Configuring the Cisco VPN 3000 Concentrator to a Cisco Router

Document ID: 14102

Contents

Introduction
Prerequisites
 Requirements
 Components Used
Conventions
Configure
 Network Diagram
 Configurations
 VPN Concentrator Configuration
Verify
 On the Router
 On the VPN Concentrator
Troubleshoot
 On the Router
 Problem – Unable to Initiate the Tunnel
 PFS
Related Information

Introduction

This sample configuration shows how to connect a private network behind a router that runs Cisco IOS® software to a private network behind the Cisco VPN 3000 Concentrator. The devices on the networks know each other by their private addresses.

Prerequisites

Requirements

There are no specific requirements for this document.

Components Used

The information in this document is based on these software and hardware versions:

 - Cisco 2611 router with Cisco IOS Software Release 12.3.(1)a

 Note: Make sure that Cisco 2600 Series routers are installed with a crypto IPsec VPN IOS image that supports the VPN feature.

 - Cisco VPN 3000 Concentrator with 4.0.1 B

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure
that you understand the potential impact of any command.

Conventions

Refer to Cisco Technical Tips Conventions for more information on document conventions.

Configure

In this section, you are presented with the information to configure the features described in this document.

Note: Use the Command Lookup Tool (registered customers only) to find more information on the commands used in this document.

Network Diagram

This document uses this network setup.

Configurations

This document uses this configuration.

```
Router Configuration

version 12.3
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname dude
!
memory-size iomem 15
ip subnet-zero
!
ip audit notify log
ip audit po max-events 100
!
!--- IKE policies.
crypto isakmp policy 1
  encr 3des
  hash md5
  authentication pre-share
  group 2
crypto isakmp key cisco123 address 200.1.1.2
!
!--- IPsec policies.
crypto ipsec transform-set to_vpn esp-3des esp-md5-hmac
!
crypto map to_vpn 10 ipsec-isakmp
  set peer 200.1.1.2
  set transform-set to_vpn
!
!--- Traffic to encrypt.
match address 101
!
interface Ethernet0/0
```
ip address 203.20.20.2 255.255.255.0
ip nat outside
half-duplex
crypto map to_vpn
!
interface Ethernet0/1
ip address 172.16.1.1 255.255.255.0
ip nat inside
half-duplex
!
ip nat pool mypool 203.20.20.3 203.20.20.3 netmask 255.255.255.0
ip nat inside source route-map nonat pool mypool overload
ip http server
no ip http secure-server
ip classless
ip route 0.0.0.0 0.0.0.0 203.20.20.1
ip route 172.16.20.0 255.255.255.0 172.16.1.2
ip route 172.16.30.0 255.255.255.0 172.16.1.2
!
--- Traffic to encrypt.
access-list 101 permit ip 172.16.1.0 0.0.0.255 192.168.10.0 0.0.0.255
access-list 101 permit ip 172.16.1.0 0.0.0.255 192.168.40.0 0.0.0.255
access-list 101 permit ip 172.16.1.0 0.0.0.255 192.168.50.0 0.0.0.255
access-list 101 permit ip 172.16.20.0 0.0.0.255 192.168.10.0 0.0.0.255
access-list 101 permit ip 172.16.20.0 0.0.0.255 192.168.40.0 0.0.0.255
access-list 101 permit ip 172.16.20.0 0.0.0.255 192.168.50.0 0.0.0.255
access-list 101 permit ip 172.16.30.0 0.0.0.255 192.168.10.0 0.0.0.255
access-list 101 permit ip 172.16.30.0 0.0.0.255 192.168.40.0 0.0.0.255
access-list 101 permit ip 172.16.30.0 0.0.0.255 192.168.50.0 0.0.0.255
access-list 101 permit ip 172.16.30.0 0.0.0.255 192.168.50.0 0.0.0.255
!
--- Traffic to except from the NAT process.
access-list 110 deny ip 172.16.1.0 0.0.0.255 192.168.10.0 0.0.0.255
access-list 110 deny ip 172.16.1.0 0.0.0.255 192.168.40.0 0.0.0.255
access-list 110 deny ip 172.16.1.0 0.0.0.255 192.168.50.0 0.0.0.255
access-list 110 deny ip 172.16.20.0 0.0.0.255 192.168.10.0 0.0.0.255
access-list 110 deny ip 172.16.20.0 0.0.0.255 192.168.40.0 0.0.0.255
access-list 110 deny ip 172.16.20.0 0.0.0.255 192.168.50.0 0.0.0.255
access-list 110 deny ip 172.16.30.0 0.0.0.255 192.168.10.0 0.0.0.255
access-list 110 deny ip 172.16.30.0 0.0.0.255 192.168.40.0 0.0.0.255
access-list 110 deny ip 172.16.30.0 0.0.0.255 192.168.50.0 0.0.0.255
access-list 110 deny ip 172.16.30.0 0.0.0.255 192.168.50.0 0.0.0.255
access-list 110 permit ip 172.16.1.0 0.0.0.255 any
!
route-map nonat permit 10
match ip address 110
!
line con 0
line aux 0
line vty 0 4
!
end

VPN Concentrator Configuration

In this lab setting, the VPN Concentrator is first accessed through the console port and a minimal configuration is added so that the further configuration can be done through the graphical user interface (GUI).

Choose Administration > System Reboot > Schedule reboot > Reboot with Factory/Default Configuration to ensure that there is no existing configuration in the VPN Concentrator.

The VPN Concentrator appears in Quick Configuration, and these items are configured after the reboot:
- Time/Date
- Interfaces/Masks in Configuration > Interfaces (public=200.1.1.2/24, private=192.168.10.1/24)
- Default Gateway in Configuration > System > IP routing > Default Gateway (200.1.1.1)

At this point, the VPN Concentrator is accessible through HTML from the inside network.

Note: Because the VPN Concentrator is managed from outside, you also have to select:

- Configuration > Interfaces > 2–public > Select IP Filter > 1. Private (Default).
- Administration > Access Rights > Access Control List > Add Manager Workstation to add the IP address of the external manager.

This is not necessary unless you manage the VPN Concentrator from **outside**.

1. Choose **Configuration > Interfaces** to recheck the interfaces after you bring up the GUI.

2. Choose **Configuration > System > IP Routing > Default Gateways** to configure the Default (Internet) **Gateway** and the Tunnel Default (inside) **Gateway** for IPsec to reach the other subnets in the private network.

3. Choose **Configuration > Policy Management > Network Lists** to create the network lists that define the traffic to be encrypted.

These are the local networks:
These are the remote networks:

Note: If the IPsec tunnel does not come up, check to see if the interesting traffic matches on both sides. The interesting traffic is defined by the access list on the router and PIX boxes. They are defined by network lists in the VPN Concentrators.
This section lets you add, modify, copy, and delete Network Lists.

Click **Add** to create a Network List, or select a Network List and click **Modify, Copy, or Delete**.

5. Choose **Configuration > System > Tunneling Protocols > IPSec LAN-to-LAN** and define the LAN-to-LAN tunnel.

Add a new IPSec LAN-to-LAN connection.

- **Enable**: Check to enable this LAN-to-LAN connection.
- **Name**: Enter the name for this LAN-to-LAN connection.
- **Interface**: Select the interface for this LAN-to-LAN connection.
- **Connection Type**: Choose the type of LAN-to-LAN connection. An Originator-Only connection may have multiple peers specified below.
- **Peers**: Enter the remote peer IP addresses for this LAN-to-LAN connection. Originator-Only connection may specify up to ten peer IP addresses. Enter one IP address per line.
- **Digital Certificate**: Select the digital certificate to use.
- **Certificate**: Choose how to send the digital certificate to the IKE peer.
- **Transmission**: Enter the preshared key for this LAN-to-LAN connection.
- **Authentication**: Specify the packet authentication mechanism to use.
- **Encryption**: Specify the encryption mechanism to use.
- **IKE Proposal**: Select the IKE Proposal to use for this LAN-to-LAN connection.
After you click **Apply**, this window is displayed with the other configuration that is automatically created as a result of the LAN-to-LAN tunnel configuration.

6. After you click **Apply**, this window is displayed with the other configuration that is automatically created as a result of the LAN-to-LAN tunnel configuration.

An IPSec LAN-to-LAN connection has been successfully configured. The following have been added to your configuration:

Authentication Server Internal

Group 203.20.20.2

Security Association

L2L: to_router

Filter Rules

L2L: to_router Out

L2L: to_router In

Modifying any of these items will affect the LAN-to-LAN configuration. The **Group** is the same as your LAN-to-LAN peer. The **Security Association** and **Filter Rules** all start with "L2L: " to indicate that they form a LAN-to-LAN configuration.

The previously created LAN-to-LAN IPsec parameters can be viewed or modified in **Configuration > System > Tunneling Protocols > IPSec LAN-to-LAN**.
This section lets you configure IPSec LAN-to-LAN connections. LAN-to-LAN connections are established with other VPN 3000 Concentrators, PIX firewalls, 7100/4000 series routers and other IPSec-compliant security gateways. To configure a VPN 3002 or other remote access connection, go to User Management and configure a Group and User. To configure NAT over LAN-to-LAN, go to LAN-to-LAN NAT Rules.

If you want to define a set of networks on the local or remote side of the LAN-to-LAN connection, configure the necessary Network Lists prior to creating the connection.

Click the Add button to add a LAN-to-LAN connection, or select a connection and click Modify or Delete.

(D) indicates a disabled LAN-to-LAN connection.

7. Choose Configuration > System > Tunneling Protocols > IPSec > IKE Proposals to confirm the active IKE Proposal.

Add, delete, prioritize, and configure IKE Proposals.

Select an Inactive Proposal and click Activate to make it Active, or click Modify, Copy or Delete as appropriate. Select an Active Proposal and click Deactivate to make it Inactive, or click Move Up or Move Down to change its priority.

Click Add or Copy to add a new Inactive Proposal. IKE Proposals are used by Security Associations to specify IKE parameters.

8. Choose Configuration > Policy Management > Traffic Management > Security Associations to view the list of Security Associations.
9. Click the Security Association name, and then click **Modify** to verify the Security Associations.

<table>
<thead>
<tr>
<th>IPSec SAs</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESP-3DES-MD5</td>
<td>Add</td>
</tr>
<tr>
<td>ESP-3DES-MD5-DH5</td>
<td>Modify</td>
</tr>
<tr>
<td>ESP-3DES-MD5-DH7</td>
<td>Delete</td>
</tr>
<tr>
<td>ESP-DES-NONE</td>
<td></td>
</tr>
<tr>
<td>ESP-AES128-SHA</td>
<td></td>
</tr>
<tr>
<td>ESP-AES-MD6</td>
<td></td>
</tr>
<tr>
<td>ESP-LTT-TRANSPORT</td>
<td></td>
</tr>
<tr>
<td>ESP/AES-3DES-MD6</td>
<td></td>
</tr>
<tr>
<td>L2L_to_router</td>
<td></td>
</tr>
</tbody>
</table>

SA Name: Specify the name of the Security Association (SA).

Inheritance: Select the granularity of this SA.

IPSec Parameters
- **Authentication Algorithm**: Select the packet authentication algorithm to use.
- **Encryption Algorithm**: Select the ESP encryption algorithm to use.
- **Encapsulation Mode**: Select the Encapsulation Mode for this SA.
- **Perfect Forward Secrecy**: Select the use of Perfect Forward Secrecy.
- **Lifetime Measurement**: Select the lifetime measurement of the IPSec keys.
- **Data Lifetime**: Specify the data lifetime in kilobytes (KB).
- **Time Lifetime**: Specify the time lifetime in seconds.

IKE Parameters
- **Connection Type**: Bidirectional
- **IKE Peers**: 203.20 20.2
- **Negotiation Mode**: Main
- **Digital Certificate**: None (Use Freshened Keys)
- **Certificate Transmission**: Entire certificate chain
- **IKE Proposal**: IKE 3DES-MD5

Verify

This section lists the **show** commands used in this configuration.

On the Router

This section provides information you can use to confirm your configuration works properly.

The Output Interpreter Tool (registered customers only) (OIT) supports certain **show** commands. Use the OIT to view an analysis of **show** command output.

- **show crypto ipsec sa** Shows the settings used by current Security Associations.
- `show crypto isakmp sa` Shows all current Internet Key Exchange Security Associations at a peer.
- `show crypto engine connection active` Shows the current active encrypted session connections for all crypto engines.

You can use the IOS Command Lookup Tool (registered customers only) to see more information about particular commands.

On the VPN Concentrator

Choose **Configuration > System > Events > Classes > Modify** to turn on logging. These options are available:

- IKE
- IKEDBG
- IKEDECODE
- IPSEC
- IPSECDBG
- IPSECDECODE

Severity to Log = 1–13

Severity to Console = 1–3

Select **Monitoring > Event Log** to retrieve the event log.

Troubleshoot

On the Router

Refer to Important Information on Debug Commands before you attempt any debug commands.

- `debug crypto engine` Displays the traffic that is encrypted.
- `debug crypto ipsec` Displays the IPsec negotiations of phase 2.
- `debug crypto isakmp` Displays the ISAKMP negotiations of phase 1.

Problem – Unable to Initiate the Tunnel

Error Message

```
Authentication rejected: Reason = Simultaneous logins exceeded for user
handle = 623, server = (none), user = 10.19.187.229, domain = <not
specified>
```

Solution

Complete this action in order to configure the desired number of simultaneous logins or set the simultaneous logins to 5 for this SA:

Go to **Configuration > User Management > Groups > Modify 10.19.187.229 > General > Simultaneous Logins** and change the number of logins to 5.
PFS

In IPsec negotiations, Perfect Forward Secrecy (PFS) ensures that each new cryptographic key is unrelated to any previous key. Either enable or disable PFS on both the tunnel peers. Otherwise, the LAN−to−LAN (L2L) IPsec tunnel is not established in routers.

In order to specify that IPsec should ask for PFS when new Security Associations are requested for this crypto map entry, or that IPsec requires PFS when it receives requests for new Security Associations, use the `set pfs` command in crypto map configuration mode. In order to specify that IPsec should not request PFS, use the `no` form of this command.

```
set pfs [group1 | group2]
noset pfs
```

For the `set pfs` command:

- `group1` Specifies that IPsec should use the 768−bit Diffie−Hellman prime modulus group when the new Diffie−Hellman exchange is performed.
- `group2` Specifies that IPsec should use the 1024−bit Diffie−Hellman prime modulus group when the new Diffie−Hellman exchange is performed.

By default, PFS is not requested. If no group is specified with this command, `group1` is used as the default.

Example:

```
Router(config)#crypto map map 10 ipsec-isakmp
Router(config-crypto-map)#set pfs group2
```

Refer to the Cisco IOS Security Command Reference for more information on the `set pfs` command.

Related Information

- Most Common L2L and Remote Access IPSec VPN Troubleshooting Solutions
- Cisco VPN 3000 Series Concentrators
- Cisco VPN 3002 Hardware Clients
- IPsec Negotiation/IKE Protocols
- Technical Support & Documentation – Cisco Systems