Configure ZBFW Using FQDN ACL Pattern Matching in C8300 Series

Contents

Introduction
Prerequisites
Requirements
Components Used
Background Information
Configure
Network Diagram
Configurations
Step 1.(Optional) Configure VRF
Step 2. Configure Interface
Step 3. (Optional) Configure NAT
Step 4. Configure FODN ACL
Step 5. Configure ZBFW
Verify
Step 1. Initiate HTTP Connection From Client
Step 2. Confirm IP Cache
Step 3. Confirm ZBFW Log
Step 4. Confirm Packet Capture
Troubleshoot
Frequently Asked Questions
Q: How is the timeout value of the IP cachedeterminedon the router ?
Q: Is it acceptable when the DNS server returns CNAME record rather than A record ?
Q:What is the command to transfer packet captures collected on a C8300 router to an FTP server ?
Reference

Introduction

This document describes the procedure to configure ZBFW with FQDN ACL pattern matching in autonomous mode on the C8300 platform.

Prerequisites

Requirements

Cisco recommends that you have knowledge of this topic:

- Zone-Based Policy Firewall (ZBFW)
- Virtual Routing and Forwarding (VRF)
- Network Address Translation (NAT)

Components Used

The information in this document is based on these software and hardware versions:

• C8300-2N2S-6T 17.12.02

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, ensure that you understand the potential impact of any command.

Background Information

Zone-Based Policy Firewall (ZBFW) is an advanced method of firewall configuration on Cisco IOS® and Cisco IOS XE devices that allows for creating security zones within the network.

ZBFW allows administrators to group interfaces into zones and apply firewall policies to traffic moving between these zones.

FQDN ACLs (Fully Qualified Domain Name Access Control Lists), used with a ZBFW in Cisco routers, allow administrators to create firewall rules that match traffic based on domain names instead of only IP addresses.

This feature is particularly useful when dealing with services hosted on platforms such as AWS or Azure, where the IP address associated with a service can change frequently.

It simplifies the management of access control policies and improves the flexibility of security configurations within the network.

Configure

Network Diagram

This document introduces the configuration and verification for ZBFW base on this diagram. This is a simulated environment using BlackJumboDog as a DNS server.

Network Diagram

Configurations

This is the configuration to permit communication from the client to the web server.

Step 1. (Optional) Configure VRF

The VRF (Virtual Routing and Forwarding) feature allows you to create and manage multiple independent routing tables within a single router. In this example, we create a VRF called WebVRF and perform routing for related communications.

```
vrf definition WebVRF
rd 65010:10
!
address-family ipv4
route-target export 65010:10
route-target import 65010:10
exit-address-family
!
address-family ipv6
route-target export 65010:10
route-target import 65010:10
exit-address-family
ip route vrf WebVRF 8.8.8.8 255.255.255.255 GigabitEthernet0/0/3 192.168.99.10
ip route vrf WebVRF 192.168.10.0 255.255.255.0 Port-channel1.2001 192.168.1.253
ip route vrf WebVRF 192.168.20.0 255.255.255.0 GigabitEthernet0/0/3 192.168.99.10
```

Step 2. Configure Interface

Configure basic information such as zone-member, VRF, NAT and IP addresses for the Inside and Outside interfaces.

interface GigabitEthernet0/0/1 no ip address negotiation auto lacp rate fast channel-group 1 mode active interface GigabitEthernet0/0/2 no ip address negotiation auto lacp rate fast channel-group 1 mode active interface Port-channel1 no ip address no negotiation auto interface Port-channel1.2001 encapsulation dot1Q 2001 vrf forwarding WebVRF ip address 192.168.1.1 255.255.255.0 ip broadcast-address 192.168.1.255 no ip redirects no ip proxy-arp ip nat inside zone-member security zone_client interface GigabitEthernet0/0/3 vrf forwarding WebVRF ip address 192.168.99.1 255.255.255.0 ip nat outside zone-member security zone_internet

Step 3. (Optional) Configure NAT

speed 1000

no negotiation auto

Configure NAT for Inside and Outside interfaces. In this example, the source IP address from the Client (192.168.10.1) is translated to 192.168.99.100.

ip access-list standard nat_source 10 permit 192.168.10.0 0.0.0.255 ip nat pool natpool 192.168.99.100 192.168.99.100 prefix-length 24 ip nat inside source list nat_source pool natpool vrf WebVRF overload

Step 4. Configure FQDN ACL

Configure FQDN ACL to match the target traffic. In this example, use the wildcard '*' in the pattern matching of the FQDN object group to match the destination FQDN.

```
object-group network src_net
192.168.10.0 255.255.255.0
object-group fqdn dst_test_fqdn
pattern .*\.test\.com
object-group network dst_dns
host 8.8.8
ip access-list extended Client-WebServer
1 permit ip object-group src_net object-group dst_dns
5 permit ip object-group src_net fqdn-group dst_test_fqdn
```

Step 5. Configure ZBFW

Configure zone, class-map, policy-map for ZBFW. In this example, by using parameter-map, logs is generated when the traffic is permitted by ZBFW.

zone security zone_client zone security zone_internet parameter-map type inspect inspect_log audit-trail on class-map type inspect match-any Client-WebServer-Class match access-group name Client-WebServer policy-map type inspect Client-WebServer-Policy class type inspect Client-WebServer-Class inspect inspect_log class class-default drop log

zone-pair security Client-WebServer-Pair source zone_client destination zone_internet
service-policy type inspect Client-WebServer-Policy

Verify

Step 1. Initiate HTTP Connection From Client

Verify that HTTP communication from the Client to the WEB server is successful.

٠	IIS Windows	× +	\sim	- 0 ×
\leftarrow	\rightarrow G	O 👌 abc.test.com	☆	⊚ ຊ ≕ື
		Internet Information Services		

Step 2. Confirm IP Cache

Run show platform hardware qfp active feature dns-snoop-agent datapath ip-cache all command to confirm that the IP cache for the target FQDN is generated in C8300-2N2S-6T.

<#root>

02A7382#

show platform hardware qfp active feature dns-snoop-agent datapath ip-cache all

IP Address Client(s) Expire RegexId Dirty VRF ID Match 192.168.20.1 0x1 117 0xdbccd400 0x00 0x0 .*\.test\.com

Step 3. Confirm ZBFW Log

Confirm that the IP address (192.168.20.1) is matching to the FQDN (.*\.test\.com), and verify that the HTTP communication in step 1 is permitted by ZBFW.

```
*Mar 7 11:08:23.018: %IOSXE-6-PLATFORM: R0/0: cpp_cp: QFP:0.0 Thread:003 TS:00000551336606461468 %FW-6-
*Mar 7 11:08:24.566: %IOSXE-6-PLATFORM: R0/0: cpp_cp: QFP:0.0 Thread:002 TS:00000551338150591101 %FW-6-
```

Step 4. Confirm Packet Capture

Confirm that the DNS resolution for target FQDN and the HTTP connection between the Client and the WEB server are successful.

Packet Capture in Inside :

No.	Time 15 2024-03-07 11:50:36.77 18 2024-03-07 11:50:36.78	Identification 945 0x0511 (1297) 949 0xe036 (57398)	Source 192.168.10.1 8.8.8.8	S.Port Destination 64078 8.8.8.8 53 192.168.10.1	D.Port 53 64078	Time to Live Protoc 127 DNS 126 DNS	ol Length 76 92	TCP.Seq	Next sequence	TCP.Ack	bHo Standard query 0xa505 A abc.test.com Standard query response 0xa505 A abc.test.com A 192.168.20.1
D	NS Packets in Ins	ide									
No.	Time	Identification	Source	S.Port Destination	D.Port	Time to Live Prot	col Length	TCP.Seq	Next sequence	TCP.A	ck Info
Г	22 2024-03-07 11:50:36.79	8954 Øx4575 (17781)	192.168.10.1	51715 192.168.20.1	86	9 127 TCP	7	0 e	1		0 51715 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM
Т	23 2024-03-07 11:50:36.79	8954 Øx92fb (37627)	192.168.20.1	80 192.168.10.1	51715	5 126 TCP	7	0 0) 1		1 80 → 51715 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460 WS=256
	24 2024-03-07 11:50:36.79	8954 0x4576 (17782)	192.168.10.1	51715 192.168.20.1	86	9 127 TCP	5	8 1	1		1 51715 → 80 [ACK] Seg=1 Ack=1 Win=2102272 Len=0
	26 2024-03-07 11:50:36.80	3944 0x4577 (17783)	192.168.10.1	51715 192.168.20.1	80	9 127 HTT	P 49	2 1	435		1 GET / HTTP/1.1
1	27 2024-03-07 11:50:36.80	5949 0x92fc (37628)	192.168.20.1	80 192.168.10.1	51715	5 126 HTT	P 97	9 1	922	4	35 HTTP/1.1 200 OK (text/html)

HTTP Packets in Inside

Packet Capture in Onside (192.168.10.1 is NAT to 192.168.19.100) :

No.	Time	Identification	Source	S.Port Destinat	tion	D.Port	Time to Live	Protocol	Length	TCP.Seq	Next sequence TCP.Ac	k Info
	3 2024-03-07 11:50:36.775945	0x0511 (1297)	192.168.99.100	64078 8.8.8	.8	53	126	DNS	72			Standard query 0xa505 A abc.test.com
	6 2024-03-07 11:50:36.782949	0xe036 (57398)	8.8.8.8	53 192.10	68.99.100	64078	127	DNS	88			Standard guery response 0xa505 A abc.test.com A 192.168.20.1

DNS Packets in Outside

No.	Time	Identification	Source	S.Port Destination	D.Port	Time to Live Protocol	Length	TCP.Seq	Next sequence	TCP.Ack Info
-	10 2024-03-07 11:50:36.798954	0x4575 (17781)	192.168.99.100	51715 192.168.20.1	80	126 TCP	66	0	1	0 51715 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK
	11 2024-03-07 11:50:36.798954	0x92fb (37627)	192.168.20.1	80 192.168.99.100	51715	127 TCP	66	0	1	1 80 → 51715 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460
	12 2024-03-07 11:50:36.798954	0x4576 (17782)	192.168.99.100	51715 192.168.20.1	80	126 TCP	54	1	1	1 51715 → 80 [ACK] Seq=1 Ack=1 Win=2102272 Len=0
	14 2024-03-07 11:50:36.803944	0x4577 (17783)	192.168.99.100	51715 192.168.20.1	80	126 HTTP	488	1	435	1 GET / HTTP/1.1
	15 2024-03-07 11:50:36.806949	0x92fc (37628)	192.168.20.1	80 192.168.99.100	51715	127 HTTP	975	1	922	435 HTTP/1.1 200 OK (text/html)

HTTP Packets in Outside

Troubleshoot

For troubleshooting communication issues related to ZBFW using FQDN ACL pattern matching, you can collect the logs during the issue and provide them to Cisco TAC. Please note that the logs for troubleshooting depend on the nature of the issue.

Example of logs to be collected :

!!!! before reproduction !! Confirm the IP cache show platform hardware qfp active feature dns-snoop-agent datapath ip-cache all !! Enable packet-trace debug platform packet-trace packet 8192 fia-trace debug platform packet-trace copy packet both debug platform condition ipv4 access-list Client-WebServer both debug platform condition feature fw dataplane submode all level verbose !! Enable debug-level system logs and ZBFW debug logs debug platform packet-trace drop debug acl cca event debug acl cca error debug ip domain detail !! Start to debug debug platform condition start !! Enable packet capture on the target interface (both sides) and start the capture monitor capture CAPIN interface Port-channel1.2001 both monitor capture CAPIN match ipv4 any any monitor capture CAPIN buffer size 32 monitor capture CAPIN start monitor capture CAPOUT interface g0/0/3 both monitor capture CAPOUT match ipv4 any any monitor capture CAPOUT buffer size 32 monitor capture CAPOUT start !! (Optional) Clear the DNS cache on the client ipconfig/flushdns ipconfig /displaydns !! Run the show command before reproduction show platform hardware qfp active feature firewall drop all show policy-map type inspect zone-pair Client-WebServer-Pair sessions show platform packet-trace statistics show platform packet-trace summary show logging process cpp_cp internal start last boot show platform hardware qfp active feature dns-snoop-agent client hw-pattern-list show platform hardware qfp active feature dns-snoop-agent client info show platform hardware qfp active feature dns-snoop-agent datapath stats show ip dns-snoop all show platform hardware qfp active feature dns-snoop-agent datapath ip-cache all show platform software access-list F0 summary

!!!! Reproduce the issue - start !! During the reproduction of the issue, run show commands at every 10 seconds !! Skip show ip dns-snoop all command if it is not supported on the specific router show ip dns-snoop all show platform hardware qfp active feature dns-snoop-agent datapath ip-cache all !!!! After reproduction !! Stop the debugging logs and packet capture debug platform condition stop monitor capture CAPIN stop monitor capture CAPOUT stop !! Run the show commands show platform hardware qfp active feature firewall drop all show policy-map type inspect zone-pair Client-WebServer-Pair sessions show platform packet-trace statistics show platform packet-trace summary show logging process cpp_cp internal start last boot show platform hardware qfp active feature dns-snoop-agent client hw-pattern-list show platform hardware qfp active feature dns-snoop-agent client info show platform hardware qfp active feature dns-snoop-agent datapath stats show ip dns-snoop all show platform hardware qfp active feature dns-snoop-agent datapath ip-cache all show platform software access-list F0 summary show platform packet-trace packet all decode show running-config

Frequently Asked Questions

Q: How is the timeout value of the IP cache determined on the router ?

A: The timeout value of the IP cache is determined by the TTL (Time-To-Live) value of the DNS packet returned from the DNS server. In this example, it is 120 seconds. When the IP cache times out, it is automatically removed from the router. This is the detail of packet capture.

```
Domain Name System (response)
   Transaction ID: 0xa505
 > Flags: 0x8580 Standard query response, No error
   Questions: 1
   Answer RRs: 1
   Authority RRs: 0
   Additional RRs: 0
 > Queries

    Answers

   abc.test.com: type A, class IN, addr 192.168.20.1
         Name: abc.test.com
         Type: A (Host Address) (1)
        Class: IN (0x0001)
        Time to live: 120 (2 minutes)
        Data length: 4
         Address: 192.168.20.1
```

Packet Detail of DNS Resolution

Q: Is it acceptable when the DNS server returns CNAME record rather than A record ?

A: Yes, it is not a problem. DNS resolution and HTTP communication is proceeded without any issues when CNAME record is returned by DNS Server. This is the detail of packet capture.

No.	Time	Identification	Source	S.Port	Destination	D.Port	Time to Live	Protocol	Length	TCP.Seq	Next sequence TCP.Ack	Info
350	2024-03-07 12:09:55.625959	0x0bc5 (3013)	192.168.10.1	63777 1	8.8.8.8	53	12	7 DNS	76			Standard query 0x6bd8 A abc.test.com
352	2024-03-07 12:09:55.629957	0xe4fe (58622)	8.8.8.8	53	192.168.10.1	63777	12	5 DNS	114			Standard query response 0x6bd8 A abc.test.com CNAME def.test.

DNS Packets in Inside

```
Domain Name System (response)
   Transaction ID: 0x6bd8
> Flags: 0x8580 Standard query response, No error
   Ouestions: 1
   Answer RRs: 2
   Authority RRs: 0
   Additional RRs: 0
> Queries

    Answers

   ✓ abc.test.com: type CNAME, class IN, cname def.test.com
        Name: abc.test.com
        Type: CNAME (Canonical NAME for an alias) (5)
        Class: IN (0x0001)
        Time to live: 120 (2 minutes)
        Data length: 6
        CNAME: def.test.com
     def.test.com: type A, class IN, addr 192.168.20.1
        Name: def.test.com
        Type: A (Host Address) (1)
        Class: IN (0x0001)
        Time to live: 120 (2 minutes)
        Data length: 4
        Address: 192.168.20.1
```

Packet Detail of DNS Resolution

No.	Time	Identification	Source	S.Port	Destination	D.Port	Time to Live	Protocol	Length	TCP.5	Next :	TCP./ Info				
	356 2024-03-07 12:09:55.644955	0x4589 (17801)	192.168.10.1	51801	192.168.20.1	80	12	7 TCP	70	0	1	0 51801 →	80 [SYN]	Seq=0 Win=64240	Len=0 MSS=	1460 WS=2
	357 2024-03-07 12:09:55.644955	0x9349 (37705)	192.168.20.1	88	192.168.10.1	51801	12	6 TCP	70	0	1	1 80 -> 518	01 [SYN,	ACK] Seq=0 Ack=:	Win=65535	Len=0 MS
	358 2024-03-07 12:09:55.644955	0x458a (17802)	192.168.10.1	51801	192.168.20.1	80	12	7 TCP	58	1	1	1 51801 →	80 [ACK]	Seq=1 Ack=1 Win:	2102272 Le	n=0
	359 2024-03-07 12:09:55.645962	0x458b (17803)	192.168.10.1	51801	192.168.20.1	80	12	7 HTTP	492	1	435	1 GET / HT	TP/1.1			
	362 2024-03-07 12:09:55.646954	0x934a (37706)	192.168.20.1	88	192.168.10.1	51801	12	6 HTTP	979	1	922	435 HTTP/1.1	200 OK	(text/html)		

HTTP Packets in Inside

Q: What is the command to transfer packet captures collected on a C8300 router to an FTP server ?

A: Use monitor capture <capture name> export bootflash:<capture name>.pcap and copy bootflash:<capture name>.pcap ftp://<user>:<password>@<FTP IP Address> commands to transfer packet captures to an FTP server. This is an example to transfer CAPIN to an FTP server.

<#root>

monitor capture CAPIN export bootflash:CAPIN.pcap

copy bootflash:CAPIN.pcap ftp://<user>:password>@<FTP IP Address>

Reference

Understand the Zone-Based Policy Firewall Design