ASA Use of LDAP Attribute Maps
Configuration Example

Contents

Introduction
Prerequisites
Requirements
Components Used
Background Information
FAQ
Q. Is there a configuration limit on the number of ldap-attribute-maps for the ASA?
Q. Is there a limit on the numbers of attributes that can be mapped per ldap-attribute-map?
Q. Is there a restriction on how many ldap-servers to which a specific ldap-attribute-map can be applied?
Q. Are there limitations with ldap-attribute-maps and muti-valued attributes like AD memberOf?
Use Case Examples
Workaround/Best Practice Options
Configure - Sample Use Cases
1. User-Based Attributes Policy Enforcement
2. Place LDAP Users in a Specific Group-Policy - Generic Example
Configure a NOACCESS Group-policy
3. Group-Based Attributes Policy Enforcement - Example
4. Active Directory Enforcement of "Assign a Static IP Address" for IPsec and SVC Tunnels
6. Active Directory Enforcement of "Member Of"/Group Membership to Allow or Deny Access
7. Active Directory Enforcement of "Logon Hours/Time-of-Day Rules"
8. Use the ldap-map Configuration to Map a User into a Specific Group-policy and Use the authorization-server-group Command, in the Case of Double Authentication
Verify
Troubleshoot
Debug the LDAP Transaction
ASA is Not Able to Authenticate Users from LDAP Server

Introduction

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics:

- Secure Sockets Layer VPN (SSL VPN) on Cisco IOS®
- LDAP authentication on Cisco IOS
- Directory Services

Components Used

The information in this document is based on these software and hardware versions:

- CISCO881-SEC-K9
- Cisco IOS Software, C880 Software (C880DATA-UNIVERSALK9-M), Version 15.1(4)M, RELEASE SOFTWARE (fc1)

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Background Information

LDAP is an open, vendor-neutral, industry-standard application protocol to access and maintain distributed directory information services over an IP network. Directory services play an important role in the development of intranet and Internet applications because they allow information about users, systems, networks, services, and applications to be shared throughout the network.

Frequently, administrators want to provide VPN users with different access permissions or WebVPN content. This can be done if you configure different VPN policies on the VPN server and assign these policy-sets to each user based on their credentials. While this can be done manually, it is more efficient to automate the process with Directory Services. In order to use LDAP to assign a group policy to a user, you need to configure a map that maps an LDAP attribute, such as the Active Directory (AD) attribute `memberOf`, to the `IETF-RADIUS-Class` attribute that is understood by the VPN headend.

On Cisco IOS, the same thing can be achieved if you configure different policy groups under the WebVPN context and use LDAP attribute maps in order to determine which policy group the user will be assigned as described in the document. See Policy Group Assignment for AnyConnect Clients That Use LDAP on Cisco IOS Headends Configuration Example.

On the ASA, this is regularly achieved through the assignment of different group policies to different users. When LDAP authentication is in use, this can be achieved automatically with an LDAP attribute map. In order to use LDAP to assign a group policy to a user, you must map an LDAP attribute, such as the AD attribute `memberOf` to the `Group-Policy` attribute that is understood by the ASA. Once the attribute mapping is established, you must map the attribute value configured on the LDAP server to the name of a group policy on the ASA.
Note: The memberOf attribute corresponds to the group that the user is a part of in the Active Directory. It is possible for a user to be a member of more than one group in the Active Directory. This causes multiple memberOf attributes to be sent by the server, but the ASA can only match one attribute to one group policy.

FAQ

Q. Is there a configuration limit on the number of ldap-attribute-maps for the ASA?

A. No, there are no limits. ldap-attribute-maps are dynamically allocated during the VPN remote access session that uses LDAP authentication/authorization.

Q. Is there a limit on the numbers of attributes that can be mapped per ldap-attribute-map?

A. No configuraiton limits.

Q. Is there a restriction on how many ldap-servers to which a specific ldap-attribute-map can be applied?

A. No restriction. The LDAP code only verifies that the ldap-attribute-map name is valid.

Q. Are there limitations with ldap-attribute-maps and muti-valued attributes like AD memberOf?

A. Yes. Here, only AD is explained, but it applies to any LDAP server that uses multi-value attributes for policy decisions. The ldap-attribute-map has a limitation with multi-valued attributes like the AD memberOf. If a user is a memberOf of several AD groups (which is common) and the ldap-attribute-map matches more than one of them, the mapped value will be chosen based on the alphabetization of the matched entries. Since this behavior is not obvious or intuitive, it is important to have clear knowledge about how it works.

Summary: If the LDAP mapping results in multiple values for an attribute, the final attribute value will be chosen as follows:

- First, select the value(s) with the smallest number of characters.
- If this results in more than one value, choose the value that is the lowest in alphabetical order.

Use Case Examples

Active Directory-LDAP returns these four memberOf instances for a user authentication or authorization request:
memberOf: value = CN=APP-SSL-VPN Managers,CN=Users,OU=stbu,DC=cisco,DC=com
memberOf: value = CN=Cisco-Eng,CN=Users,OU=stbu,DC=cisco,DC=com
memberOf: value = CN=Employees,CN=Users,OU=stbu,DC=cisco,DC=com
memberOf: value = CN=Engineering,CN=Users,OU=stbu,DC=cisco,DC=com

LDAP-MAP #1: Assume that this ldap-attribute-map is configured to map different ASA group-policies based on the memberOf setting:

```plaintext
ldap attribute-map Class
map-name memberOf Group-Policy
map-value memberOf CN=APP-SSL-VPN Managers,CN=Users,OU=stbu,DC=cisco,DC=com ASAGroup4
map-value memberOf CN=cisco-Eng,CN=Users,OU=stbu,DC=cisco,DC=com ASAGroup3
map-value memberOf CN=Employees,CN=Users,OU=stbu,DC=cisco,DC=com ASAGroup2
map-value memberOf CN=Engineering,CN=Users,OU=stbu,DC=cisco,DC=com ASAGroup1
```

In this case, matches will occur on all four group policy values (ASAGroup1 - ASAGroup4). However, the connection will be assigned to group-policy ASAGroup1 because it occurs first in alphabetical order.

LDAP-MAP #2: This ldap-attribute-map is the same, except the first memberOf does not have an explicit map-value assigned (no ASAGroup4). Note that when there is no explicit map-value defined, the attribute text received from LDAP is used.

```plaintext
ldap attribute-map Class
map-name memberOf Group-Policy
map-value memberOf CN=APP-SSL-VPN Managers,CN=Users,OU=stbu,DC=cisco,DC=com
map-value memberOf CN=cisco-Eng,CN=Users,OU=stbu,DC=cisco,DC=com ASAGroup3
map-value memberOf CN=Employees,CN=Users,OU=stbu,DC=cisco,DC=com ASAGroup2
map-value memberOf CN=Engineering,CN=Users,OU=stbu,DC=cisco,DC=com ASAGroup1
```

As in the previous case, matches occur on all four entries. In this case, since no mapped value is provided for the APP-SSL-VPN entry, the mapped value will default to CN=APP-SSL-VPN Managers,CN=Users,OU=stbu,DC=cisco,DC=com. Since CN=APP-SSL-VPN appears first in alphabetical order, APP-SSL-VPN will be selected as the policy value.

Refer to Cisco bug ID CSCub64284 for more information. Refer to PIX/ASA 8.0: Use LDAP Authentication to Assign a Group Policy at Login, which shows a simple LDAP case with memberOf that might work in your particular deployment.

Workaround/Best Practice Options

1. Use Dynamic Access Policy (DAP) - DAP does not have this limitation of parsing multi-valued attributes (like memberOf); but DAP currently cannot set a group-policy from within itself. This means the session would have to be properly segmented via the tunnel-group/group-policy association methods. In the future, DAP will have the capability to set any authorization attribute, including the group-policy, (Cisco bug ID CSCsi54718), so the need for an ldap-attribute-map for this purpose will eventually not be required.

2. As a possible alternative and if the deployment scenario allows it, whenever you must use an ldap-attribute-map to set the class attribute, you could also use a single-valued attribute (like Department) that represents your group differentiation on AD.

Note: In a memberOf DN such as "CN=Engineering, OU=Office1, DC=cisco,DC=com", you can only make the decision on the first DN, that is CN=Engineering, not the Organizational Unit (OU). There is an enhancement to be able able to filter on any DN field.
Configure - Sample Use Cases

Note: Each example described in this section is a standalone configuration, but can be mixed and matched with each other to produce the desired Access policy.

Tip: Attribute Names and Values are Case-Sensitive. If the mapping does not occur properly, be certain that the correct spelling and capitalization has been used in the LDAP attribute map for *both* the Cisco and LDAP attribute names and values.

1. **User-Based Attributes Policy Enforcement**

Any standard LDAP attribute can be mapped to a well-known appliance Vendor Specific Attribute (VSA). One or more LDAP attribute(s) can be mapped to one or more Cisco LDAP attributes. For a complete list of Cisco LDAP VSAs, refer [Supported Cisco Attributes for LDAP Authorization](#). This example shows how to enforce a banner for LDAP user1. User1 can be any VPN Remote Access type: IPsec, SVC, or WebVPN Clientless. This example uses the Properties/General/Office attribute/field to enforce the Banner1.

Note: You could use the AD Department attribute/field to map to Cisco IETF-Radius-Class VSA in order to enforce policies from an ASA/PIX group-policy. There are examples of this later in the document.

LDAP (for Microsoft AD and Sun) attribute-mapping is supported as of PIX/ASA Version 7.1.x. Any Microsoft/AD attribute can be mapped to a Cisco attribute. Here is the procedure to perform this:

1. On the AD/LDAP server: Select user1. Right-click > **Properties**. Select a tab to be used in order to set an attribute (Example. General tab). Select a field/attribute, for example the "Office" field, to be used in order to enforce time-range, and enter the banner text (example, Welcome to LDAP !!!). The "Office" configuration on the GUI is stored in the AD/LDAP attribute "physicalDeliveryOfficeName".

2. On the ASA, in order to create an LDAP attribute mapping table, map the AD/LDAP attribute "physicalDeliveryOfficeName" to the ASA attribute "Banner1":

   ```
   B200-54(config)# show run ldap
   ldap attribute-map Banner
   map-name physicalDeliveryOfficeName Banner1
   ```

3. Associate the LDAP attribute map to the aaa-server entry:

   ```
   B200-54(config-time-range)# show runn aaa-server microsoft
   aaa-server microsoft protocol ldap
   aaa-server microsoft host audi-qa.frdevtestad.local
   ldap-base-dn dc=frdevtestad,dc=local
   ldap-scope subtree
   ldap-naming-attribute sAMAccountName
   ldap-login-password hello
   ldap-login-dn cn=Administrator,cn=Users,dc=frdevtestad,dc=local
   ldap-attribute-map Banner
   ```

4. Establish the Remote Access session and verify that the Banner "Welcome to LDAP !!!" is
presented to the VPN user.

2. Place LDAP Users in a Specific Group-Policy - Generic Example

This example demonstrates the authentication of user1 on the AD-LDAP server and retrieves the department field value so it can be mapped to an ASA/PIX group-policy from which policies will be enforced.

1. On the AD/LDAP server: Select user1. Right-click > Properties. Select a tab to be used in order to set an attribute (Example. Organization tab). Select a field/attribute, for example "Department", to be used in order to enforce a group-policy, and enter the value of the group-policy (Group-Policy1) on the ASA/PIX. The “Department” configuration on the GUI is stored in the AD/LDAP attribute "department".

2. Define an ldap-attribute-map table.

5520-1(config)# show runn ldap
ldap attribute-map Our-AD-Map
map-name department Group-Policy
5520-1(config)#

Note: As a result of the implementation of Cisco bug ID CSCsv43552, a new ldap-attribute-map attribute, Group-Policy, was introduced in order to replace IETF-Radius-Class. The CLI on ASA Version 8.2 supports the IETF-Radius-Class keyword as a valid choice in the map-name and map-value commands in order to read an 8.0 config file (software upgrade scenario). The Adaptive Security Device Manager (ASDM) code has already been updated to no longer display IETF-Radius-Class as a choice when you configure an attribute map entry. Additionally, ASDM will write out the IETF-Radius-Class attribute (if read in from an 8.0 config) as the Group-Policy attribute.

3. Define the group-policy Group_policy1 on the appliance and the required policy attributes.

4. Establish the VPN remote access tunnel and verify that the session inherits the attributes from Group-Policy1 (and any other applicable attributes from the default group-policy).

Note: Add more attributes to the map as required. This example shows only the minimum to control this specific function (place a user in a specific ASA/PIX 7.1.x group-policy). The third example shows this type of map.

Configure a NOACCESS Group-policy

You can create a NOACCESS group-policy in order to deny the VPN connection when the user is not part of any of the LDAP groups. This configuration snippet is shown for your reference:

group-policy NOACCESS internal
group-policy NOACCESS attributes
vpn-simultaneous-logins 0
vpn-tunnel-protocol IPSec webvpn

You must apply this group policy as a default group policy to the tunnel-group. This allows users who get a mapping from the LDAP attribute map, for example those who belong to a desired LDAP group, to get their desired group policies and users who do not get any mapping, for
example those who do not belong to any of the desired LDAP groups, to get NOACCESS group-policy from the tunnel-group, which blocks the access for them.

Tip: Since the vpn-simultaneous-logins attribute is set to 0 here, it must be explicitly defined in all the other group-policies as well; otherwise, it will be inherited from the default group-policy for that tunnel group, which in this case is the NOACCESS policy.

3. Group-Based Attributes Policy Enforcement - Example

Note: Implementation/fix of Cisco bug ID [CSCse08736](#) is required, so the ASA should run at least Version 7.2.2.

1. On the AD-LDAP server, Active Directory Users and Computers, set up a user record (VPNUserGroup) that represents a group where the VPN attributes are configured.

2. On the AD-LDAP server, Active Directory Users and Computers, define each user record's Department field to point to the group-record (VPNUserGroup) in Step 1. The user name in this example is *web1*.

Note: The Department AD attribute was used only because logically "department" refers to the group-policy. In reality, any field could be used. The requirement is that this field has to map to the Cisco VPN attribute Group-Policy as shown in this example.

3. Define an ldap-attribute-map table:

   ```
   5520-1(config)# show runn ldap
   ldap attribute-map Our-AD-Map
   map-name department IETF-Radius-Class
   map-name description Banner1
   map-name physicalDeliveryOfficeName IETF-Radius-Session-Timeout
   5520-1(config)#
   ```

 The two AD-LDAP attributes Description and Office (represented by AD names description and PhysicalDeliveryOfficeName) are the group record attributes (for VPNUserGroup) which maps to Cisco VPN attributes Banner1 and IETF-Radius-Session-Timeout.

 The department attribute is for the user record to map to the name of external group-policy on the ASA (VPNUSer), which then maps back to the VPNUserGroup record on the AD-LDAP server, where attributes are defined.

 Note: The Cisco attribute (Group-Policy) must be defined in the ldap-attribute-map. Its mapped AD-attribute can be any settable AD attribute. This example uses department because it is the most logical name that refers to group-policy.

4. Configure the aaa-server with the ldap-attribute-map name to be used for LDAP Authentication, Authorization, and Accounting (AAA) operations:

   ```
   5520-1(config)# show runn aaa-server LDAP-AD11
   aaa-server LDAP-AD11 protocol ldap
   ```
aaa-server LDAP-AD11 host 90.148.1.11
ldap-base-dn cn=Users,dc=nelson,dc=cisco,dc=com
ldap-scope onelevel
ldap-naming-attribute sAMAccountName
ldap-login-password altiga
ldap-login-dn cn=Administrator,cn=Users,dc=nelson,dc=cisco,dc=com
ldap-attribute-map Our-AD-Map
5520-1(config)#

5. Define a tunnel-group with either LDAP Authentication or LDAP Authorization.

Example with LDAP Authentication. Performs authentication + (authorization) attribute policy enforcement if attributes are defined.

5520-1(config)# show runn tunnel-group
remoteAccessLDAPTunnelGroup
tunnel-group RemoteAccessLDAPTunnelGroup general-attributes
authentication-server-group LDAP-AD11
accounting-server-group RadiusACS28
5520-1(config)#

Example with LDAP Authorization. Configuration used for using Digital Certificates.

5520-1(config)# show runn tunnel-group
remoteAccessLDAPTunnelGroup
tunnel-group RemoteAccessLDAPTunnelGroup general-attributes
authentication-server-group none
authorization-server-group LDAP-AD11
accounting-server-group RadiusACS28
authorization-required
authorization-dn-attributes ea
5520-1(config)#

6. Define an external group-policy. The name of the group-policy is the value of the AD-LDAP user record that represents the group (VPNUserGroup).

5520-1(config)# show runn group-policy VPNUserGroup
group-policy VPNUserGroup external server-group LDAP-AD11
5520-1(config)#

7. Establish the tunnel and verify that attributes are enforced. In this case, the Banner and Session-TimeOut is enforced from the VPNUserGroup record on the AD.

4. Active Directory Enforcement of "Assign a Static IP Address" for IPsec and SVC Tunnels

The AD attribute is msRADIUSFramedIPAddress. The attribute is configured in AD User Properties, Dial-in tab, "Assign a Static IP Address".

Here are the steps:

1. On the AD server, under user Properties, Dial-in tab, "Assign a Static IP Address", enter the value of the IP Address in order to assign to the IPsec/SVC session (10.20.30.6).

2. On the ASA create a an ldap-attribute-map with this mapping:
3. On the ASA, verify the vpn-address-assigntment is configured to include "vpn-addr-assign-aaa":

3520-1(config)# show run all vpn-addr-assign
vpn-addr-assign aaa
no vpn-addr-assign dhcp
vpn-addr-assign local
3520-1(config)#

4. Establish the IPsec/SVC Remote Authority (RA) sessions and verify the with "show vpn-
 sessiondb remote|svc" that the "Assigned IP" field is correct (10.20.30.6).

5. Active Directory Enforcement of "Remote Access Permission Dial-in,
 Allow/Deny Access"

Supports all VPN Remote Access sessions: IPSec, WebVPN, and SVC. Allow Access has a
value of TRUE. Deny Access has a value of FALSE. The AD attribute name is msNPAllowDialin.

This example demonstrates the creation of an ldap-attribute-map that uses the Cisco Tunneling-
Protocols to create Allow Access (TRUE) and Deny (FALSE) conditions. For example, if you map
the tunnel-protocol=L2TPover IPSec (8), you can create a FALSE condition if you try to enforce
access for WebVPN and IPSec. The reverse logic applies too.

Here are the steps:

1. On the AD server user1 Properties, Dial-In, select the appropriate allow Access or Deny
 access for each user.

 Note: If you select the third option "Control access through the Remote Access Policy," no
 value is returned from the AD server, so the permissions that are enforced are based on the
 ASA/PIX's internal group-policy's setting.

2. On the ASA, create an ldap-attribute-map with this mapping:

 ldap attribute-map LDAP-MAP
 map-name msNPAllowDialin Tunneling-Protocols
 map-value msNPAllowDialin FALSE 8
 map-value msNPAllowDialin TRUE 20
 3540-1#

 Note: Add more attributes to the map as required. This example shows only the minimum to
 control this specific function (Allow or Deny Access based on Dial-In setting).

What does the ldap-attribute-map mean or enforce?

map-value msNPAllowDialin FALSE 8
Deny Access for a user1. The FALSE value condition maps to tunnel-protocol L2TPoverIPsec, (value 8).

Allow Access for user2. The TRUE value condition maps to tunnel-protocol WebVPN + IPsec, (value 20).

A WebVPN/IPsec user, authenticicated as user1 on AD, would fail due to the tunnel-protocol mismatch.

A L2TPoverIPsec, authenticicated as user1 on AD, would fail due to the Deny rule.

A WebVPN/IPsec user, authenticicated as user2 on AD, would succeed (Allow rule + matched tunnel protocol).

A L2TPoverIPsec, authenticicated as user2 on AD, would fail due to the tunnel-protocol mismatch.

Support for Tunnel Protocol, as defined in RFCs 2867 and 2868.

6. Active Directory Enforcement of "Member Of"/Group Membership to Allow or Deny Access

This case is closely related to Case 5, provides for a more logical flow, and is the recommended method, since it establishes the group-membership check as a condition.

1. Configure the AD user to be "Member Of" a specific group. Use a name that places it at the top of the group-hierarchy (ASA-VPN-Consultants). In AD-LDAP, Group membership is defined by the AD attribute "memberOf".

 It is important that the group be at the top of the list, since you can currently only apply the rules to the first group/"memberOf" string. In Release 7.3, you will be able to perform multiple-group filtering and enforcement.

2. On the ASA, create an ldap-attribute-map with the minimum mapping:

   ```
   ldap attribute-map LDAP-MAP
   map-name memberOf Tunneling-Protocols
   map-value memberOf cn=ASA-VPN-Consultants,cn=Users,dc=abcd,dc=com 4
   5540-1#
   ```

 Note: Add more attributes to the map as required. This examples shows only the minimum to control this specific function (Allow or Deny Access based on Group membership).

What does the ldap-attribute-map mean or enforce?

User=joe_consultant, part of AD, which is member of AD group "ASA-VPN-Consultants" will be allowed access only if the user uses IPsec (tunnel-protocol=4=IPSec).

User=joe_consultant, part of AD, will fail VPN access during any other remote access client
(PPTP/L2TP, L2TP/IPSec, WebVPN/SVC, and so on).

User=bill_the_hacker will NOT be allowed in since the user has no AD membership.

7. Active Directory Enforcement of "Logon Hours/Time-of-Day Rules"

This use case describes how to set up and enforce the Time of Day rules on AD/LDAP.

Here is the procedure to do this:

1. On the AD/LDAP server: Select the user. Right-click > Properties. Select a tab to be used in order to set an attribute (Example. General tab). Select a field/attribute, for example the "Office" field, to be used in order to enforce time-range, and enter the name of the time-range (for example, Boston). The "Office" configuration on the GUI is stored in the AD/LDAP attribute "physicalDeliveryOfficeName".

2. On the ASA

Create an LDAP attribute mapping table. Map the AD/LDAP attribute "physicalDeliveryOfficeName" to the ASA attribute "Access-Hours".

Example:

B200-54(config-time-range)# show run ldap
ldap attribute-map TimeOfDay
map-name physicalDeliveryOfficeName Access-Hours

3. On the ASA, associate the LDAP attribute map to the aaa-server entry:

B200-54(config-time-range)# show runn aaa-server microsoft
aaa-server microsoft protocol ldap
aaa-server microsoft host audi-qa.frdevtestad.local
ldap-base-dn dc=frdevtestad,dc=local
ldap-scope subtree
ldap-naming-attribute sAMAccountName
ldap-login-password hello
ldap-login-dn cn=Administrator,cn=Users,dc=frdevtestad,dc=local
ldap-attribute-map TimeOfDay

4. On the ASA, create a time-range object that has the name value that is assigned to the user (Office value in step 1):

B200-54(config-time-range)# show runn time-range
!
time-range Boston
periodic weekdays 8:00 to 17:00
!

5. Establish the VPN remote access session:

The session should succeed if within the time-range. The session should fail if outside the time-range.

8. Use the ldap-map Configuration to Map a User into a Specific Group-policy
and Use the authorization-server-group Command, in the Case of Double Authentication

1. In this scenario, double authentication is used. The first authentication server used is RADIUS and the second authentication server used is a LDAP server.

Configure the LDAP server as well as the RADIUS server. Here is an example:

```
ASA5585-S10-K9# show runn aaa-server
aaa-server test-ldap protocol ldap
aaa-server test-ldap (out) host 10.201.246.130
   ldap-base-dn cn=users, dc=htts-sec, dc=com
   ldap-login-password ******
   ldap-login-dn cn=Administrator, cn=Users, dc=htts-sec, dc=com
   server-type microsoft
   ldap-attribute-map Test-Safenet-MAP
aaa-server test-rad protocol radius
aaa-server test-rad (out) host 10.201.249.102
   key ******
```

Define the LDAP attribute-map. Here is an example:

```
ASA5585-S10-K9# show runn ldap
ldap attribute-map Test-Safenet-MAP
   map-name memberOf IETF-Radius-Class
   map-value memberOf "CN=DHCP Users,CN=Users,DC=htts-sec,DC=com" Test-Policy-Safenet
```

Define the tunnel-group and associate the RADIUS and LDAP server for authentication. Here is an example:

```
ASA5585-S10-K9# show runn tunnel-group
tunnel-group Test_Safenet type remote-access
tunnel-group Test_Safenet general-attributes
   address-pool RA_VPN_IP_Pool
   authentication-server-group test-rad
   secondary-authentication-server-group test-ldap use-primary-username
   default-group-policy NoAccess
   tunnel-group Test_Safenet webvpn-attributes
   group-alias Test_Safenet enable
```

View the group-policy that is used in the tunnel-group configuration:

```
ASA5585-S10-K9# show runn group-policy
group-policy NoAccess internal
   group-policy NoAccess attributes
   wins-server none
dns-server value 10.34.32.227 10.34.32.237
vpn simultaneous-logins 0
default-domain none
group-policy Test-Policy-Safenet internal
   group-policy Test-Policy-Safenet attributes
      dns-server value 10.34.32.227 10.34.32.237
      vpn simultaneous-logins 15
      vpn idle-timeout 30
      vpn tunnel protocol ikev1 ssl client ssl clientless
      split tunnel policy tunnelspecified
      split tunnel network list value Safenet Group Policy SplitAcl
```

With this configuration, AnyConnect users who were mapped correctly with the use of LDAP attributes were not placed in the group-policy, Test-Policy-Safenet. Instead, they were still placed in the default group-policy, in this case NoAccess.

See the snippet of the debugs (debug ldap 255) and syslogs at level informational:

```
memberOf: value = CN=DHCP Users,CN=Users,DC=https-sec,DC=com
[47]   mapped to IETF-Radius-Class: value = Test-Policy-Safenet
[47]   mapped to LDAP-Class: value = Test-Policy-Safenet
```

Syslogs:

```
%ASA-6-113004: AAA user authentication Successful : server = 10.201.246.130 : user = test123
%ASA-6-113003: AAA group policy for user test123 is being set to Test-Policy-Safenet
%ASA-6-113011: AAA retrieved user specific group policy (Test-Policy-Safenet) for user = test123
%ASA-6-113009: AAA retrieved default group policy (NoAccess) for user = test123
%ASA-6-113013: AAA unable to complete the request Error : reason = Simultaneous logins exceeded for user : user = test123
%ASA-6-716039: Group <DfltGrpPolicy> User <test123> IP <10.116.122.154> Authentication: rejected, Session Type: WebVPN.
```

These syslogs show failure as the user was being given the NoAccess group-policy which had simultaneous-login set to 0 even though syslogs say it retrieved a user specific group-policy.

In order to have the user assigned in the group-policy, based on the LDAP-map, you must have this command: `authorization-server-group test-ldap` (in this case, `test-ldap` is the LDAP server name). Here is an example:

```
ASA5585-S10-K9# show runn tunnel-group
tunnel-group Test_Safenet type remote-access
tunnel-group Test_Safenet general-attributes
  address-pool RA_VPN_IP_Pool
authorization-server-group test-rad
  secondary-authentication-server-group test-ldap use-primary-username
authorization-server-group test-ldap
  default-group-policy NoAccess
tunnel-group Test_Safenet webvpn-attributes
group-alias Test_Safenet enable
```
2. Now, if the first authentication server (RADIUS, in this example) did send the user-specific attributes, for example the IEFT-class attribute, in that case, the user will be mapped to the group-policy sent by RADIUS. So even though the secondary server has a LDAP map configured and the user’s LDAP attributes do map the user to a different group-policy, the group-policy sent by the first authentication server will be enforced.

In order to have the user place into a group-policy based on the LDAP map attribute, you must specify this command under the tunnel-group: `authorization-server-group test-ldap`.

3. If the first authentication server is SDI or OTP, which cannot pass the user-specific attribute, then the user would fall into the default group-policy of the tunnel-group. In this case, NoAccess even though the LDAP mapping is correct.

In this case, you also would need the command, `authorization-server-group test-ldap`, under the tunnel-group for the user to be placed into the correct group-policy.

4. If both of the servers are the same RADIUS or LDAP servers, then you do not need the `authorization-server-group` command in order for the group-policy lock to work.

Verify

ASA5585-S10-K9# show vpn-sessiondb anyconnect

```
Session Type: AnyConnect

Username : test123                  Index : 2
Assigned IP : 10.34.63.1        Public IP : 10.116.122.154
Protocol : AnyConnect-Parent SSL-Tunnel DTLS-Tunnel
License : AnyConnect Essentials
Encryption : 3DES 3DES 3DES        Hashing : SHA1 SHA1 SHA1
Bytes Tx : 14042                Bytes Rx : 8872
Group Policy : Test-Policy-Safenet    Tunnel Group : Test_Safenet
Login Time : 10:45:28 UTC Fri Sep 12 2014
Duration : 0h:01m:12s
Inactivity : 0h:00m:00s
NAC Result : Unknown
VLAN Mapping : N/A        VLAN : none
```

Troubleshoot

Use this section in order to troubleshoot your configuration.

Debug the LDAP Transaction

These debugs can be used in order to help isolate issues with the DAP configuration:

- `debug ldap 255`
- `debug dap trace`
- `debug aaa authentication`
ASA is Not Able to Authenticate Users from LDAP Server

In case the ASA is not able to authenticate users from LDAP serve, here are some sample debugs:

ldap 255 output:[1555805] Session Start[1555805] New request Session, context 0xcd66c028, reqType = 1[1555805]
Fiber started[1555805] Creating LDAP context with uri=ldaps://172.30.74.70:636
[1555805] Connect to LDAP server:
ldaps://172.30.74.70:636, status = Successful[1555805] supportedLDAPVersion:
value = 3[1555805] supportedLDAPVersion: value = 2[1555805] Binding as administrator[1555805]
Performing Simple
authentication for sysservices to 172.30.74.70[1555805] Simple authentication for sysservices returned code (49)
Invalid credentials[1555805] Failed to bind as administrator returned code (-1) Can't contact LDAP server[1555805]
Fiber exit Tx=222 bytes Rx=605 bytes, status=-2[1555805] Session End

From these debugs, either the LDAP Login DN format is incorrect or the password is incorrect so verify both in order to resolve the issue.