Under stand Secur e Shell Packet Exchange

Contents

Introduction

Prereguisites
Reguirements
Components Used

SSH Protocal

SSH Exchange

Related Information

| ntr oduction

This document describes packet level exchange during Secure Shell (SSH) negotiation.

Prerequisites

Requirements

Cisco recommends that you have knowledge of basic security concepts:

» Authentication
» Confidentiality

* Integrity
» Key Exchange Methods

Components Used

This document is not restricted to specific software and hardware versions.

The information in this document was created from the devices in a specific lab environment. All of the
devices used in this document started with a cleared (default) configuration. If your network islive, ensure
that you understand the potential impact of any command.

SSH Protocol

The SSH protocol is a method for secure remote log in from one computer to another. SSH applications are
based on a client-server architecture, connecting an SSH client instance with an SSH server.

SSH Exchange

1. Thefirst step of SSH is called Identification String Exchange.
1.1. The client constructs a packet and sends it to the server containing:

* SSH-Protocol Version
+ SoftwareVersion

|i 323 5.946818 19.65.54.8 19.106.51.72 SS5HV2 82 Client: Protocol (SSH-2.@-PuTTY_Release @.76)

Frame 323: 82 bytes on wire (656 bits), 82 bytes captured (656 bits) on interface @
Ethernet II, Src: Cisco_3c:7a:80 (@0:85:9a:3c:7a:88), Dst: Cimsys_33:44:55 (89:11:22:33:44:55)
Internet Protocol Version 4, Src: 1€.65.54.8, Dst: 10.106.51.72
Transmission Control Protocol, Src Port: 56127, Dst Port: 22, Seq: 1, Ack: 1, Len: 28
v SSH Protoceol
Protocol: SSH-2.8-PuTTY_Release_@.76

Client Protocol Version and Software Version

1.2. The server responds with its own Identification String Exchange, including its SSH protocol version and
software version.

| | 326 6.816955 10.186.51.72 le.65.54.8 SSHv2 73 Server: Protocol (SSH-2.8-Cisco-1.25)

Frame 326: 73 bytes on wire (584 bits), 73 bytes captured (584 bits) on interface @
Ethernet II, Src: Cimsys_33:44:55 (@@:11:22:33:44:55), Dest: Cisco_3c:7a:00 (@@:@5:9a:3c:7a:0@)
Internet Protecol Version 4, Src: 10.1@6.51.72, Dst: 18.65.54.8
Transmission Control Protecel, Src Port: 22, Dst Port: 56127, Seq: 1, Ack: 2%, Len: 1%
~ SSH Protocol
Protocol: S5H-2.8-Cisco-1.25

Server Protocol Version and Software Version

2. Next Step is Algorithm Negotiation. 1N this step, both Client and Server negotiate these algorithms:

» Keyexchange

* Encryption

» Hash-based Message Authentication Code (HMAC)
» Compression

2.1. The client sends a Key Exchange Init message to the server, specifying the algorithms it supports. The
algorithms are listed in order of preference.

+ 329 6.82199@ 1@.65.54.8 18.186.51.72 55HvZ 238 Client: Key Exchange Init

Frame 329: 238 bytes on wire (1984 bits), 238 bytes captured (1984 bits) on interface 8
Ethernet II, Src: Cisco _3c:7a:8@ (@@:85:9a:3c:7a:08), Dst: Cimsys_33:44:55 (@0:11:22:33:44:55)
Internet Protocel Version 4, Src: 18.65.54.8, Dst: 18.186.51.72
Transmission Control Protocol, Src Port: 56127, Dst Port: 22, Seq: 1181, Ack: 20, Len: 184
[3 Reassembled TCP Segments (1256 bytes): #327(536), #328(536), #329(184)]
~ S5H Protocol
~ 55H Version 2 {encryption:aes256-ctr mac:hmac-sha2-256 compression:none)
Packet Length: 1252
Padding Length: 11
v Key Exchange
Message Code: Key Exchange Init (28)
Algorithms

Client Key Exchange Init

v Algorithms
Cookie: 47a96215afc520@3180b60342370a185
kex_algorithms length: 315
kex_algorithms string [truncated]: curvedd48-sha5l2,curve25519-sha2ss, curve2ssl9-sha2ss@libssh.org,ecdh-sha2-nistp256,ecdh-sha2-nistp384,ecdh-sha2-nistp52l,dif
server_host_key_algorithms length: 123
server_host_key_algorithms string: rsa-sha2-512,rsa-sha2-256,ssh-rsa,ssh-ed448,ss5h-ed25519,ecdsa-shaz-nistp256,ecdsa-sha2-nistp384,ecdsa-shaz-nistp521,ssh-dss
encryption_algorithms_client_to_server length: 1383
encryption_algorithms_client_to_server string: aes256-ctr,aes256-cbe,rijndael-cbe@lysator.liu.se,aesl92-ctr,aesl92-cbe,aesl128-ctr,aesl28-cbe,chacha2e-polylies
encryption_algorithms_server_to_client length: 189
encryption_algorithms_server_to_client string: aes256-ctr,aes256-cbec,rijndael-cbe@lysator.liu.se,aesl92-ctr,aesl92-cbe,aesl28-ctr,aesl28-cbe,chachaz@-polylies
mac_algorithms_client_to_server length: 155
mac_algerithms_client_te_server string: hmac-shal-256,hmac-shal,hmac-shal-96,hmac-md5,hmac-sha2-256-etm@openssh, com, hmac-shal-etm@openssh.com, hmac-shal-%6-etn
mac_algorithms_server_to_client length: 155
mac_algorithms_server_to_client strimg: hmac-zha2-256,hmac-shal, hmac-shal-96,hmac-md5,hmac-sha2-256-etm@openssh. com, hmac-shal-etm@openssh. com, hmac-shal-96-etm
compression_algorithms_client_to_server length: 26
compression_algorithms_client_to_server string: none,zlib,zlib@openssh.com
compression_algorithms_server_to_client length: 26
compression_algorithms_server_to_client string: none,zlib,zlib@openssh.com

2.2. The server responds with its own Key Exchange Init message, listing the algorithms it supports.

2.3. Since these messages are exchanged concurrently, both parties compare their agorithm lists. If thereis
amatch in the algorithms supported by both sides, they proceed to the next step. If there is no exact match,
the server selects the first algorithm from the client's list that it also supports.

Note: If the client and server cannot agree on a common algorithm, the key exchange fails.

334 6.893258 10.186.51.72 18.65.54.8 55Hv2 366 Server: Key Exchange Init

Frame 334: 366 bytes on wire (2928 bits), 366 bytes captured (2928 bits) on interface @
Ethernet II, Src: Cimsys_33:44:55 (@8:11:22:33:44:55), Dst: Cisco_3c:7a:09 (00:85:9a:3c:7a:09)
Internet Protocol Version 4, Src: 18.186.51.72, Dst: 18.65.54.8
Transmission Contrel Protocol, Src Port: 22, Dst Port: 56127, Seq: 20, Ack: 1285, Len: 312
« 55H Protocol
v S5H Version 2 (encryption:aes2S56-ctr mac:hmac-shal-256 compression:none)
Packet Length: 388
Padding Length: 4
v Key Exchange
Message Cede: Key Exchange Init (28)
Algorithms

Server Key Exchange Init

3. Next, both sides enter the key Exchange phase to generate shared secret using DH key exchange and
authenticate the server:

3.1. The client generates a keypair, public and Private, and sends the DH Public key in the Diffie-Hellman Group
Exchange Init packet. Thiskey pair is used for secret key calculation.

337 6£.201114 18.65.54.8 18.186.51.72 SSHv2 326 Client: Diffie-Hellman Group Exchange Init

Frame 337: 326 bytes on wire (2688 bits), 326 bytes captured (2688 bits) on interface @
Ethernet II, Src: Cisco_3c:7a:88 (80:85:9a:3c:72:80), Dst: Cimsys_33:44:55 (88:11:22:33:44:55)
Internet Protocol Version 4, Src: 18.65.54.8, Dst: 10.106.51.72
Transmission Contrel Protocol, Src Port: 56127, Dst Port: 22, Seq: 13@9, Ack: 612, Len: 272
55H Protocol
~ 55H Version 2 (encryption:aes256-ctr mac:hmac-sha2-256 compression:none)
Packet Length: 268
Padding Length: &
~ Key Exchange
Message Code: Diffie-Hellman Group Exchange Init (32)
Multi Precision Integer Length: 256
DH client e: 1485ab@eff368031363467ad6653967d5a64eac4734a5dek..
Padding String: 5cB1f2cffcas

-

Client Diffie-Hellman Group Exchange Init

3.2. The server generates its own Public and Private key pair. It uses the client's public key and its own key pair
to compute the shared secret.

3.3. The Server also computes an Exchange Hash with these inputs:

» Client Identification String

» Server Identification String

» Payload of Client Key Exchange Init

» Payload of Server Key Exchange Init

» Server Public-key from Host keys (RSA key pair)
» Client DH Public Key

» Server DH Public Key

» Shared Secret Key

3.4. After computing hash, server signsit with its RSA Private Key.

3.5. The Server constructs a message Diffie-Hellman Group Exchange that includes:

* RSA Public Key of Sever (to help the client authenticate the server)

» DH Public key of Server (for calculating the shared secret)

» HASH (to authenticate the server and prove that the server has generated the shared secret, as the
secret key is part of the hash computation)

343 65.330017 18.186.51.72 18.65.54.8 SSHv2 358 Server: Diffie-Hellman Group Exchange Reply

Internet Protocol Version 4, Src: 18.186.51.72, Dst: 18.65.54.8
Transmission Control Protocol, Src Port: 22, Dst Port: 56127, Seq: 1148, Ack: 1581, Len: 296
[2 Reassembled TCP Segments (832 bytes): #342(536), #343(298)]
© 55H Protocol
w S5SH Version 2 (encryption:aes256-ctr mac:hmac-sha2z-256 compression:none)
Packet Length: 828
Padding Length: 8
v Key Exchange
Message Code: Diffie-Hellman Group Exchange Reply (33)
v KEX host key (type: ssh-rsa)
Host key length: 279
Host key type length: 7
Host key type: ssh-rsa
Multi Precision Integer Length: 3
RSA public exponent (e): @leéeal
Multi Precision Integer Length: 257
RSA modulus (N): @@98c7d23c9%ababd738f87b5c2aeeledeS1lbacs7978aa5af..
Multi Precision Integer Length: 256
DH server f: 3317a0995531f12d629a4Bab6F25715bc1810a3debsca793..
KEX H signature length: 271
KEX H signature: 6@8868077373682d72736100060100691d2cB96761bcT481..
Padding S5tring: 2808200082000808

Server Diffie-Hellman Group Exchange Reply

3.6. After receiving the Diffie-Hellman Group Exchange Reply, the client computes the hash in the same
way and compares it with the received hash, decrypting it using the server's RSA Public Key.

3.7. Before decrypting the received HASH, the client must verify the server's public key. This verification is
done through adigital certificate signed by a Certificate Authority (CA). If the certificate does not exit, it is
up to the client to decide whether to accept the server's public key.

Note: When you use SSH to log into adevice for the first time that does not use adigital
certificate, you can encounter a pop-up asking you to manually accept the server's public key. To
avoid seeing this pop-up every time you connect, you can choose to add the server's host key to

your cache.

Warning 7 b

ffh Continue connecting to an unknown server and add its
™ host key to a cache?

The server's host key was not found in the cache. You have no guarantee that
the server is the computer you think it is.

The server's R5A key details are:

Algeorithrm: ssh-rsa 2042
SHA-256:

vos:

If you trust this host, press Yes. To connect without adding host key to the
cache, press Mo, Te abandon the connection press Cancel.

Copy key fingerprints to dipboard

E Yes :"F Mo Cancel Help

Server Public Key

4. Since the Shared secret is now generated, both ends use it to derive these keys:

* Encryption keys
* IV Keys - These are random numbers used as input to symmetrical algorithms to enhance security.

* Integrity keys

The end of the key exchange is signaled by the exchange of the NEw KEY s message, which informs each
party that all future messages are encrypted and protected using these new keys.

346 6.330368 18.186.51.72 1e.65.54.8 SSHv2 7@ Server: New Keys
347 6.385552 18.85.54.8 1@.1@6.51.72 55Hv2 7@ Client: New Keys

Frame 3456: 7@ bytes on wire (560 bits), 7@ bytes captured (568 bits) on interface @
» Ethernet II, Src: Cimsys_33:44:55 (B@:11:22:33:44:55), Dst: Cisco_3c:7a:@@ (@@:85:9a:3c:7a:08)
» Internet Protocol Version 4, Src: 10.186.51.72, Dst: 10.65.54.8
> Transmission Control Protocol, Src Port: 22, Dst Port: 56127, Seq: 1444, Ack: 1581, Len: 16
« S5H Protocol
~ 55H Version 2 (encrypticn:aes256-ctr mac:hmac-sha2-256 compression:none)
Packet Length: 12
Padding Length: 18
~ Key Exchange
Message Code: New Keys (21)
Padding String: @eQeceepooooleesane

Client and Server New Keys

5. Thefinal step isthe Service Request. The client sends an SSH Service Request packet to the server to
initiate user authentication. The server responds with an SSH Service Accept message, prompting the client
to log in. This exchange occurs over the established secure channel.

Related | nfor mation

* Configure SSH on Routers and Switches
e The Secure Shell (SSH) Transport Layer Protocol

» Cisco Technical Support & Downloads

https://www.cisco.com/c/en/us/support/docs/security-vpn/secure-shell-ssh/4145-ssh.html
https://datatracker.ietf.org/doc/html/rfc4253
https://www.cisco.com/c/en/us/support/index.html?referring_site=bodynav

