Regular Expression Guidelines and Performance
Considerationsfor URL Filtering

Contents

Introduction
Prerequisites
Reguirements
Components Used
Background Information
Key Points
Patternsto Avoid

Recommended Best Practices

Always Escape Dots in Hostnames
Anchor Patterns and Restrict Characters
Avoid Nested, Unbounded Repetition Where Possible
Test Patterns in a PCRE2-Compatible Tester
Differencesin URL Matchingfor HTTP and HTTPS
HTTPS (TLS) Traffic

HTTP (Unencrypted) Traffic

Configuration Implications
Verify

Enable Debug Logging
Configuration Examples

Host-Based Matching

HTTP Host/Path Matching

Related Information

| ntroduction

This document describes the guidelines and performance considerations for using regular expressionsin
URL filtering with the UTD engine. URL filtering in the UTD engine uses the PCRE2 regular expression
library.

Contributed by Eugene Khabarov, Cisco Engineering.
Prerequisites
Requirements

Cisco recommends that you have knowledge of these topics:

» Regular expressions (regex) syntax
* URL Filtering concepts



» Unified Threat Defense (UTD) configuration
 HTTPS/HTTP protocol differences

Components Used

This document is not restricted to specific software and hardware versions.

The information in this document was created from the devices in a specific lab environment. All of the
devices used in this document started with a cleared (default) configuration. If your network islive, ensure
that you understand the potential impact of any command.

Background I nformation

While PCREZ2 is powerful, certain complex or 'greedy’ expressions can cause excessive backtracking and
can hit internal limitsin the regex engine. When this occurs, a pattern can take too much time to process and
ultimately be treated as 'no match'.

Key Points

» PCRE2 enforcesinternal limits on backtracking steps or match time in order to protect system
resources.

» Some patterns are syntactically valid but computationally unsafe and can trigger 'catastrophic
backtracking'.

* When these limits are exceeded, the regex engine can abort processing and return no match, even if
the URL logically matches the pattern.

Patternsto Avoid

Avoid regex constructs that combine:
* Nested quantifiers, for example: (...+)*, (.*)*, (.+)+, and so on
» Wildcards (.) repeated over large portions of the string, especially near the end of the pattern
» Unescaped dots in domain names when used together with repetition

For example, here the pattern is syntactically valid but can be expensive to process:

A([a-zA-Z0-9-]+.)*portal.example.com$

% Note: Inthis case, ([a-zA-Z0-9-]+.)* isagroup with a nested quantifier (+ inside *) plus awildcard
(.). On some non-matching inputs, the regex engine can explore a very large number of backtracking
paths.

Recommended Best Practices

Always Escape Dotsin Hosthames

Use\. in order to match aliteral dot, for example:



A([a-zA-Z0-9-]1+\.)*portal\.example\.com$

Anchor Patternsand Restrict Characters

Use” and $ and restrict to expected characters (for example, [a-zA-Z0-9-] for host |abels) in order to reduce
backtracking.

Avoid Nested, Unbounded Repetition Where Possible

Prefer simpler constructs rather than complex patterns that try to cover everything in one regex. Consider
several specific entries instead of one very broad expression.

Test Patternsin a PCRE2-Compatible Tester

Before deployment, test regex patterns in a PCRE2-compatible environment and avoid patterns that raise
‘catastrophic backtracking' or similar warnings.

N Note Ifa regex pattern hitsthe internal limits of the PCREZ2 engine, it can be treated as 'no match' by
the URL Filtering engine. In such cases, URL classification falls back to category or reputation, not
the whitelist/blacklist regex result. The exact limits are implementation-specific and can change
between releases. Y ou must design regexes conservatively.

Differencesin URL Matchingfor HTTP and HTTPS

The UTD engine inspects URL s differently for HTTPS and HTTP traffic. This affects how regular
expressions must be designed for URL Filtering.

HTTPS(TLS) Traffic

For encrypted HTTPS traffic, the UTD engine does not decrypt the payload by default.
* URL Filtering uses the Server Name Indication (SNI) from the Transport Layer Security (TLS)
ClientHello.
» Theregex pattern is applied to the SNI hostname only, for example: api.example.com

In this case, a hostname-based pattern is matched against the hostname string api.example.com such as:

A([a-zA-Z0-9-]1+\.) *example\.com$

HTTP (Unencrypted) Traffic

For plain HTTP traffic, the UTD engine can see the full HTTP request (request line and headers).
Depending on implementation, the string given to the regex engine can include:

» Thefull URL or request line (for example, GET /path?param=value HTTP/1.1) or
» The Host header combined with the path (for example, api.example.com/path)



As aresult, the regex input for HTTP can contain additional characters such as/, ?, and query strings, not
just the bare hostname.

Configuration Implications

A regex designed purely for hostnames (for example, only matching api.example.com) can match HTTPS
correctly (SNI) but fail to match HTTP request which contains a full URL or host+path string.

In order to filter both HTTP and HTTPS traffic with the same pattern, you must:

» Design patterns primarily around hostnames
» Verify behavior against both HTTP and HTTPS in the UTD logs

Verify
Enable Debug L ogging

Step 1. Run the debug utd engine standard url-filtering level info command in order to enable debug
logging.

Step 2. Run the show logging process ioxman module utd | include api.example.com command in order
to verify the logs.

Example output:

2025/11/27 11:45:28.195000350 {ioxman_R0O-0}{255}: [utd] [21292]: (note): :(#0):INSP-URLF event->server_
2025/11/27 11:45:28.195001873 {ioxman_R0-0}{255}: [utd] [21292]: (note): :(#0):INSP-URLF URL: api.exa
2025/11/27 11:45:28.195009216 {ioxman_R0O-0}{255}: [utd] [21292]: (note): :(#0):INSP-URLF Regex matched

2025/11/27 11:45:28.195022442 {ioxman_R0O-0}{255}: [utd] [21292]: (note): :(#0):INSP-URLF URLF whitelist
2025/11/27 11:45:33.530605572 {ioxman_R0O-0}{255}: [utd] [21292]: (note): :(#0):INSP-URLF URL: api.exa
2025/11/27 11:45:33.530606333 {ioxman_R0O-0}{255}: [utd] [21292]: (note): :(#0):INSP-URLF Regex not matc
2025/11/27 11:45:33.530614980 {ioxman_R0-0}{255}: [utd] [21292]: (note): :(#0):INSP-URLF URLF whitelist

Configuration Examples

Host-Based M atching

In order to allow al subdomains of example.com, use this recommended hostname-focused pattern
(baseline):

A([a-zA-Z0-9-1+\.)*exampTle\.com$

This pattern:

» Matches example.com, api.example.com, foo.bar.example.com, and so on
 Issuitable for HTTPS (SNI) matching
e Can aso match HTTP if the string seen by the engine is the bare hostname



HTTP Host/Path Matching

If HTTP includes host/path and you want to ignore the path, you can match the hostname prefix and let the
regex stop at aword boundary instead of atrailing. *, for example:

A([a-zA-Z0-9-]1+\.) *example\.com\b

% Note: Here, \b (word boundary) effectively allows characters such as/ or ? in order to follow the
hostname without requiring an explicit .* wildcard. Thisis generally cheaper than adding .* at the end
and aligns better with the guidance in order to avoid additional unbounded wildcards.

‘,& Caution: The exact string passed into the regex engine for HTTP requests is implementation-specific
and can evolve. When in doubt, test patterns against both HTTP and HTTPS trafficin alab
environment and verify matchesin the UTD logs before you deploy to production.

Related I nfor mation

» Cisco Catalyst SD-WAN Security Configuration Guide, Cisco |0S XE Catalyst SD-WAN Release

1/7.x
» Cisco Technical Support & Downloads



https://www.cisco.com/c/en/us/td/docs/routers/sdwan/configuration/security/ios-xe-17/security-book-xe/url-filtering.html
https://www.cisco.com/c/en/us/td/docs/routers/sdwan/configuration/security/ios-xe-17/security-book-xe/url-filtering.html
https://www.cisco.com/c/en/us/support/index.html?referring_site=bodynav

