

BIOS ID : C245M8.4.3.6b.0 Built 04/28/2025 14:15:22

=====

PSP Firmware Versions

=====

ABL Version: 100E8012
PSP: 0.29.0.9B
PFMW (SMU): 4.71.126.0
SEV: 1.1.37.28
PHY: 0.1.38.0
MPIO: 1.0.2D.C4
TF MPDMA: 0.47.3.0
PM MPDMA: 0.47.46.0
GMI: AB.1.27.0
RIB: 2.0.8.39
SEC: D.E.90.71
PMU: 0.0.90.4E
EMCR: 0.0.E0.4E
uCode B1: 0xA101154

DIMM Status:

Memory	DIMM Status
Channel	
P1_A	01

P1_B	01
P1_C	01
P1_D	01
P1_E	01
P1_F	00
P1_G	01
P1_H	01
P1_I	01
P1_J	01
P1_K	01
P1_L	00
P2_A	01
P2_B	01
P2_C	01
P2_D	01
P2_E	01
P2_F	00
P2_G	01
P2_H	01
P2_I	01
P2_J	01
P2_K	01
P2_L	00

DIMM Configuration:

```
=====
MbistTest = Disabled
MbistAggressor = Disabled
MbistPerBitSlaveDieReport = Enabled
DramTempControlledRefreshEn = Disabled
UserTimingMode = Disabled
UserTimingValue = Disabled
MemBusFreqLimit = Disabled
EnablePowerDown = Disabled
DramDoubleRefreshRate = Disabled
PmuTrainMode = 0x0000
EccSymbolSize = 0x0000
UEccRetry = Disabled
IgnoreSpdChecksum = Disabled
EnableBankGroupSwapAlt = Disabled
EnableBankGroupSwap = Disabled
DdrRouteBalancedTee = Disabled
OdtsCmdThrotEn = Disabled
OdtsCmdThrotCyc = Disabled
=====
```

Enhanced Memory Context Restore : APOB_SAVED

2025/08/14 13:44:34

MCA out file inventory :-

This file contains information about MCA registers of all banks .

(Whenever UCE Error has been detected)

--- START OF MCA FILE ---

Timestamp H:M:S 13:44:15 D:M:Y 14:8:2025

--- Note ---

The legacy MCA registers include:

MCA_CTL - Enables error reporting via machine check exception.

MCA_STATUS - Logs information associated with errors.

MCA_ADDR - Logs address information associated with errors. The use of AMD Secure Memory Encryption may

MCA_MISC0 - Logs miscellaneous information associated with errors.

The MCA Extension registers include:

MCA_CONFIG - Provide configuration capabilities for this MCA bank.

MCA_IPID - Provides information on the block associated with this MCA bank.

MCA_SYND - Logs physical location information associated with a logged error.

MCA_DESTATUS - Logs status information associated with a deferred error.

MCA_DEADDR - Logs address information associated with a deferred error.

MCA_MISC[1:4] - Provides additional threshold counters within an MCA bank.

MCA_TRANSYND - Logs location information associated with a transparent error.

MCA_TRANSADDR - Logs address information associated with a transparent error.

LS - Load-Store Unit -> Bank 0

IF - Instruction Fetch Unit -> Bank 1

L2 - L2 Cache Unit -> Bank 2

DE - Decode Unit -> Bank 3

Empty/Unused bank -> Bank 4

EX - Execution Unit -> Bank 5

FP - Floating Point Unit -> Bank 6

L3 - L3 Cache Unit -> Bank 7 to 14

MP5 - Microprocessor5 Management Controller -> Bank 15

PB - Parameter Block -> Bank 16

PCS-GMI - GMI Controller -> Bank 17 to 18

KPX-GMI - High Speed Interface Unit(GMI) -> Bank 19 to 20

UMC - Unified Memory Controller -> Bank 21 to 22

CS - Coherent Station -> Bank 23 to 24

NBIO - NorthBridge IO Unit -> Bank 25

PCIE - PCIe Root port -> Bank 26 to 27

PIE - Power Management, Interrupts, Etc -> Bank 28

SMU - System Management Controller Unit -> Bank 29

PCS_XGMI - XGMI Controller -> Bank 30

KPX_SERDES - High Speed Interface Unit(XGMI)-> Bank 31

Empty/Unused bank -> Bank 32 to 63

Total BankNumber = 32

MC Global Capability Value = 120

MC Global Status Value = 0

MC Global Control Value = 0

Number of processor = 64

ProcNum BankNum Socket CCD CCX Core Thread MCA Bank Status MCA Bank Address MCA Configuration MCA IPID

Timestamp H:M:S 13:44:32 D:M:Y 14:8:2025

--- END OF MCA FILE ---

Example of PMIC failure in Sel logs :-

Whenever there is a runtime PMIC failure on the DIMM, SEL log will be generated as shown below, and the host is turned off.

- 2024-06-11 20:26:36 IST ♦Warning System Software event: Memory sensor, Memory Failed (PMIC Fault detected and isolated) was asserted, DIMM socket 1, Channel A, CPU 2. was asserted

2024-06-11 20:26:36 IST	Warning	System Software event: Memory sensor, Memory Failed (PMIC Fault detected and isolated) was asserted
-------------------------	---------	---

The faulty DIMM is mapped out by the BIOS on next host power on . We see the below SEL

2024-06-12 08:30:23 IST	Critical	CPU1 DIMM A1 Memory Failed (PMIC Fault detected and isolated) was asserted
-------------------------	----------	--

A fault is raised as shown below.

2024 Jun 11 23:33:...	critical	EQUIPMENT_INOPERABLE	[F1968][critical][equipment-inoperable][sys/rack-unit-1/board/memory] DIMM_P1_A1_PMIC :Memory Failed (PMIC Fault detected and isolated) was asserted
2025 Sep 23 23:50:14 UTC	Critical	EQUIPMENT_INOPERABLE	[F1968][critical][equipment-inoperable][sys/rack-unit-1/board/memory] DIMM_P1_B1_PMIC :Memory Failed (PMIC Fault detected and isolated) was asserted
2025 Sep 23 23:50:15 UTC	Informational	EQUIPMENT_INOPERABLE	[F1968][cleared][equipment-inoperable][sys/rack-unit-1/board/memory] DIMM_P1_B1_PMIC :Memory Failed (PMIC Fault detected and isolated) was deasserted

Troubleshooting RAS Faults

Generally, you see these faults in UCS Manager as an RAS event.

Slot ID	:	6	Chassis ID	:	3
Product Name	:	Cisco UCS X210c M7 2 Socket Compute Node			
Vendor	:	Cisco Systems Inc	PID	:	UCSX-210C-M7
Revision	:	0	Serial	:	[REDACTED]
Manufacturing Date	:	2024-11-28			
Asset Tag	:				
Name	:	[REDACTED]			
User Label	:	[REDACTED]			
Unique Identifier	:	96cd0997-71b6-4975-0000-000025b5f30c			
Service Profile	:	[REDACTED]			
Health LED	:	critical			
Oper Qualifier Reason	:	DDR5_P2_H1_ECC:Sensor Threshold Crossed; DDR5_P2_G2_ECC:Sensor Threshold Crossed;			
Locator LED	:	[REDACTED]	FP Buttons	:	locked
Summary					

The screenshot shows the UCSM Faults page. The top navigation bar includes links for SCSI vNICs, vMedia Policy, Boot Order, Virtual Machines, FC Zones, Policies, Server Details, CIMC Sessions, FSM, VIF Paths, and Events. The 'Faults' tab is selected. On the left, a 'Filters' sidebar lists severity levels: Show All, Critical (selected), Major, Minor, Warning, Info, Condition, Cleared, Soaking, and Suppressed. The main table displays a single fault entry:

Severity	Code	ID	Affected object	Cause	Last Transition	Description
✖	F1236	54090700	sys/chassis-1/bla...	health-led-amber...	2025-05-14T15:43	sys/chassis-1/bla...

Below the table, the 'Details' section is expanded, showing the following properties:

Summary		Properties	
Severity	: ✖ Critical/None	Affected object	: sys/chassis-1/blade-7/health-led
Last Transition	: 2025-05-14T15:43:18Z	Description	: sys/chassis-1/blade-7/health-led shows error. Reason DDR5_P1_E1_ECC:Sensor Threshold Crossed;
Actions		ID	: 54090700 Type : equipment
Acknowledge Fault		Cause	: health-led-amber- blinking Created at : 2025-05-14T15:25:12Z
		Code	: F1236 Number of Occurrences : 3
		Original severity	: Critical
		Previous severity	: Cleared Highest severity : Critical

UCSM CLI commands to reset all memory error counters:

UCS-A# scope server x/y

UCS-A /chassis/server # reset-all-memory-errors

UCS-A /chassis/server* # commit

To clear the SPD data :

Power off the server

Then run the following commands from UCSM CLI :

UCS-A# connect cimc x/y

UCS-A /chassis/server # reset-all-memory-errors

UCS-A /chassis/server* # commit

Notable Bugs

1. Cisco bug ID [CSCwo62396](#)

2. Cisco bug ID [CSCwq33148](#)

3. Cisco bug ID [CSCwh73760](#)