Configure ECMP with IP SLA on FTD Managed by FDM

Contents

Introduction
Prerequisites
Requirements
Components Used
Background Information
<u>Configure</u>
Network Diagram
Configurations
Step 0. Pre-configure Interfaces/Objects
Step 1. Configure ECMP Zone
Step 2. Configure IP SLA Objects
Step 3. Configure Static Routes with Route Track
<u>Verify</u>
Load Balancing
Lost Route
Troubleshoot
Related Information

Introduction

This document describes how to configure ECMP along with IP SLA on a FTD that is managed by FDM.

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics:

- ECMP configuration on Cisco Secure Firewall Threat Defense (FTD)
- IP SLA configuration on Cisco Secure Firewall Threat Defense (FTD)
- Cisco Secure Firewall Device Manager (FDM)

Components Used

The information in this document is based on this software and hardware version:

• Cisco FTD version 7.4.1 (Build 172)

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, ensure

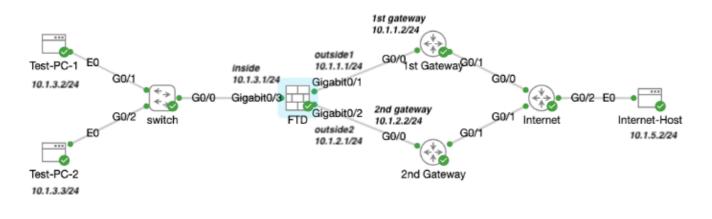
that you understand the potential impact of any command.

Background Information

This document describes how to configure Equal-Cost Multi-Path (ECMP) along with Internet Protocol Service Level Agreement (IP SLA) on a Cisco FTD that is managed by Cisco FDM. ECMP allows you to group interfaces together on FTD and load balance traffic across multiple interfaces. IP SLA is a mechanism that monitors end to end connectivity through the exchange of regular packets. Along with ECMP, IP SLA can be implemented in order to ensure availability of the next hop. In this example, ECMP is utilized to distribute packets equally over two Internet Service Provider (ISP) circuits. At the same time, an IP SLA keeps track of connectivity, ensuring a seamless transition to any available circuits in the event of a failure.

Specific requirements for this document include:

- Access to the devices with a user account with administrator privileges
- Cisco Secure Firewall Threat Defense version 7.1 or higher

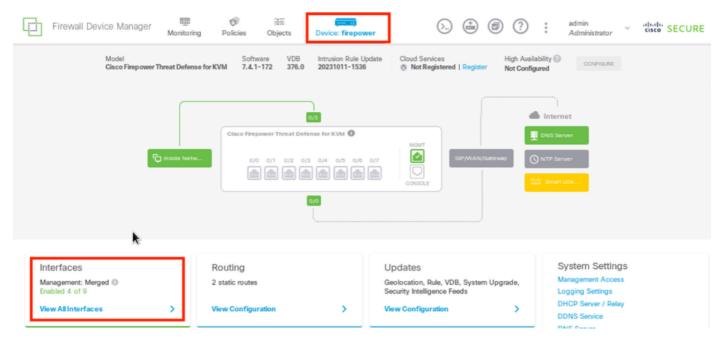

Configure

Network Diagram

In this example, Cisco FTD has two outside interfaces: **outside1** and **outside2**. Each one connects to an ISP gateway, outside1 and outside2 belongs to same ECMP zone named outside.

The traffic from internal network is routed through FTD and get load balanced to the internet through the two ISP.

At the same time, FTD uses IP SLAs in order to monitor connectivity to each ISP Gateway. In case of failure on any of the ISP circuit, FTD failovers to the the other ISP gateway to maintain business continuity.



Network Diagram

Configurations

Step 0. Pre-configure Interfaces/Objects

Log into the FDM web GUI, click **Device**, then click the link in the **Interfaces** summary. The **Interfaces** list shows the available interfaces, their names, addresses, and states.

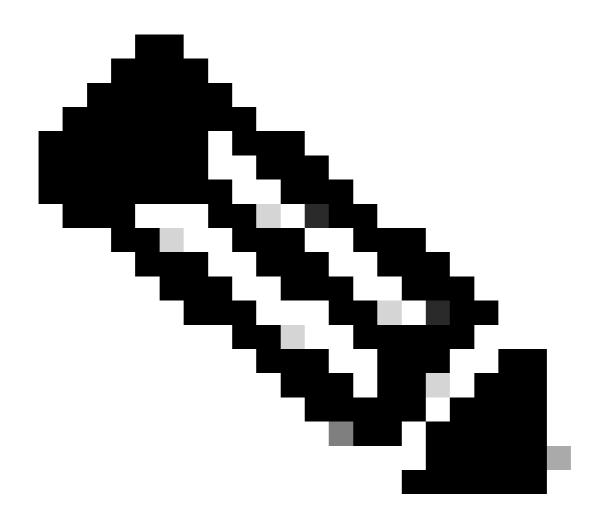
FDM Device Interface

Click the edit icon () for the physical interface you want to edit. In this example **GigabitEthernet0/1**.

-									
Device Summary Interfaces									
Cisco Frepower Threat Defense for KVM									
nterfaces Virtual Tunnel Interfaces									
Interfaces Virtual Tunnel Interfaces				6 .	T F	iter			4
Interfaces	LOSICAL NAME	STATUS A	NO E IPAD	Oriess		iter D BY AD DRESS	MON! TOR F O	RHA	ACTIONS
	LOGICAL NAME outside		NCO E IP AD				Man Tak Fa	RHA	

Step 0 Interface Gi0/1

In the Edit Physical Interface window:


1. Set the Interface Name , in this case outside1 .

- 2. Set the **Status** slider to the enabled setting (
-).
- 3. Click the **IPv4 Address** tab and configure the IPv4 address, in this case **10.1.1.1/24**.
- 4. Click OK.

GigabitEthernet0/1 Edit Physical Interface		0 ×
Interface Name	Mode	Status
	Mode	Status
outside1	Routed ~	
Most features work with named interfaces only, although some require unnamed interfaces.	•	
Description		
		14
		~~~~
IPv4 Address IPv6 Address Advanced		
Туре		
Static v		
State		
IP Address and Subnet Mask		
10.1.1.1 / 255.255.255.0		
e.g. 192.108.5.15/17 of 192.108.5.15/255.255.128.0	•	
Standby IP Address and Subnet Mask		
1		
e.g. 192.168.5.16		
	CANCEL	OK


Step 0 Edit Interface Gi0/1

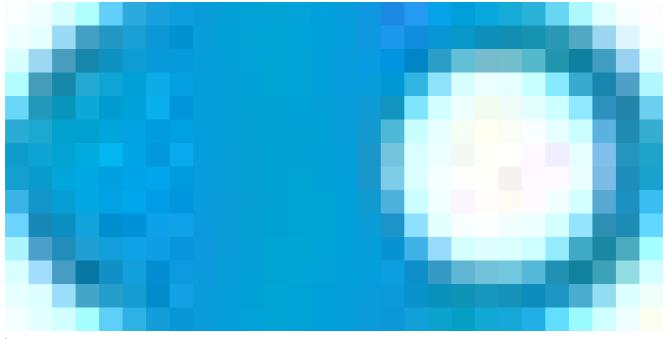


Note: Only routed interfaces can be associated with an ECMP zone.

Repeat the similar steps to configure the interface for the Secondary ISP connection, in this example the physical interface is **GigabitEthernet0/2**. In the **Edit Physical Interface** window:

1. Set the Interface Name , in this case outside2.



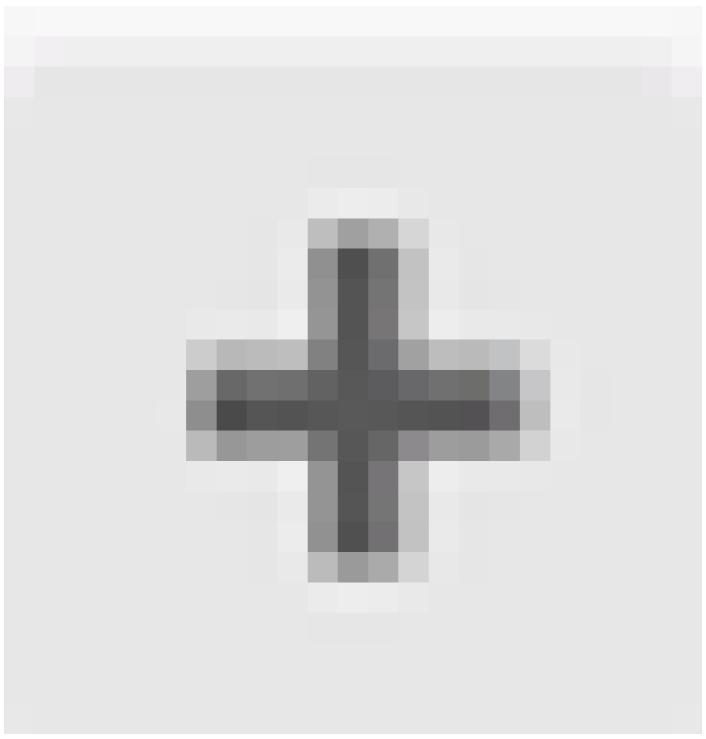

- 2. Set the **Status** slider to the enabled setting (
- ). 3. Click the **IPv4 Address** tab and configure the IPv4 address, in this case **10.1.2.1/24**.
- 4. Click **OK** .

GigabitEthernet0/2 Edit Physical Interface		@ ×
Interface Name outside2 Most features work with named interfaces only, although some require unnamed interfaces.	Mode Routed Y	Status
Description		
		h
IPv4 Address IPv6 Address Advanced		
Type Static V		
IP Address and Subnet Mask		
10.1.2.1 / 24		
Standby IP Address and Subnet Mask		
1		
e.g. 192.168.5.16		
	CANCEL	OK

Step 0 Edit Interface Gi0/2

Repeat the similar steps to configure the interface for the inside connection, in this example the physical interface is **GigabitEthernet0/3**. In the **Edit Physical Interface** window:

- 1. Set the Interface Name , in this case inside .
- 2. Set the **Status** slider to the enabled setting (




). 3. Click the **IPv4 Address** tab and configure the IPv4 address, in this case **10.1.3.1/24**. 4. Click **OK** .

GigabitEthernet0/3 Edit Physical Interface		0 ×
Interface Name	Mode	Status
inside	Routed ~	
Most features work with named interfaces only, although some require unnamed interfaces.	Rould	
Description		
		//
IPv4 Address IPv6 Address Advanced		
Туре		
Static 🗸		
IP Address and Subnet Mask		
10.1.3.1 / 24		
e.g. 192.168.5.15/17 or 192.168.5.15/255.255.128.0		
Standby IP Address and Subnet Mask		
1		
e.g. 192.168.5.16		
	CANCEL	ок

Step 0 Edit Interface Gi0/3

Navigate to **Objects > Object Types > Networks**, click the add icon (



) to add new object.

Firewall Device Ma	nager 🕅 🕅 Volicies Objects Device	e: firepower	(>)	dialle SECURE
Object Types 🛛 🔶	Network Objects and Groups			
C Networks	8 objects		¥ Filter	+
🔄 Ports			Preset filters: <u>System defined</u> , User, defined	
Security Zones	# NAME		VALUE	ACTIONS
🐔 Application Filters	1 IPv4-Private-All-RFC1918	Group	IPv4-Private-10.0.0.0-8, IPv4-Private-172.16.0.0-12, IPv4-Private- 192.168.0.0-16	
OURLs	2 IPv4-Private-10.0.0.0-8	NETWORK	10.0.0/8	
Geolocations	3 IPv4-Private-172.16.0.0-12	NETWORK	172.16.0.0/12	
🖁 Syslog Servers	4 IPv4-Private-192.168.0.0-16	NETWORK	192.168.0.0/16	
	s any-ipv4	NETWORK	0.0.0/0	
🔏 IKE Policies	₀ any-ipv6	NETWORK	::/0	

Step 0 Object1

In the Add Network Object window, configure the first ISP gateway:

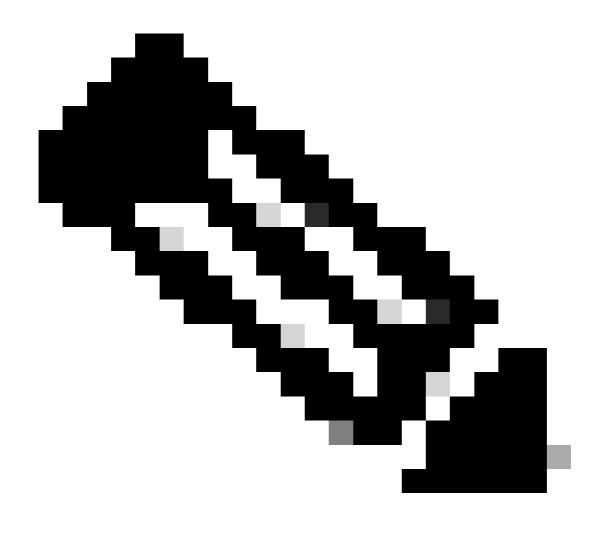
- Set the Name of the object, in this case gw-outside1.
   Select the Type of the object, in this case Host.
   Set the IP address of the Host, in this case 10.1.1.2.

- 4. Click **OK**.

# Add Network Object

Name gw-outside1	
Description	
	1.
Type O Network O Host O FQDN O Ra	ange
Host 10.1.1.2 e.g. 192.168.2.1 or 2001:DB8::0DB8:800:200C:417A	
	CANCEL

Step 0 Object2

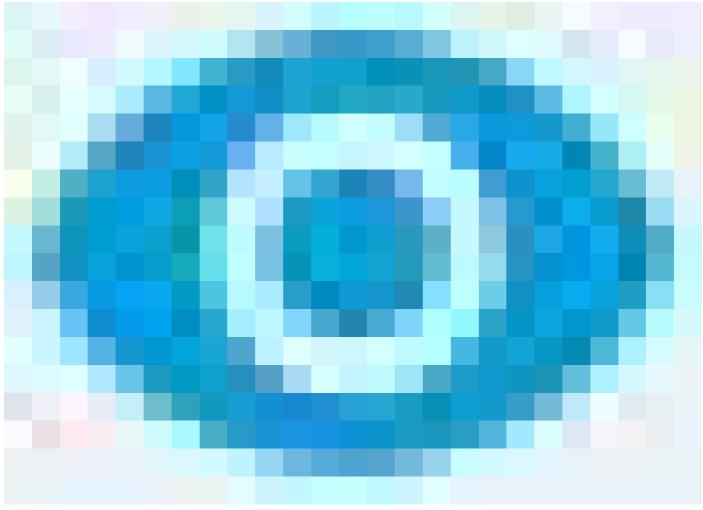

Repeat the similar steps to configure another network object for the second ISP gateway:

- 1. Set the Name of the object, in this case gw-outside2.
- 2. Select the **Type** of the object, in this case **Host**.
- 3. Set the IP address of the Host, in this case 10.1.2.2.
- 4. Click OK .

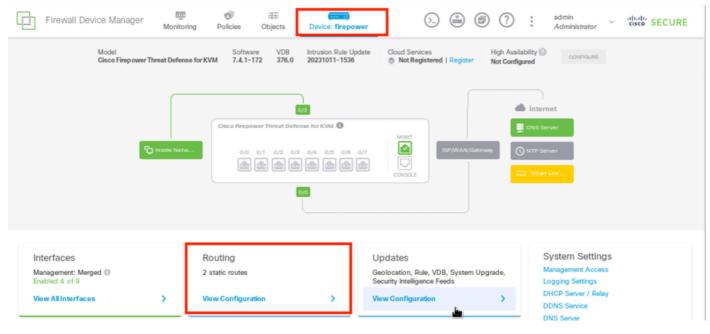
# Add Network Object

Name gw-outside2	
Description	
	11.
Type       Network     Host     FQDN     Range	
Host 10.1.2µ2	
e.g. 192.168.2.1 or 2001:DBS::0DB8:800:200C:417A	
CANCEL	DK

Step 0 Object3

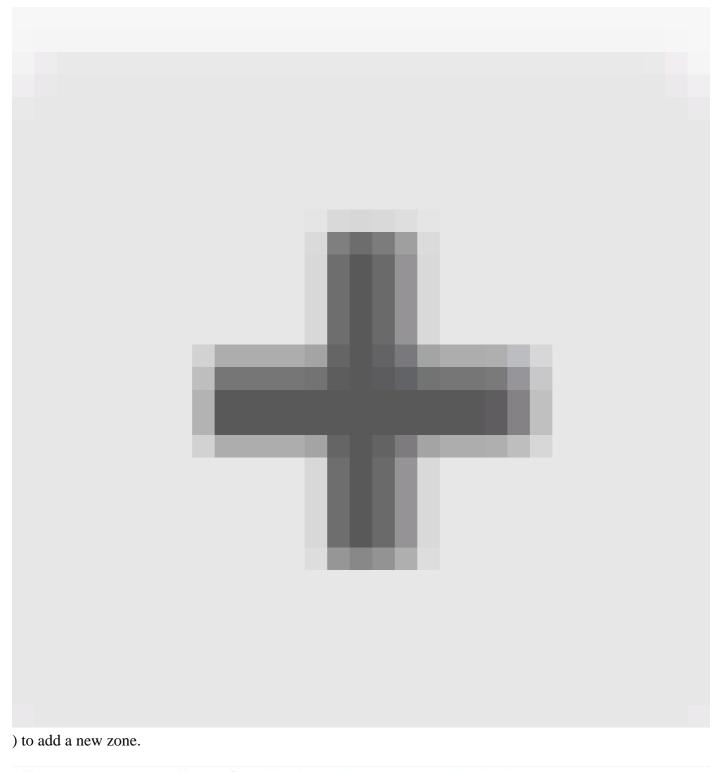


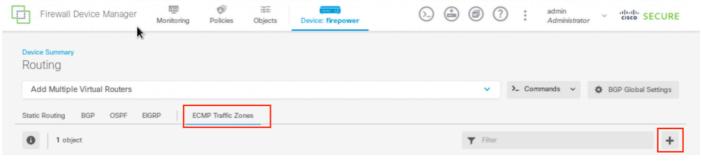

**Note**: You must have your access control policy being configured on FTD to permit the traffic, this part is not included in this document.


#### Step 1. Configure ECMP Zone

Navigate to **Device**, then click the link in the **Routing** summary.

If you enabled virtual routers, click the view icon (

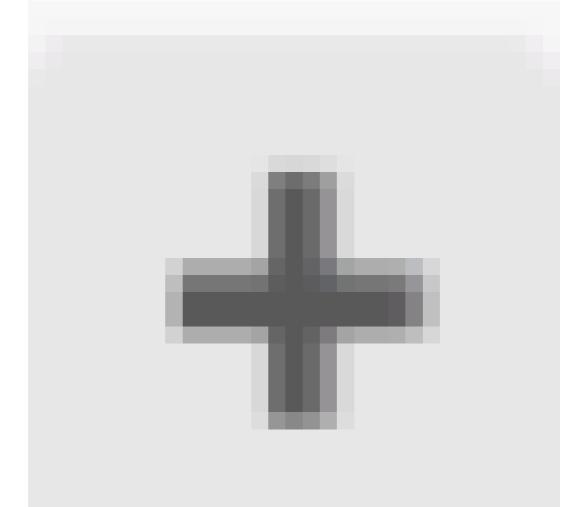




) for the router in which you are configuring a static route. In this case virtual routers are not enabled.



Step 1 ECMP Zone1

Click the ECMP Traffic Zones tab, then click the add icon (






Step 1 ECMP Zone2

In the Add ECMP Traffic Zone window:

1. Set the Name for the ECMP zone and optionally, a description.



2. Click the add icon (

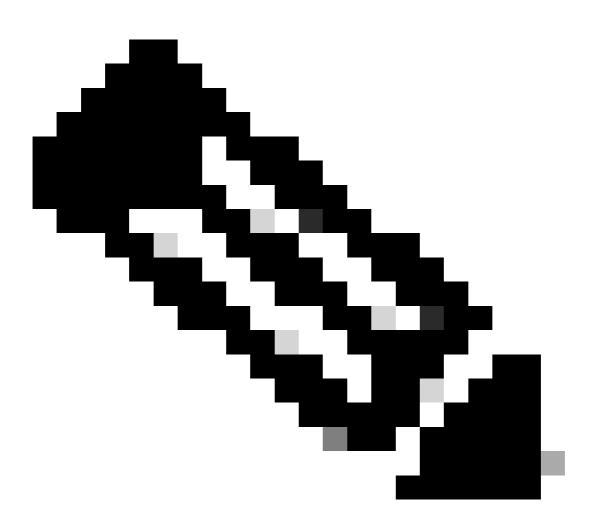
) to select up to 8 **Interfaces** to include in the zone. In this example, the ECMP name is **Outside**, interfaces **outside1** and **outside2** are added to the zone.

3. Click  $\mathbf{OK}$  .

# Add ECMP Traffic Zone

Keep the member interfaces of a ECMP traffic zone in the same security zone to prevent different access rules being applied to those interfaces.

0 ×


Name	
Outside	
Description	
	lh.
Interfaces	
+	
> Inside (GigabitEthernet0/3)	0
> management (Management0/0)	ANCEL OK
>  outside (GigabitEthernet0/0)	
Outside1 (GigabitEthernet0/1)	(i)
> 🖹 outside2 (GigabitEthernet0/2)	
	INSIDE HOST
2 ltem(s) selected	ADD ECMP TRAFFIC ZONE
Greate new Subiotertage CANCEL	ок

Step 1 ECMP Zone3

Both interfaces **outside1** and **outside2** have been added to ECMP zone **outside** sucessfully.

Device Summary Routing			
Add Multiple Virtual Routers		✓ ≻_ Commands ✓	BGP Global Settings
Static Routing BGP OSPF EIGRP	ECMP Traffic Zones		
1 object		<b>T</b> Filter	+
	INTERFACES		ACTIONS
# NAME			
1 Outside	outside1 (GigabitEthernet0/1) outside2 (GigabitEthernet0/2)		

Step 1 ECMP Zone4



**Note**: An ECMP routing traffic zone is not related to security zones. Creating a security zone that contains the outside1 and outside2 interfaces does not implement a traffic zone for ECMP routing purposes.

To define the SLA objects used to monitor connectivity to each gateway, navigate to **Objects > Object** 



### **Types > SLA Monitors**, click the add icon ( ) to add a new SLA monitor for the first ISP connection.

Firewall Device	Manager 👼 🎯 Monitoring Policies	Ubjects E	Device: firepower	) 🖨 🕲 ? :	admin Administrator · · · · · · · · SEC	URE
Object Types	SLA Monitors					
C Networks				<b>T</b> Filter		+
✿ Ports	# NAME	MONITORED ADORE SS	۲۶	ARGET INTERFACE	ACTIONS	
Security Zones						
Application Filters			There are no SLA Monit			
C ^O URLs			Start by creating the first S			
Geolocations			CREATE SLA MONIT	DR .		
Syslog Servers						
🔏 IKE Policies						
🏫 IPSec Proposals						
Secure Client Profiles						
Identity Sources						
👤 Users						
Q Certificates						
Secret Keys						
DNS Groups						
Event List Filters	•					
SLA Monitors						



In the Add SLA Monitor Object window:

1. Set the Name for the SLA monitor object and optionally, a description, in this case sla-outside1.

- 2. Set the Monitor Address, in this case gw-outside1 (the first ISP gateway).
- 3. Set the **Target Interface** through which the monitor address is reachable, in this case **outside1**.

4. Additonally, it is also possible to adjust the **Timeout** and **Threshold**. Click **OK**.

# Add SLA Monitor Object

Name			
sla-outside1			
Description			
			h.
Monitor Address			
gw-outside1			~
Target Interface outside1 (GigabitEth	hernet0/1)		~
IP ICMP ECHO OPTIONS			
Following properties	es have following correlation	n: Threshold ≤ Timeout ≤ Frequenc	W
Threshold		Timeout	
5000	milliseconds	5000	milliseconds
0 - 2147483647		0 - 604800000	
Frequency			
60000	milliseconds		
1000 - 604800000, multi	ple of 1000		
Type of Service	Number of Packets	Data Size	
0	1	28	bytes
0 - 255	0 - 100	0 - 16384	
		CANCEL	ox

0>

Repeat the similar step to configure another SLA Monitor Object for the second ISP connection, in the Add SLA Monitor Object window:

- 1. Set the Name for the SLA monitor object and optionally, a description, in this case sla-outside2.
- 2. Set the Monitor Address, in this case gw-outside2 (the second ISP gateway).
- 3. Set the **Target Interface** through which the monitor address is reachable, in this case **outside2**.
- 4. Additonally, it is also possible to adjust the Timeout and Threshold. Click OK .

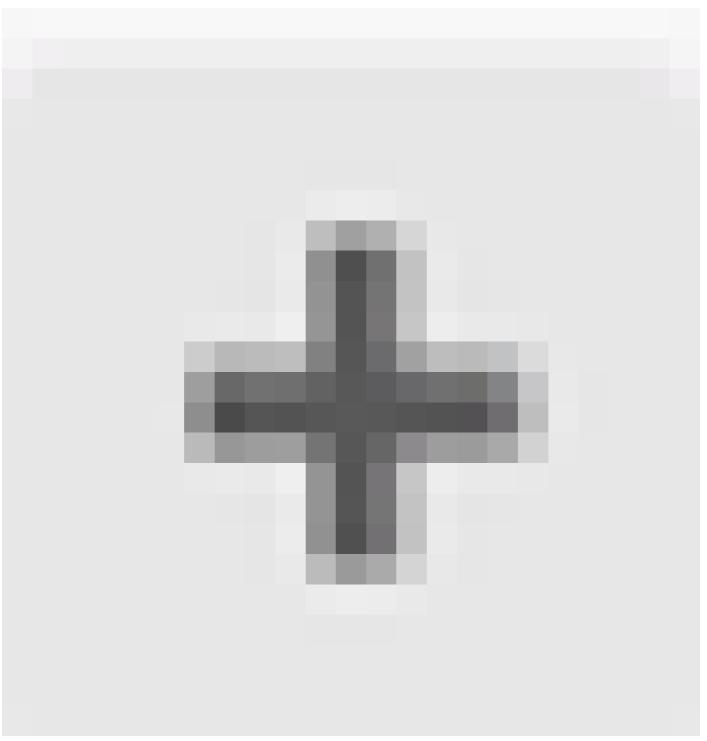
# Add SLA Monitor Object

Name sla-outside2			
Description Monitor Address			li.
gw-outside2			~
Target Interface outside2 (GigabitEth	ernet0/2)		~
Following properties	s have following correlation	1: Threshold ≤ Timeout ≤ Frequenc	ay .
Threshold		Timeout	
5000 0 - 2147483647	milliseconds	5000 0 - 604800000	milliseconds
Frequency			
60000 1000 - 604800000, multi	milliseconds		
Type of Service	Number of Packets	Data Size	
0	1	28	bytes
0 - 255	0 - 100	0 - 16384	
		CANCEL	ок

0 X

### **Step 3. Configure Static Routes with Route Track**

Navigate to **Device**, then click the link in the **Routing** summary.




If you enabled virtual routers, click the view icon ( ) for the router in which you are configuring a static route. In this case virtual routers are not enabled.

Firewall Device Manag	ger 👼 Monitor	ing Policies Objects	Device: firepowe	wer
Model Cisco Firepo	ower Threat Defens	Software VDB se for KVM 7.4.1-172 376.0	Intrusion Rule Upda 20231011-1536	
	C Inside Netw	۵ Cisco Firepower Threat Defen 0/0 0/1 0/2 0/3 الله الله الله الله 3	0/4 0/5 0/6 0	6/7 CONSOLE MAXT SP/WAN/Gateway CONSOLE CONSOLE
Interfaces Management: Merged Enabled 4 of 9 View All Interfaces	>	Routing 2 static routes View Configuration	>	Updates Geolocation, Rule, VDB, System Upgrade, Security Intelligence Feeds View Configuration View Configuration DICP Server / Relay DDNS Server DNS Server

Step 3 Route1

On the Static Routing page, click the add icon (



) to add a new static route for the first ISP link.

#### In the Add Static Route window:

- 1. Set the Name of the route and optionally, the description. In this case route_outside1.
- 2. From the **Interface** drop-down list, select the interface through which you want to send traffic, the gateway address needs to be accessible though the interface. In this case **outside1** (**GigabitEthernet0/1**).
- 3. Select the **Networks** that identify the desination networks or hosts that use the gateway in this route. In this case the pre-defined **any-ipv4**.
- 4. From the **Gateway** drop-down list, select the network object that identifies the IP address of the gateway, Traffic is sent to this address. In this case **gw-outside1** (the first ISP gateway).
- 5. Set the Metric of the route, between 1 and 254. In this example 1.
- 6. From the SLA Monitor drop-down list, select the SLA monitor object. In this case sla-outside1.

7. Click OK .

Add Static Route		0 ×
Name route_outside1		
Description		h.
Interface outside1 (GigabitEthernet0/1)		~
Protocol IPv4 IPv6 Networks		
+ To any-ipv4		
Gateway gw-outside1	√ Metri	C
SLA Monitor Applicate only for IPv4 Protocol type sla-outside1		~
	CANCEL	ок

Repeat the similar step to configure another static route for the second ISP connection, in the **Add Static Route** window:

- 1. Set the **Name** of the route and optionally, the description. In this case **route_outside2**.
- 2. From the **Interface** drop-down list, select the interface through which you want to send traffic, the gateway address needs to be accessible though the interface. In this case **outside2** (GigabitEthernet0/2).
- 3. Select the **Networks** that identify the desination networks or hosts that use the gateway in this route. In this case the pre-defined **any-ipv4**.
- 4. From the **Gateway** drop-down list, select the network object that identifies the IP address of the gateway, Traffic is sent to this address. In this case **gw-outside2** (the second ISP gateway).
- 5. Set the **Metric** of the route, between 1 and 254. In this example 1.
- 6. From the **SLA Monitor** drop-down list, select the SLA monitor object. In this scenario, **slaoutside2**.
- 7. Click **OK** .

# Add Static Route



Name		
route_outside2		
Description		
		h.
Interface		
outside2 (GigabitEthernet0/2)		~
Protocol		
● IPv4 ○ IPv6		
Networks		
+		
any-ipv4		
Gateway		Metric
gw-outside2	~	1
SLA Monitor Applicatile only for IPv4 Protocol type		
sla-outside2		~
	CANCEL	ок

You have 2 routes via the **outside1** and **outside2** interfaces with route tracks.

evice Summary Routing							
Add Multiple Virtual Routers					✓ ≻_ Commands ✓	BGP GI	obal Settings
tatic Routing BGP OSPF EIGRP ECMI	P Traffic Zones						
routes				Ŧ	Filter		+
# NAME	INTERFACE	IP TYPE	NETWORKS	GATEWAYIP	SLA MONITOR	METRIC	ACTIONS
1 route_outside1	outside1	IPv4	0.0.0/0	10.1.1.2	sla-outside1	1	

Step 3 Route4

Deploy the change to FTD.

## Verify

Log into the CLI of the FTD, run the command show zone to check information about ECMP traffic zones, including the interfaces that are part of each zone.

```
<#root>
> show zone
Zone:
Outside
ecmp
Security-level: 0
Zone member(s): 2
outside2 GigabitEthernet0/2
```

outside1 GigabitEthernet0/1

Run the command show running-config route to check the running configuration for the routing configuration, in this case there are two static routes with route tracks.

<#root>

> show running-config route

route outside1 0.0.0.0 0.0.0.0 10.1.1.2 1 track 1

Run the command show route to check the routing table, in this case there are two default routes are via the interface outside1 and outside2 with equal cost, traffic can be distributed between two ISP circuits.

<#root>

> show route

```
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, V - VPN
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, + - replicated route
SI - Static InterVRF, BI - BGP InterVRF
Gateway of last resort is 10.1.2.2 to network 0.0.00
```

s* 0.0.0.0 0.0.0.0 [1/0] via 10.1.2.2, outside2

[1/0] via 10.1.1.2, outside1

C 10.1.1.0 255.255.255.0 is directly connected, outside1 L 10.1.1.1 255.255.255.255 is directly connected, outside1 C 10.1.2.0 255.255.255.0 is directly connected, outside2 L 10.1.2.1 255.255.255.255 is directly connected, outside2 C 10.1.3.0 255.255.255.0 is directly connected, inside L 10.1.3.1 255.255.255.255 is directly connected, inside

Run the command show sla monitor configuration to check the configuration of the SLA monitor.

<#root>

> show sla monitor configuration
SA Agent, Infrastructure Engine-II
Entry number: 1037119999
Owner:
Tag:
Type of operation to perform: echo

Target address: 10.1.1.2

Interface: outside1

Number of packets: 1 Request size (ARR data portion): 28 Operation timeout (milliseconds): 5000 Type Of Service parameters: 0x0 Verify data: No Operation frequency (seconds): 60 Next Scheduled Start Time: Start Time already passed Group Scheduled : FALSE Life (seconds): Forever Entry Ageout (seconds): never Recurring (Starting Everyday): FALSE Status of entry (SNMP RowStatus): Active Enhanced History: Entry number: 1631063762 Owner: Tag: Type of operation to perform: echo Target address: 10.1.2.2 Interface: outside2 Number of packets: 1 Request size (ARR data portion): 28 Operation timeout (milliseconds): 5000 Type Of Service parameters: 0x0 Verify data: No Operation frequency (seconds): 60 Next Scheduled Start Time: Start Time already passed Group Scheduled : FALSE Life (seconds): Forever Entry Ageout (seconds): never Recurring (Starting Everyday): FALSE Status of entry (SNMP RowStatus): Active

Run the command show sla monitor operational-state to confirm the state of the SLA Monitor. In this case you can find "Timeout occurred: FALSE" in the command output, it indicates that the ICMP echo to the gateway is replying, so the default route through target interface is active and installed in routing table.

#### <#root>

Enhanced History:

> show sla monitor operational-state Entry number: 1037119999 Modification time: 04:14:32.771 UTC Tue Jan 30 2024 Number of Octets Used by this Entry: 2056 Number of operations attempted: 79 Number of operations skipped: 0 Current seconds left in Life: Forever Operational state of entry: Active Last time this entry was reset: Never Connection loss occurred: FALSE

#### Timeout occurred: FALSE

Over thresholds occurred: FALSE

Latest RTT (milliseconds): 1 Latest operation start time: 05:32:32.791 UTC Tue Jan 30 2024 Latest operation return code: OK RTT Values: RTTAvg: 1 RTTMin: 1 RTTMax: 1 NumOfRTT: 1 RTTSum: 1 RTTSum2: 1 Entry number: 1631063762

Modification time: 04:14:32.771 UTC Tue Jan 30 2024 Number of Octets Used by this Entry: 2056 Number of operations attempted: 79 Number of operations skipped: 0 Current seconds left in Life: Forever Operational state of entry: Active Last time this entry was reset: Never Connection loss occurred: FALSE

Timeout occurred: FALSE

Over thresholds occurred: FALSE Latest RTT (milliseconds): 1 Latest operation start time: 05:32:32.791 UTC Tue Jan 30 2024 Latest operation return code: OK RTT Values: RTTAvg: 1 RTTMin: 1 RTTMax: 1 NumOfRTT: 1 RTTSum: 1 RTTSum2: 1

#### Load Balancing

Initial traffic through FTD to verify if ECMP load balance the traffic among the gateways in ECMP zone. In this case, initiate SSH connection from Test-PC-1 (10.1.3.2) and Test-PC-2 (10.1.3.4) towards Internet-Host (10.1.5.2), run the command show conn to confirm that the traffic is load-balanced between two ISP links, Test-PC-1 (10.1.3.2) goes through interface outside1, Test-PC-2 (10.1.3.4) goes through interface outside2.

<#root>

```
> show conn
4 in use, 14 most used
Inspect Snort:
preserve-connection: 2 enabled, 0 in effect, 12 most enabled, 0 most in effect
TCP inside 10.1.3.4:41652 outside2 10.1.5.2:22, idle 0:02:10, bytes 5276, flags UIO N1
```

TCP inside 10.1.3.2:57484 outside1 10.1.5.2:22, idle 0:00:04, bytes 5276, flags UIO N1



**Note**: Traffic is load balanced among the specified gateways based on an algorithm that hashes the source and destination IP addresses, incoming interface, protocol, source and destination ports. when you run the test, the traffic you simulate can be routed to the same gateway due to the hash algorithm, this is expected, change any value among the 6 tuples (source IP, Destination IP, incoming interface, protocol, source port, destination port) to make change on the hash result.

### Lost Route

If the link to the first ISP Gateway is down, in this case, shut down the first gateway router to simulate. If the FTD does not receive an echo reply from first ISP gateway within the threshold timer specified in the SLA Monitor object, the host is considered unreachable and marked as down. Tracked route to first gateway is also removed from routing table.

Run the command show sla monitor operational-state to confirm the current state of the SLA Monitor. In this case you can find "Timeout occurred: True" in the command output, it indicates that the ICMP echo to the first ISP gateway is not responding.

> show sla monitor operational-state Entry number: 1037119999 Modification time: 04:14:32.771 UTC Tue Jan 30 2024 Number of Octets Used by this Entry: 2056 Number of operations attempted: 121 Number of operations skipped: 0 Current seconds left in Life: Forever Operational state of entry: Active Last time this entry was reset: Never Connection loss occurred: FALSE

#### Timeout occurred: TRUE

Over thresholds occurred: FALSE Latest RTT (milliseconds): NoConnection/Busy/Timeout Latest operation start time: 06:14:32.801 UTC Tue Jan 30 2024 Latest operation return code: Timeout RTT Values: RTTAvg: 0 RTTMin: 0 RTTMax: 0 NumOfRTT: 0 RTTSum: 0 RTTSum2: 0

Entry number: 1631063762 Modification time: 04:14:32.771 UTC Tue Jan 30 2024 Number of Octets Used by this Entry: 2056 Number of operations attempted: 121 Number of operations skipped: 0 Current seconds left in Life: Forever Operational state of entry: Active Last time this entry was reset: Never Connection loss occurred: FALSE

Timeout occurred: FALSE

Over thresholds occurred: FALSE Latest RTT (milliseconds): 1 Latest operation start time: 06:14:32.802 UTC Tue Jan 30 2024 Latest operation return code: OK RTT Values: RTTAvg: 1 RTTMin: 1 RTTMax: 1 NumOfRTT: 1 RTTSum: 1 RTTSum2: 1

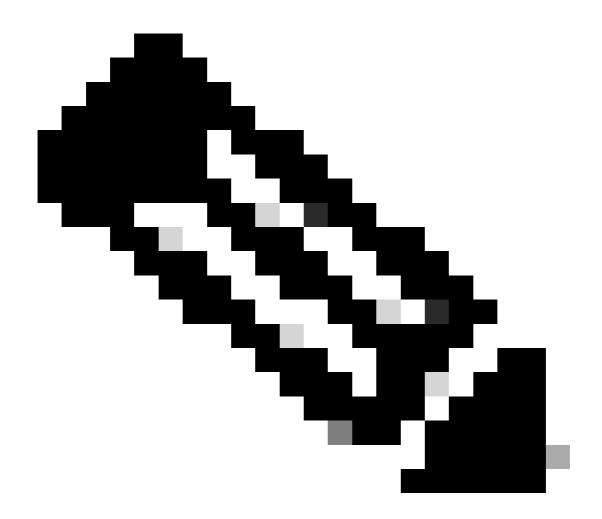
Run the command **show route** to check the current routing table, the route to the first ISP gateway through interface outside1 is removed, there is only one active default route to the second ISP gateway through interface outside2.

<#root>

> show route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, V - VPN i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, + - replicated route SI - Static InterVRF, BI - BGP InterVRF Gateway of last resort is 10.1.2.2 to network 0.0.00 S* 0.0.0.0 0.0.0.0 [1/0] via 10.1.2.2, outside2

C 10.1.1.0 255.255.255.0 is directly connected, outside1 L 10.1.1.1 255.255.255.255 is directly connected, outside1 C 10.1.2.0 255.255.255.0 is directly connected, outside2 L 10.1.2.1 255.255.255.255 is directly connected, outside2 C 10.1.3.0 255.255.255.0 is directly connected, inside L 10.1.3.1 255.255.255.255 is directly connected, inside


Run the command show conn, you can find the two connetion are still up. SSH sessions are also active on Test-PC-1 (10.1.3.2) and Test-PC-2 (10.1.3.4) without any interruption.

<#root>

> show conn 4 in use, 14 most used Inspect Snort: preserve-connection: 2 enabled, 0 in effect, 12 most enabled, 0 most in effect

TCP inside 10.1.3.4:41652 outside2 10.1.5.2:22, idle 0:19:29, bytes 5276, flags UIO N1

TCP inside 10.1.3.2:57484 outside1 10.1.5.2:22, idle 0:17:22, bytes 5276, flags UIO N1



**Note**: You can notice in the output of show conn, SSH session from Test-PC-1 (10.1.3.2) is still through interface outside1, although the default route through interface outside1 has been removed from routing table. this is expected and by design, the actual traffic flows through interface outside2. If you initiate new connection from Test-PC-1 (10.1.3.2) to Internet-Host (10.1.5.2), you can find all the traffic are through interface outside2.

# Troubleshoot

In order to validate the routing table change, run command debug ip routing .

In this example, when the link to first ISP gateway is down, the route through interface outside1 is removed from routing table.

<#root>

```
> debug ip routing
IP routing debugging is on
```

ip_route_delete 0.0.0.0 0.0.0.0 via 10.1.1.2, outside1

ha_cluster_synced 0 routetype 0

RT: del 0.0.0.0 via 10.1.1.2, static metric [1/0]NP-route: Delete-Output 0.0.0.0/0 hop_count:1 , via 0.0

RT(mgmt-only):

NP-route: Update-Output 0.0.0.0/0 hop_count:1 , via 10.1.2.2, outside2

NP-route: Update-Input 0.0.0.0/0 hop_count:1 Distance:1 Flags:0X0 , via 10.1.2.2, outside2

Run the command show route to confirm the current routing table.

#### <#root>

> show route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, V - VPN i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, + - replicated route SI - Static InterVRF, BI - BGP InterVRF Gateway of last resort is 10.1.2.2 to network 0.0.00

S* 0.0.0.0 0.0.0.0 [1/0] via 10.1.2.2, outside2

C 10.1.1.0 255.255.255.0 is directly connected, outside1 L 10.1.1.1 255.255.255.255 is directly connected, outside1 C 10.1.2.0 255.255.255.0 is directly connected, outside2 L 10.1.2.1 255.255.255.255 is directly connected, outside2 C 10.1.3.0 255.255.255.0 is directly connected, inside L 10.1.3.1 255.255.255.255 is directly connected, inside

When the link to first ISP gateway is up again, the route through interface outside1 is added back to routing table.

<#root>

> debug ip routing
IP routing debugging is on

RT(mgmt-only):

NP-route: Update-Output 0.0.0.0/0 hop_count:1 , via 10.1.2.2, outside2

NP-route: Update-Output 0.0.0.0/0 hop_count:1 , via 10.1.1.2, outside2

NP-route: Update-Input 0.0.0.0/0 hop_count:2 Distance:1 Flags:0X0 , via 10.1.2.2, outside2 via 10.1.1.2, outside1

Run the command show route to confirm the current routing table.

> show route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, V - VPN i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, + - replicated route SI - Static InterVRF, BI - BGP InterVRF Gateway of last resort is 10.1.2.2 to network 0.0.00

S* 0.0.0.0 0.0.0.0 [1/0] via 10.1.2.2, outside2
[1/0] via 10.1.1.2, outside1
C 10.1.1.0 255.255.255.0 is directly connected, outside1
L 10.1.1.1 255.255.255.0 is directly connected, outside2
L 10.1.2.1 255.255.255.0 is directly connected, outside2
C 10.1.3.0 255.255.255.0 is directly connected, inside
L 10.1.3.1 255.255.255.255 is directly connected, inside

## **Related Information**

<u>Cisco Technical Support & Downloads</u>