Cisco Secure PIX Firewall 6.x and Cisco VPN Client 3.5 for Windows with Microsoft Windows 2000 and 2003 IAS RADIUS Authentication

Document ID: 18897

Contents

Introduction
Prerequisites
 Requirements
 Components Used
 Conventions
Configure
 Network Diagram
 Configurations
Verify
Troubleshoot
 Troubleshooting Commands
 Sample debug Output
Related Information

Introduction

This sample configuration shows how to configure Cisco VPN Client version 3.5 for Windows and the Cisco Secure PIX Firewall for use with the Microsoft Windows 2000 and 2003 Internet Authentication Service (IAS) RADIUS Server. Refer to Microsoft – Checklist: Configuring IAS for dial–up and VPN access for further information on IAS.

Refer to PIX/ASA 7.x and Cisco VPN Client 4.x for Windows with Microsoft Windows 2003 IAS RADIUS Authentication Configuration Example in order to learn more about the same scenerio in PIX/ASA 7.0 with Cisco VPN Client 4.x.

Prerequisites

Requirements

Ensure that you meet these requirements before you attempt this configuration:

- The Cisco Secure PIX Firewall Software Release 6.0 supports VPN connections from the Cisco VPN Client 3.5 for Windows.
- This sample configuration assumes that the PIX is already operating with the appropriate statics, conduits, or access lists. The current document does not intend to illustrate these basic concepts, but to show connectivity to the PIX from a Cisco VPN Client.

Components Used

The information in this document is based on these software and hardware versions:

- PIX Firewall Software Release 6.1.1
Note: This was tested on PIX Software Release 6.1.1, but should work on all 6.x releases.
- Cisco VPN Client version 3.5 for Windows
- Windows 2000 and 2003 Server with IAS

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Conventions

Refer to the Cisco Technical Tips Conventions for more information on document conventions.

Configure

In this section, you are presented with the information to configure the features described in this document.

Note: Use the Command Lookup Tool (registered customers only) to obtain more information on the commands used in this section.

Network Diagram

This document uses this network setup:

![Network Diagram](image)

Configurations

This document uses these configurations.

- PIX Firewall
- Cisco VPN Client 3.5 for Windows
- Microsoft Windows 2000 Server with IAS
- Microsoft Windows 2003 Server with IAS
PIX Firewall

pixfirewall(config)#write terminal
Building configuration...
: Saved
:
PIX Version 6.1(1)
nameif ethernet0 outside security0
nameif ethernet1 inside security100
enable password 8Ry2YjIyt7RRXU24 encrypted
passwd 2KFQnbNIdI.2KYOU encrypted
hostname pixfirewall
fixup protocol ftp 21
fixup protocol http 80
fixup protocol h323 1720
fixup protocol rsh 514
fixup protocol rtsp 554
fixup protocol smtp 25
fixup protocol sqlnet 1521
fixup protocol sip 5060
fixup protocol skinny 2000
names

!--- Issue the access-list command to avoid
!--- Network Address Translation (NAT) on the IPsec packets.

access-list 101 permit ip 10.1.1.0 255.255.255.0 10.1.2.0
 255.255.255.0
pager lines 24
interface ethernet0 auto
interface ethernet1 auto
mtu outside 1500
mtu inside 1500
ip address outside 14.36.100.50 255.255.0.0
ip address inside 172.18.124.152 255.255.255.0
ip audit info action alarm
ip audit attack action alarm
ip local pool ippool 10.1.2.1-10.1.2.254
pdm history enable
arp timeout 14400
global (outside) 1 14.36.100.51

!--- Binding access list 101 to the NAT statement to avoid
!--- NAT on the IPsec packets.

nat (inside) 0 access-list 101
Nat (inside) 1 0.0.0.0 0.0.0.0 0 0
route outside 0.0.0.0 0.0.0.0 14.36.1.1 1
route inside 10.1.1.0 255.255.255.0 172.18.124.1
timeout xlate 3:00:00
timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00
 rpc 0:10:00 h323 0:05:00 sip 0:30:00 sip_media 0:02:00
timeout uauth 0:05:00 absolute

!--- Enable access to the RADIUS protocol.

aaa-server RADIUS protocol radius

!--- Associate the partnerauth protocol to RADIUS.

aaa-server partnerauth protocol radius
aaa-server partnerauth (inside) host 172.18.124.196 cisco123
timeout 5
no snmp-server location
no snmp-server contact
snmp-server community public
no snmp-server enable traps
floodguard enable

!−−− Tell PIX to implicitly permit IPsec traffic.

sysopt connection permit−ipsec
no sysopt route dnat

!−−− Configure a transform set that defines how the traffic is protected.

crypto ipsec transform−set myset esp−des esp−md5−hmac

!−−− Create a dynamic crypto map and specify which
!−−− transform sets are allowed for this dynamic crypto map entry.

crypto dynamic−map dynmap 10 set transform−set myset

!−−− Add the dynamic crypto map set into a static crypto map set.

crypto map mymap 10 ipsec−isakmp dynamic dynmap

!−−− Enable the PIX to launch the Xauth application on the VPN Client.

crypto map mymap client authentication partnerauth

!−−− Apply the crypto map to the outside interface.

crypto map mymap interface outside

!−−− IKE Policy Configuration.

isakmp enable outside
isakmp identity address
isakmp policy 10 authentication pre−share
isakmp policy 10 encryption des
isakmp policy 10 hash md5
isakmp policy 10 group 2
isakmp policy 10 lifetime 86400

!−−− IPsec group configuration for VPN Client.

vpngroup vpn3000 address−pool ippool
vpngroup vpn3000 dns−server 10.1.1.2
vpngroup vpn3000 wins−server 10.1.1.2
vpngroup vpn3000 default−domain cisco.com
vpngroup vpn3000 idle−time 1800
vpngroup vpn3000 password ********
telnet timeout 5
ssh timeout 5
terminal width 80
Cryptochecksum:3f9e31533911b8a6bb5c0f06900c2dbc
: end
[OK]
pixfirewall(config)#

Cisco VPN Client 3.5 for Windows

This section explains how to configure the Cisco VPN Client 3.5 for Windows.

1. Launch the VPN Client and click New to create a new connection.
2. In the **Connection Entry** box, assign a name to your entry.

3. Enter the **IP address** of the public interface of the PIX.
4. Under **Group Access Information**, enter the group name and the group password.

5. Click **Finish** to save the profile in the registry.
Microsoft Windows 2000 Server with IAS

Complete these steps to configure the Microsoft Windows 2000 server with IAS. This is a very basic setup to use a Windows 2000 IAS server for RADIUS authentication of VPN users. If you require a more complex design, contact Microsoft for assistance.

Note: These steps assume that IAS has already been installed on the local machine. If not, add this through Control Panel > Add/Remove Programs.

1. Launch the Microsoft Management Console. Choose Start > Run and type mmc. Then click OK.
2. Choose Console > Add Remove Snap-In... in order to add the IAS service to this console.
3. Click Add in order to launch a new window with all of the available standalone snap−ins. Click Internet Authentication Service (IAS) and click Add.
4. Make sure Local Computer is selected and click Finish. Then click Close.
5. Notice that IAS is now added. Click OK to see that it has been added to the Console Root.

6. Expand the Internet Authentication Service and right−click on Clients. Click New Client and input a name. The choice of name really does not matter; it will be what you see in this view. Make sure to select RADIUS and click Next.
7. Fill in the Client address with the PIX interface address that the IAS server is connected to. Make sure to select RADIUS Standard and add the shared secret to match the command you entered on the PIX:

 aaa−server partnerauth (inside) host 172.18.124.196 cisco123 timeout 5

Note: In this example, "cisco123" is the shared secret.
8. Click Finish to return to the Console Root.
9. Click Remote Access Policies in the left pane and double-click the policy labeled Allow access if dial-in permission is enabled.
10. Click Edit Profile and go to the Authentication tab. Under Authentication Methods, make sure only Unencrypted Authentication (PAP, SPAP) is checked.

Note: The VPN Client can only use this method for authentication.
11. Click Apply and then OK twice.
12. In order to modify the users to allow connection, choose Console > Add/Remove Snap-in. Click Add and then select the Local Users and Groups snap-in. Click Add. Make sure to select Local Computer and click Finish. Click OK.
13. Expand Local User and Groups and click the Users folder in the left pane. In the right pane, double-click the user you want to allow access.
14. Click the Dial-in tab and select Allow Access under Remote Access Permission (Dial-in or VPN).

![Image](image.png)

15. Click Apply and OK to complete the action. You can close the Console Management screen and save the session, if desired.
16. The users that you modified should now be able to access the PIX with the VPN Client 3.5. Please keep in mind that the IAS server only authenticates the user information. The PIX still does the group authentication.

Microsoft Windows 2003 Server with IAS

Complete these steps to configure the Microsoft Windows 2003 server with IAS.

Note: These steps assume that IAS has already been installed on the local machine. If not, add this through Control Panel > Add/Remove Programs.

1. Choose Administrative Tools > Internet Authentication Service and right-click on RADIUS Client to add a new RADIUS client. After you type the client information, click OK.

 This example shows a client named "Pix" with an IP address of 10.66.79.44. Client–Vendor is set to RADIUS Standard, and the shared secret is "cisco123."
2. Go to Remote Access Policies, right-click on Connections to Other Access Servers, and select Properties.

3. Ensure that the option for Grant Remote Access Permissions is selected.

4. Click Edit Profile and check these settings.

 - On the Authentication tab, check **Unencrypted authentication (PAP, SPAP)**.
 - On the Encryption tab, ensure that the option for No Encryption is selected.

Click OK when you are finished.
5. Add a user into the local computer account. In order to do this, choose **Administrative Tools > Computer Management > System Tools > Local Users and Groups.** Right–click on **Users** and select **New Users.**

6. Add user with Cisco password "cisco123" and check this profile information.

 - On the General tab, ensure that the option for **Password Never Expired** is selected instead of the option for **User Must Change Password.**
 - On the Dial–in tab, select the option for **Allow access** (or leave default setting of Control access through Remote Access Policy).

Click **OK** when you are finished.
Verify

Use this section to confirm that your configuration works properly.

The Output Interpreter Tool (registered customers only) (OIT) supports certain `show` commands. Use the OIT to view an analysis of `show` command output.

- `show crypto isakmp sa` Shows all current IKE security associations (SAs) at a peer.
- `show crypto ipsec sa` Shows the settings used by current security associations.

Troubleshoot

This section provides information you can use to troubleshoot your configuration. For additional information, refer to Troubleshooting the PIX to Pass Data Traffic on an Established IPSec Tunnel.

Troubleshooting Commands

Certain commands are supported by the Output Interpreter Tool (registered customers only), which allows you to view an analysis of `show` command output.

Note: Refer to Important Information on Debug Commands before you use `debug` commands and refer to IP Security Troubleshooting – Understanding and Using debug Commands.

- `debug crypto ipsec` View the IPSec negotiations of phase 2.
- `debug crypto isakmp` View the ISAKMP negotiations of phase 1.
- `debug crypto engine` View the traffic that is encrypted.
Sample debug Output

- PIX Firewall
- VPN Client 3.5 for Windows

PIX Firewall

pixfirewall(config)#
crypto_isakmp_process_block: src 14.36.100.55, dest 14.36.100.50
VPN Peer: ISAKMP: Added new peer: ip:14.36.100.55 Total VPN Peers:1
VPN Peer: ISAKMP: Peer ip:14.36.100.55 Ref cnt incremented to:1
 Total VPN Peers:1
OAK_AG exchange
ISAKMP (0): processing SA payload. message ID = 0

ISAKMP (0): Checking ISAKMP transform 1 against priority 10 policy
ISAKMP: encryption 3DES-CBC
ISAKMP: hash SHA
ISAKMP: default group 2
ISAKMP: extended auth pre-share
ISAKMP: life type in seconds
ISAKMP: life duration (VPI) of 0x0 0x20 0xc4 0x9b
ISAKMP (0): atts are not acceptable. Next payload is 3

ISAKMP (0): Checking ISAKMP transform 2 against priority 10 policy
ISAKMP: encryption 3DES-CBC
ISAKMP: hash MD5
ISAKMP: default group 2
ISAKMP: extended auth pre-share
ISAKMP: life type in seconds
ISAKMP: life duration (VPI) of 0x0 0x20 0xc4 0x9b
ISAKMP (0): atts are not acceptable. Next payload is 3

ISAKMP (0): Checking ISAKMP transform 3 against priority 10 policy
ISAKMP: encryption 3DES-CBC
ISAKMP: hash SHA
ISAKMP: default group 2
ISAKMP: auth pre-share
ISAKMP: life type in seconds
ISAKMP: life duration (VPI) of 0x0 0x20 0xc4 0x9b
ISAKMP (0): atts are not acceptable. Next payload is 3

ISAKMP (0): Checking ISAKMP transform 4 against priority 10 policy
ISAKMP: encryption 3DES-CBC
ISAKMP: hash MD5
ISAKMP: default group 2
ISAKMP: auth pre-share
ISAKMP: life type in seconds
ISAKMP: life duration (VPI) of 0x0 0x20 0xc4 0x9b
ISAKMP (0): atts are not acceptable. Next payload is 3

ISAKMP (0): Checking ISAKMP transform 5 against priority 10 policy
ISAKMP: encryption DES-CBC
ISAKMP: hash SHA
ISAKMP: default group 2
ISAKMP: extended auth pre-share
ISAKMP: life type in seconds
ISAKMP: life duration (VPI) of 0x0 0x20 0xc4 0x9b
ISAKMP (0): atts are not acceptable. Next payload is 3

ISAKMP (0): Checking ISAKMP transform 6 against priority 10 policy
ISAKMP: encryption DES-CBC
ISAKMP: hash MD5
ISAKMP: default group 2
ISAKMP: extended auth pre-share
ISAKMP: life type in seconds
ISAKMP: life duration (VPI) of 0x0 0x20 0xc4 0x9b
ISAKMP (0): atts are acceptable. Next payload is 3

ISAKMP (0): processing KE payload. message ID = 0
ISAKMP (0): processing NONCE payload. message ID = 0

ISAKMP (0): processing ID payload. message ID = 0
ISAKMP (0): processing vendor id payload

ISAKMP (0): remote peer supports dead peer detection

ISAKMP (0): processing vendor id payload

ISAKMP (0): speaking to a Unity client

ISAKMP: Created a peer node for 14.36.100.55

ISAKMP (0): ID payload
 next-payload : 10
 type : 1
 protocol : 17
 port : 500
 length : 8

ISAKMP (0): Total payload length: 12
return status is IKMP_NO_ERROR

crypto_isakmp_process_block: src 14.36.100.55, dest 14.36.100.50

OAK_AG exchange

ISAKMP (0): processing HASH payload. message ID = 0
ISAKMP (0): processing NOTIFY payload 24578 protocol 1
 spi 0, message ID = 0
ISAKMP (0): processing notify INITIAL_CONTACTIPSEC(key_engine): got a queue event...

IPSEC(key_engine_delete_sas): rec'd delete notify from ISAKMP
IPSEC(key_engine_delete_sas): delete all SAs shared with 14.36.100.55

ISAKMP (0): SA has been authenticated
return status is IKMP_NO_ERROR

ISAKMP/xauth: request attribute XAUTH_TYPE
ISAKMP/xauth: request attribute XAUTH_USER_NAME
ISAKMP/xauth: request attribute XAUTH_USER_PASSWORD

ISAKMP (0:0): initiating peer config to 14.36.100.55. ID = 3870616596
 (0xe6b4ec14)
crypto_isakmp_process_block: src 14.36.100.55, dest 14.36.100.50

ISAKMP_TRANSACTION exchange

ISAKMP (0:0): processing transaction payload from 14.36.100.55.
 message ID = 84
ISAKMP: Config payload CFG_REPLY
return status is IKMP_ERR_NO_RETRANS

ISAKMP (0:0): initiating peer config to 14.36.100.55. ID = 3612718114
 (0xd755b422)
crypto_isakmp_process_block: src 14.36.100.55, dest 14.36.100.50

ISAKMP_TRANSACTION exchange

ISAKMP (0:0): processing transaction payload from 14.36.100.55.
 message ID = 0
ISAKMP: Config payload CFG_ACK
return status is IKMP_NO_ERROR

crypto_isakmp_process_block: src 14.36.100.55, dest 14.36.100.50

ISAKMP_TRANSACTION exchange

ISAKMP (0:0): processing transaction payload from 14.36.100.55.
 message ID = 0
ISAKMP: Config payload CFG_REQUEST

ISAKMP (0:0): checking request:
ISAKMP: attribute IP4_ADDRESS (1)
ISAKMP: attribute IP4_NETMASK (2)
ISAKMP: attribute IP4_DNS (3)
ISAKMP: attribute IP4_NBNS (4)
ISAKMP: attribute ADDRESS_EXPIRY (5)
 Unsupported Attr: 5
ISAKMP: attribute APPLICATION_VERSION (7)
Unsupported Attr: 7
ISAKMP: attribute UNKNOWN (28672)
Unsupported Attr: 28672
ISAKMP: attribute UNKNOWN (28673)
Unsupported Attr: 28673
ISAKMP: attribute UNKNOWN (28674)
ISAKMP: attribute UNKNOWN (28676)
ISAKMP: attribute UNKNOWN (28679)
Unsupported Attr: 28679
ISAKMP: attribute UNKNOWN (28680)
Unsupported Attr: 28680
ISAKMP: attribute UNKNOWN (28677)
Unsupported Attr: 28677
ISAKMP (0:0): responding to peer config from 14.36.100.55.
ID = 3979868003
return status is IKMP_NO_ERROR
crypto_isakmp_process_block: src 14.36.100.55, dest 14.36.100.50
OAK_QM exchange
oakley_process_quick_mode:
OAK_QM_IDLE
ISAKMP (0): processing SA payload. message ID = 1527320241

ISAKMP : Checking IPSec proposal 1

ISAKMP: transform 1, ESP_3DES
ISAKMP: attributes in transform:
ISAKMP: authenticator is HMAC-MD5
ISAKMP: encaps is 1
ISAKMP: SA life type in seconds
ISAKMP: SA life duration (VPI) of 0x0 0x20 0xc4 0x9b
IPSEC(validate_proposal): transform proposal (prot 3, trans 3, hmac_alg 1) not supported

ISAKMP (0): atts not acceptable. Next payload is 0
ISAKMP (0): skipping next ANDed proposal (1)
ISAKMP : Checking IPSec proposal 2

ISAKMP: transform 1, ESP_3DES
ISAKMP: attributes in transform:
ISAKMP: authenticator is HMAC-SHA
ISAKMP: encaps is 1
ISAKMP: SA life type in seconds
ISAKMP: SA life duration (VPI) of 0x0 0x20 0xc4 0x9b
IPSEC(validate_proposal): transform proposal (prot 3, trans 3, hmac_alg 2) not supported

ISAKMP (0): atts not acceptable. Next payload is 0
ISAKMP (0): skipping next ANDed proposal (2)
ISAKMP : Checking IPSec proposal 3

ISAKMP: transform 1, ESP_3DES
ISAKMP: attributes in transform:
ISAKMP: authenticator is HMAC-MD5
ISAKMP: encaps is 1
ISAKMP: SA life type in seconds
ISAKMP: SA life duration (VPI) of 0x0 0x20 0xc4 0x9b
IPSEC(validate_proposal): transform proposal (prot 3, trans 3, hmac_alg 1) not supported

ISAKMP (0): atts not acceptable. Next payload is 0
ISAKMP : Checking IPSec proposal 4

ISAKMP: transform 1, ESP_3DES
ISAKMP: attributes in transform:
ISAKMP: authenticator is HMAC-SHA
ISAKMP: encaps is 1
ISAKMP: SA life type in seconds
ISAKMP: SA life duration (VPI) of 0x0 0x20 0xc4 0x9b

IPSEC(validate_proposal): transform proposal (prot 3, trans 3, hmac_alg 2) not supported

ISAKMP (0): atts not acceptable. Next payload is 0
ISAKMP: Checking IPSec proposal 5

ISAKMP: transform 1, ESP_DES
ISAKMP: attributes in transform:
ISAKMP: authenticator is HMAC-MD5
ISAKMP: encaps is 1
ISAKMP: SA life type in seconds
ISAKMP: SA life duration (VPI) of 0x0 0x20 0xc4 0x9b
ISAKMP (0): atts are acceptable.
ISAKMP (0): bad SPI size of 2 octets!
ISAKMP: Checking IPSec proposal 6

ISAKMP: transform 1, ESP_DES
ISAKMP: attributes in transform:
ISAKMP: authenticator is HMAC-SHA
ISAKMP: encaps is 1
ISAKMP: SA life type in seconds
ISAKMP: SA life duration (VPI) of 0x0 0x20 0xc4 0x9b
IPSEC(validate_proposal): transform proposal (prot 3, trans 2, hmac_alg 2) not supported

ISAKMP (0): atts not acceptable. Next payload is 0
ISAKMP (0): skipping next ANDed proposal (6)
ISAKMP: Checking IPSec proposal 7

ISAKMP: transform 1, ESP_DES
ISAKMP: attributes in transform:
ISAKMP: authenticator is HMAC-MD5
ISAKMP: encaps is 1
ISAKMP: SA life type in seconds
ISAKMP: SA life duration (VPI) of 0x0 0x20 0xc4 0x9b
ISAKMP (0): atts are acceptable.
IPSEC(validate_proposal_request): proposal part #1,
(key eng. msg.) dest= 14.36.100.50, src= 14.36.100.55,
dest_proxy= 14.36.100.50/255.255.255.255/0/0 (type=1),
src_proxy= 10.1.2.1/255.255.255.255/0/0 (type=1),
protocol= ESP, transform= esp-des esp-md5-hmac,
lifedur= 0s and 0kb,
spi= 0x0(0), conn_id= 0, keysize= 0, flags= 0x4

ISAKMP (0): processing NONCE payload. message ID = 1527320241

ISAKMP (0): processing ID payload. message ID = 1527320241
ISAKMP (0): ID_IPV4_ADDR src 10.1.2.1 prot 0 port 0
ISAKMP (0): processing ID payload. message ID = 1527320241
ISAKMP (0): ID_IPV4_ADDR dst 14.36.100.50 prot 0 port 0
IPSEC(key_engine): got a queue event...
IPSEC(spi_response): getting spi 0xf39c2217(4087095831) for SA from 14.36.100.55 to 14.36.100.50 for prot 3

return status is IKMP_NO_ERROR
crypto_isakmp_process_block: src 14.36.100.55, dest 14.36.100.50
OAK_QM exchange
oakley_process_quick_mode:
OAK_QM_IDLE
ISAKMP (0): processing SA payload. message ID = 3487980779

ISAKMP: Checking IPSec proposal 1
ISAKMP: transform 1, ESP_3DES
ISAKMP: attributes in transform:
crypto_isakmp_process_block: src 14.36.100.55, dest 14.36.100.50
OAK_QM exchange
oakley_process_quick_mode:
OAK_QM_AUTH_AWAIT
ISAKMP (0): Creating IPSec SAs
inbound SA from 14.36.100.55 to 14.36.100.50
(proxy 10.1.2.1 to 14.36.100.50)
has spi 4087095831 and conn_id 1 and flags 4
lifetime of 2147483 seconds
outbound SA from 14.36.100.50 to 14.36.100.55
(proxy 14.36.100.50 to 10.1.2.1)
has spi 1929305241 and conn_id 2 and flags 4
lifetime of 2147483 seconds
IPSEC(key_engine): got a queue event...
IPSEC(initialize_sas):
(key eng. msg.) dest= 14.36.100.50, src= 14.36.100.55,
dest_proxy= 14.36.100.50/0.0.0.0/0/0 (type=1),
src_proxy= 10.1.2.1/0.0.0.0/0/0 (type=1),
protocol= ESP, transform= esp-des esp-md5-hmac ,
lifedur= 2147483s and 0kb,
spi= 0x393e2217(4087095831), conn_id= 1, keysize= 0, flags= 0x4
IPSEC(initialize_sas):
(key eng. msg.) src= 14.36.100.50, dest= 14.36.100.55,
src_proxy= 14.36.100.50/0.0.0.0/0/0 (type=1),
dest_proxy= 0.0.0.0/0.0.0.0/0/0 (type=4),
protocol= ESP, transform= esp-des esp-md5-hmac ,
lifedur= 2147483s and 0kb,
spi= 0x27fedc99(1929305241), conn_id= 2, keysize= 0, flags= 0x4
VPN Peer: IPSEC: Peer ip:14.36.100.55 Ref cnt incremented to:2
Total VPN Peers:1
VPN Peer: IPSEC: Peer ip:14.36.100.55 Ref cnt incremented to:3
Total VPN Peers:1
return status is IKMP_NO_ERROR
crypto_isakmp_process_block: src 14.36.100.55, dest 14.36.100.50
OAK_QM exchange
oakley_process_quick_mode:
OAK_QM_AUTH_AWAIT
ISAKMP (0): Creating IPSec SAs
inbound SA from 14.36.100.55 to 14.36.100.50
(proxy 10.1.2.1 to 0.0.0.0)
has spi 1791135440 and conn_id 3 and flags 4
lifetime of 2147483 seconds
outbound SA from 14.36.100.50 to 14.36.100.55
(proxy 0.0.0.0 to 10.1.2.1)
has spi 173725574 and conn_id 4 and flags 4
lifetime of 2147483 seconds
IPSEC(key_engine): got a queue event...
IPSEC(initialize_sas):
(key eng. msg.) dest= 14.36.100.50, src= 14.36.100.55,
dest_proxy= 0.0.0.0/0.0.0.0/0/0 (type=4),
src_proxy= 10.1.2.1/0.0.0.0/0/0 (type=1),
protocol= ESP, transform= esp-des esp-md5-hmac ,
lifedur= 2147483s and 0kb,
spi= 0x6ace28ed0(1791135440), conn_id= 3, keysize= 0, flags= 0x4
IPSEC(initialize_sas):
(key eng. msg.) src= 14.36.100.50, dest= 14.36.100.55,
src_proxy= 0.0.0.0/0.0.0.0/0/0 (type=4),
dest_proxy= 10.1.2.1/0.0.0.0/0/0 (type=1),
protocol= ESP, transform= esp-des esp-md5-hmac ,
lifedur= 2147483s and 0kb,
spi= 0xa5ad786(173725574), conn_id= 4, keysize= 0, flags= 0x4
VPN Peer: IPSEC: Peer ip:14.36.100.55 Ref cnt incremented to:4
Total VPN Peers:1
VPN Peer: IPSEC: Peer ip:14.36.100.55 Ref cnt incremented to:5
Total VPN Peers:1
return status is IKMP_NO_ERROR
crypto_isakmp_process_block: src 14.36.100.55, dest 14.36.100.50
ISAKMP (0): processing NOTIFY payload 36136 protocol 1
spi 0, message ID = 3443334051
ISAKMP (0): received DPD_R_U_THERE from peer 14.36.100.55
ISAKMP (0): sending NOTIFY message 36137 protocol 1
return status is IKMP_NO_ERR_NO_TRANS

VPN Client 3.5 for Windows

193 19:00:56.073 01/24/02 Sev=Info/6 DIALER/0x63300002 Initiating connection.
194 19:00:56.073 01/24/02 Sev=Info/4 CM/0x63100002 Begin connection process
195 19:00:56.083 01/24/02 Sev=Info/4 CM/0x63100004 Establish secure connection using Ethernet
196 19:00:56.083 01/24/02 Sev=Info/4 CM/0x63100026 Attempt connection with server "14.36.100.50"
197 19:00:56.083 01/24/02 Sev=Info/6 IKE/0x63000003B Attempting to establish a connection with 14.36.100.50.
198 19:00:56.124 01/24/02 Sev=Info/4 IKE/0x63000013 SENDING >>> ISAKMP OAK AG (SA, KE, NON, ID, VID, VID, VID) to 14.36.100.50
199 19:00:56.774 01/24/02 Sev=Info/4 IPSEC/0x63700014 Deleted all keys
200 19:00:59.539 01/24/02 Sev=Info/5 IKE/0x6300002F Received ISAKMP packet: peer = 14.36.100.50
201 19:00:59.539 01/24/02 Sev=Info/4 IKE/0x63000014 RECEIVING <<< ISAKMP OAK AG (SA, VID, VID, VID, KE, ID, NON, HASH) from 14.36.100.50
202 19:00:59.539 01/24/02 Sev=Info/5 IKE/0x63000059 Vendor ID payload = 12F5F28C457168A9702D9FE274CC0100 Peer is a Cisco−Unity compliant peer
203 19:00:59.539 01/24/02 Sev=Info/5 IKE/0x63000001 Peer supports DPD
204 19:00:59.539 01/24/02 Sev=Info/5 IKE/0x63000059 Vendor ID payload = AFCAD71368A1F1C96B8696FC77570100
205 19:00:59.539 01/24/02 Sev=Info/5 IKE/0x63000001 Peer supports DPD
206 19:00:59.539 01/24/02 Sev=Info/5 IKE/0x63000059 Vendor ID payload = 6D761DDC26ACECA1B0ED11FABB860C4
207 19:00:59.569 01/24/02 Sev=Info/4 IKE/0x63000013 SENDING >>> ISAKMP OAK AG *(HASH, NOTIFY:STATUS_INITIAL_CONTACT) to 14.36.100.50
208 19:00:59.569 01/24/02 Sev=Info/5 IKE/0x6300002F Received ISAKMP packet: peer = 14.36.100.50
209 19:00:59.569 01/24/02 Sev=Info/4 IKE/0x63000014 RECEIVING <<< ISAKMP OAK TRANS *(HASH, ATTR) from 14.36.100.50
Launch xAuth application

xAuth application returned

SENDING >>> ISAKMP OAK TRANS *(HASH, ATTR) to 14.36.100.50

Received ISAKMP packet: peer = 14.36.100.50

RECEIVING <<< ISAKMP OAK TRANS *(HASH, ATTR) from 14.36.100.50

Established Phase 1 SA. 1 Phase 1 SA in the system

Client sending a firewall request to concentrator

Received a key request from Driver for IP address 14.36.100.50, GW IP = 14.36.100.50

Received a key request from Driver for IP address 10.10.10.255, GW IP = 14.36.100.50
Sending >>> ISAKMP OAK QM *(HASH, SA, NON, ID, ID) to 14.36.100.50

Deleted all keys

Received ISAKMP packet: peer = 14.36.100.50

Receiving <<< ISAKMP OAK QM *(HASH, SA, NON, ID, ID, NOTIFY:STATUS_RESP_LIFETIME) from 14.36.100.50

RESPONDER-LIFETIME notify has value of 28800 seconds

RESPONDER-LIFETIME notify has value of 4608000 kb

Sending >>> ISAKMP OAK QM *(HASH) to 14.36.100.50

Loading IPsec SA (Message ID = 0xCFE65CEB OUTBOUND SPI = 0x6AC28ED0 INBOUND SPI = 0x0A5AD786)

Loaded OUTBOUND ESP SPI: 0x6AC28ED0

Loaded INBOUND ESP SPI: 0x0A5AD786

One secure connection established

Connection established.

MAPI32 Information - Outlook not default mail client

Received ISAKMP packet: peer = 14.36.100.50

Receiving <<< ISAKMP OAK QM *(HASH, SA, NON, ID, ID, NOTIFY:STATUS_RESP_LIFETIME) from 14.36.100.50

RESPONDER-LIFETIME notify has value of 28800 seconds

RESPONDER-LIFETIME notify has value of 4608000 kb

Sending >>> ISAKMP OAK QM *(HASH) to 14.36.100.50

Loading IPsec SA (Message ID = 0x6AC28ED0 OUTBOUND SPI = 0x0A5AD786 INBOUND SPI = 0x6AC28ED0)

Loaded OUTBOUND ESP SPI: 0x6AC28ED0

One secure connection established

Connection established.
Loaded INBOUND ESP SPI: 0xA5AD786

251 19:01:06.118 01/24/02 Sev=Info/4 CM/0x63100022
Additional Phase 2 SA established.

252 19:01:07.020 01/24/02 Sev=Info/4 IPSEC/0x63700010
Created a new key structure

253 19:01:07.020 01/24/02 Sev=Info/4 IPSEC/0x6370000F
Added key with SPI=0x17229cf3 into key list

254 19:01:07.020 01/24/02 Sev=Info/4 IPSEC/0x63700010
Created a new key structure

255 19:01:07.020 01/24/02 Sev=Info/4 IPSEC/0x6370000F
Added key with SPI=0x99dcfe72 into key list

256 19:01:07.020 01/24/02 Sev=Info/4 IPSEC/0x63700010
Created a new key structure

257 19:01:07.020 01/24/02 Sev=Info/4 IPSEC/0x6370000F
Added key with SPI=0xd08ec26a into key list

258 19:01:07.020 01/24/02 Sev=Info/4 IPSEC/0x63700010
Created a new key structure

259 19:01:07.020 01/24/02 Sev=Info/4 IPSEC/0x6370000F
Added key with SPI=0x86d75a0a into key list

260 19:01:15.032 01/24/02 Sev=Info/6 IKE/0x6300003D
Sending DPD request to 14.36.100.50, seq# = 152233542

261 19:01:15.032 01/24/02 Sev=Info/4 IKE/0x63000013
SENDING >>> ISAKMP OAK INFO *(HASH, NOTIFY:DPD_REQUEST)
to 14.36.100.50

262 19:01:15.032 01/24/02 Sev=Info/5 IKE/0x6300002F
Received ISAKMP packet: peer = 14.36.100.50

263 19:01:15.032 01/24/02 Sev=Info/4 IKE/0x63000014
RECEIVING <<< ISAKMP OAK INFO *(HASH, NOTIFY:DPD_ACK)
from 14.36.100.50

264 19:01:15.032 01/24/02 Sev=Info/5 IKE/0x6300003F
Received DPD ACK from 14.36.100.50, seq# received = 152233542,
seq# expected = 152233542

Related Information

- PIX Support Page
- Documentation for PIX Firewall
- PIX Command References
- RADIUS Support Page
- RADIUS in IOS Documentation
- Cisco VPN 3000 Series Concentrator Support Page
- Cisco VPN 3000 Series Client Support Page
- IPsec Negotiation/IKE Protocol Support Page
- Requests for Comments (RFCs)
- Technical Support – Cisco Systems