Troubleshoot Auto-RP in Cisco SD-WAN Multicast Deployment

Contents

Introduction

Background Information

Topology Diagram

Considerations for Cisco SD-WAN Multicast Deployment

Observations

Possible Workarounds

Conclusion

Introduction

This document describes why the secondary branch router fails to learn Auto-RP (Rendezvous Point) mapping and provides steps to resolve the issue.

Background Information

In a dual border router setup at a SD-WAN branch site, primary SD-WAN router can learn the Auto-RP mapping messages while the secondary SD-WAN router does not. If the SD-WAN router elected as Protocol Independent Multicast (PIM) Assert Forwarder did not learn the Auto-RP mappings, the downstream switches at the branch will also not receive these mappings.

Topology Diagram

- 1. In this topology, at branch site SD-WAN routers Branch-C8300-01 and Branch-C8300-02 have Open Shortest Path First (OSPF) neighborship with switch Branch-9k on service VRF/VPN 10. Branch router Branch-C8300-01 is the primary router with OSPF cost of 10, whereas on secondary router Branch-C8300-02, the OSPF cost is 15.
- 2. Switch DC-9k at datacentre site is the RP. Here are the configurations on this switch:

Considerations for Cisco SD-WAN Multicast Deployment

- You can configure multicast Rendezvous Point and replicator node on Datacentre-site devices only. Replicator cannot be configured on branch-site devices.
- Mapping Agent and Candidate RP can be deployed on Datacentre LAN side.
- Cisco Auto-RP cannot co-exist with PIM BSR. Cisco Auto-RP mode must be disabled with spt-only mode.
- If you have two Cisco IOS XE Catalyst SD-WAN devices in the same site, every Cisco IOS XE Catalyst SD-WAN device needs to be configured as a replicator for traffic to flow.
- Loopback is one of many interface types that can be used for configuring an RP candidate.

Observations

- When tracing Multicast flows, you must start from receiver end (last hop router) and move towards source end (first hop router). Here Branch-9k is the Last-Hop Router (LHR).
- When checked on the branch side, the switch was not receiving the AutoRP mapping.

```
Branch-9k#sh ip pim rp mapping
PIM Group-to-RP Mappings
Branch-9k#
```

PIM configurations on the switch:

```
Branch-9k#sh run | in pim
ip pim sparse-mode
ip pim sparse-mode
ip pim sparse-mode
ip pim autorp listener
ip pim ssm range PIM-SSM-Range
Branch-9k#
```

• When the Multicast Forwarding Information Base (MFIB) was checked on the branch routers, it was noticed that on the branch Router 01, the RP interface was pruned. AutoRP uses the group 224.0.1.40 to advertise the RP information. There was no F flag set for RP interface in the output of **show ip pim mfib** of branch router 01. The F flag was set on branch router 02.

```
<#root>
```

```
Branch-C8300-01#sh ip mfib vrf 10 224.0.1.40
Entry Flags: C - Directly Connected, S - Signal, IA - Inherit A flag,
ET - Data Rate Exceeds Threshold, K - Keepalive
DDE - Data Driven Event, HW - Hardware Installed
ME - MoFRR ECMP entry, MNE - MoFRR Non-ECMP entry, MP - MFIB
MoFRR Primary, RP - MRIB MoFRR Primary, P - MoFRR Primary
MS - MoFRR Entry in Sync, MC - MoFRR entry in MoFRR Client,
e - Encap helper tunnel flag.
```

```
I/O Item Flags: IC - Internal Copy, NP - Not platform switched,
               NS - Negate Signalling, SP - Signal Present,
               A - Accept, F - Forward, RA - MRIB Accept, RF - MRIB Forward,
               MA - MFIB Accept, A2 - Accept backup,
               RA2 - MRIB Accept backup, MA2 - MFIB Accept backup
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
Other counts:
                  Total/RPF failed/Other drops
I/O Item Counts:
                  VRF 10
 (*,224.0.1.40) Flags: C HW
   SW Forwarding: 0/0/0/0, Other: 0/0/0
   HW Forwarding:
                   0/0/0/0, Other: 1741/1741/0
   Lspvif0, LSM/0, RPF-ID: *, Flags: F NS
     Pkts: 0/0/0
                   Rate: 0 pps
   GigabitEthernet0/0/0.100 Flags: F IC NS
     Pkts: 0/0/0
                   Rate: 0 pps
 (169.1.10.3,224.0.1.40) Flags: HW
   SW Forwarding: 0/0/0/0, Other: 0/0/0
   HW Forwarding:
                   0/0/0/0, Other: 29642/29642/0
   Lspvif0, LSM/0, RPF-ID: *, Flags: A
   GigabitEthernet0/0/0.100 Flags: IC
 (169.1.10.4,224.0.1.40) Flags: HW
   SW Forwarding: 0/0/0/0, Other: 0/0/0
                   0/0/0/0, Other: 29939/29939/0
   HW Forwarding:
   Lspvif0, LSM/0, RPF-ID: *, Flags: A NS
   GigabitEthernet0/0/0.100 Flags: IC
 (169.1.20.2,224.0.1.40) Flags: HW
   SW Forwarding: 0/0/0/0, Other: 0/0/0
   HW Forwarding:
                   0/0/0/0, Other: 47783/47783/0
   Lspvif0, LSM/0, RPF-ID: *, Flags: A
   GigabitEthernet0/0/0.100 Flags: IC
 (169.1.20.6,224.0.1.40) Flags: HW
   SW Forwarding: 0/0/0/0, Other: 0/0/0
                  0/0/0/0, Other: 47720/47720/0
   HW Forwarding:
   Lspvif0, LSM/0, RPF-ID: *, Flags: A
   GigabitEthernet0/0/0.100 Flags: IC
 (169.1.20.10,224.0.1.40) Flags: HW
   SW Forwarding: 0/0/0/0, Other: 0/0/0
                   0/0/0/0, Other: 47784/47784/0
   HW Forwarding:
   Lspvif0, LSM/0, RPF-ID: *, Flags: A
   GigabitEthernet0/0/0.100 Flags: IC
 (169.1.20.14,224.0.1.40) Flags: HW
   SW Forwarding: 0/0/0/0, Other: 0/0/0
                   0/0/0/0, Other: 47724/47724/0
   HW Forwarding:
   Lspvif0, LSM/0, RPF-ID: *, Flags: A
   GigabitEthernet0/0/0.100 Flags: IC
 (169.1.100.7,224.0.1.40) Flags: HW
   SW Forwarding: 0/0/0/0, Other: 0/0/0
   HW Forwarding:
                  0/0/0/0, Other: 60088/60088/0
   Lspvif0, LSM/0, RPF-ID: *, Flags: A
   GigabitEthernet0/0/0.100 Flags: IC
 (169.2.20.2,224.0.1.40) Flags: HW
   SW Forwarding: 0/0/0/0, Other: 0/0/0
   HW Forwarding:
                   0/0/0/0, Other: 47680/47680/0
   Lspvif0, LSM/0, RPF-ID: *, Flags: A
   GigabitEthernet0/0/0.100 Flags: IC
 (169.2.20.6,224.0.1.40) Flags: HW
   SW Forwarding: 0/0/0/0, Other: 0/0/0
   HW Forwarding:
                   0/0/0/0, Other: 47640/47640/0
   Lspvif0, LSM/0, RPF-ID: *, Flags: A
   GigabitEthernet0/0/0.100 Flags: IC
```

Branch-C8300-01#

Branch-C8300-02#sh ip mfib vrf 10 224.0.1.40 Entry Flags: C - Directly Connected, S - Signal, IA - Inherit A flag, ET - Data Rate Exceeds Threshold, K - Keepalive DDE - Data Driven Event, HW - Hardware Installed ME - MoFRR ECMP entry, MNE - MoFRR Non-ECMP entry, MP - MFIB MoFRR Primary, RP - MRIB MoFRR Primary, P - MoFRR Primary MS - MoFRR Entry in Sync, MC - MoFRR entry in MoFRR Client, e - Encap helper tunnel flag. I/O Item Flags: IC - Internal Copy, NP - Not platform switched, NS - Negate Signalling, SP - Signal Present, A - Accept, F - Forward, RA - MRIB Accept, RF - MRIB Forward, MA - MFIB Accept, A2 - Accept backup, RA2 - MRIB Accept backup, MA2 - MFIB Accept backup Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second Other counts: Total/RPF failed/Other drops I/O Item Counts: HW Pkt Count/FS Pkt Count/PS Pkt Count Egress Rate in pps VRF 10 (*,224.0.1.40) Flags: C HW SW Forwarding: 0/0/0/0, Other: 0/0/0 HW Forwarding: 0/0/0/0, Other: 10549/10549/0 Lspvif0, LSM/0, RPF-ID: *, Flags: F NS Pkts: 0/0/0 Rate: 0 pps GigabitEthernet0/0/0.100 Flags: F IC NS Pkts: 0/0/0 Rate: 0 pps (169.1.10.3,224.0.1.40) Flags: HW SW Forwarding: 0/0/0/0, Other: 0/0/00/0/0/0, Other: 0/0/0 HW Forwarding: Lspvif0, LSM/0, RPF-ID: *, Flags: A NS GigabitEthernet0/0/0.100 Flags: F IC NS <== Pkts: 0/0/0 Rate: 0 pps (169.1.10.4,224.0.1.40) Flags: HW SW Forwarding: 0/0/0/0, Other: 0/0/0

HW Forwarding: 0/0/0/0, Other: 0/0/0

Lspvif0, LSM/0, RPF-ID: *, Flags: A NS

```
(169.1.20.2,224.0.1.40) Flags: HW
   SW Forwarding: 0/0/0/0, Other: 0/0/0
   HW Forwarding:
                    0/0/0/0, Other: 0/0/0
   Lspvif0, LSM/0, RPF-ID: *, Flags: A
   GigabitEthernet0/0/0.100 Flags: F IC NS
     Pkts: 0/0/0
                    Rate: 0 pps
 (169.1.20.6,224.0.1.40) Flags: HW
   SW Forwarding: 0/0/0/0, Other: 0/0/0
   HW Forwarding:
                   0/0/0/0, Other: 0/0/0
   Lspvif0, LSM/0, RPF-ID: *, Flags: A
   GigabitEthernet0/0/0.100 Flags: F IC NS
     Pkts: 0/0/0
                    Rate: 0 pps
 (169.1.20.10,224.0.1.40) Flags: HW
   SW Forwarding: 0/0/0/0, Other: 0/0/0
   HW Forwarding:
                    0/0/0/0, Other: 0/0/0
   Lspvif0, LSM/0, RPF-ID: *, Flags: A NS
   GigabitEthernet0/0/0.100 Flags: F IC NS
     Pkts: 0/0/0
                    Rate: 0 pps
 (169.1.20.14,224.0.1.40) Flags: HW
   SW Forwarding: 0/0/0/0, Other: 0/0/0
   HW Forwarding:
                    0/0/0/0, Other: 0/0/0
   LspvifO, LSM/O, RPF-ID: *, Flags: A NS
   GigabitEthernet0/0/0.100 Flags: F IC NS
     Pkts: 0/0/0
                    Rate: 0 pps
 (169.2.20.2,224.0.1.40) Flags: HW
   SW Forwarding: 0/0/0/0, Other: 0/0/0
   HW Forwarding:
                    0/0/0/0, Other: 0/0/0
   Lspvif0, LSM/0, RPF-ID: *, Flags: A
   GigabitEthernet0/0/0.100 Flags: F IC NS
     Pkts: 0/0/0
                    Rate: 0 pps
 (169.2.20.6,224.0.1.40) Flags: HW
   SW Forwarding: 0/0/0/0, Other: 0/0/0
   HW Forwarding:
                    0/0/0/0, Other: 0/0/0
   Lspvif0, LSM/0, RPF-ID: *, Flags: A
   GigabitEthernet0/0/0.100 Flags: F IC NS
     Pkts: 0/0/0
                    Rate: 0 pps
Branch-C8300-02#
```

The F flag being set indicates the router Branch-C8300-02 is the Designated Forwarder for AutoRP and for the multicast traffic. When the PIM neighbours are in the same broadcast domain, the PIM Assert forwarder/Designated Forwarder is elected. The router with highest IP address is chosen as PIM Assert forwarder/Designated Forwarder. (The Administrative Distance (AD) and Metric were same.) In this scenario, Branch router 2 has higher IP address compared to Branch router 1:

```
Branch-C8300-01#sh run interface Gi0/0/0.100
Building configuration...
Current configuration : 336 bytes
!
interface GigabitEthernet0/0/0.100
description OSPF peering interface1
encapsulation dot1Q 100
vrf forwarding 10
ip address 169.101.10.1 255.255.255.240
```

```
no ip redirects
ip pim sparse-mode
ip nbar protocol-discovery
ip ospf network broadcast
ip ospf dead-interval 40
ip ospf 10 area 0
ip ospf cost 10
arp timeout 1200
end
```

```
Branch-C8300-02#sh run interface Gi0/0/0.100
Building configuration...
Current configuration: 336 bytes
interface GigabitEthernet0/0/0.100
 description OSPF peering interface1
 encapsulation dot1Q 100
vrf forwarding 10
 ip address 169.101.10.2 255.255.255.240
 no ip redirects
 ip pim sparse-mode
 ip nbar protocol-discovery
 ip ospf network broadcast
 ip ospf dead-interval 40
 ip ospf 10 area 0
 ip ospf cost 15
 arp timeout 1200
end
```

• It was noticed that the Branch router 01 was receiving the AutoRP messages, but Branch router 02 was not receiving the AutoRP messages:

```
Branch-C8300-01#sh ip pim vrf 10 rp mapping
PIM Group-to-RP Mappings
Group(s) 239.195.0.0/16
RP 10.125.125.1 (?), v2v1
Info source: 169.254.100.9 (?), elected via Auto-RP
Uptime: 1w0d, expires: 00:02:31
Branch-C8300-01#
Branch-C8300-02#sh ip pim vrf 10 rp mapping
PIM Group-to-RP Mappings
Branch-C8300-02#
```

• Since the Branch router 01 is not Assert winner, the S,G is pruned, hence it cannot forward the AutoRP mapping to the downstream switch, and on the Branch router 02, even though it is Designated Forwarder, it has not learned the AutoRP mapping message, and it cannot forward the AutoRP to downstream switch. Now why the Auto RP message was not learnt by the Branch router 02 is the question.

- The Branch routers learn AutoRP mapping from the DC Border routers. DC SD-WAN Routers act as replicators and mapping agents. Mapping agent decides the candidate RP for a given Multicast group.
- On the DC SD-WAN Router, the MFIB was checked and it was noticed that there is a Forwarding flag set for S,G entry:

<#root> DC-8500-01#sh ip mfib vrf 10 224.0.1.40 C - Directly Connected, S - Signal, IA - Inherit A flag, Entry Flags: ET - Data Rate Exceeds Threshold, K - Keepalive DDE - Data Driven Event, HW - Hardware Installed ME - MoFRR ECMP entry, MNE - MoFRR Non-ECMP entry, MP - MFIB MoFRR Primary, RP - MRIB MoFRR Primary, P - MoFRR Primary MS - MoFRR Entry in Sync, MC - MoFRR entry in MoFRR Client, - Encap helper tunnel flag. I/O Item Flags: IC - Internal Copy, NP - Not platform switched, NS - Negate Signalling, SP - Signal Present, A - Accept, F - Forward, RA - MRIB Accept, RF - MRIB Forward, MA - MFIB Accept, A2 - Accept backup, RA2 - MRIB Accept backup, MA2 - MFIB Accept backup Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second Total/RPF failed/Other drops Other counts: I/O Item Counts: HW Pkt Count/FS Pkt Count/PS Pkt Count Egress Rate in pps VRF 10 (*,224.0.1.40) Flags: C HW SW Forwarding: 0/0/0/0, Other: 0/0/0 HW Forwarding: 0/0/0/0, Other: 294/294/0 TenGigabitEthernet0/0/0.10 Flags: F IC NS Rate: 0 pps Pkts: 0/0/0 Lspvif0, LSM/1, RPF-ID: *, Flags: F NS Pkts: 0/0/0 Rate: 0 pps (169.1.10.4,224.0.1.40) Flags: HW SW Forwarding: 0/0/0/0, Other: 0/0/0 HW Forwarding: 0/0/0/0, Other: 0/0/0 TenGigabitEthernet0/0/0.10 Flags: A IC Lspvif0, LSM/1, RPF-ID: *, Flags: F Pkts: 0/0/0 Rate: 0 pps (169.1.20.2,224.0.1.40) Flags: HW SW Forwarding: 0/0/0/0, Other: 0/0/0 HW Forwarding: 0/0/0/0, Other: 0/0/0 TenGigabitEthernet0/0/0.10 Flags: A IC Lspvif0, LSM/1, RPF-ID: *, Flags: F Pkts: 0/0/0 Rate: 0 pps (169.1.20.6,224.0.1.40) Flags: HW SW Forwarding: 0/0/0/0, Other: 0/0/0 HW Forwarding: 0/0/0/0, Other: 0/0/0 TenGigabitEthernet0/0/0.10 Flags: A IC Lspvif0, LSM/1, RPF-ID: *, Flags: F Pkts: 0/0/0 Rate: 0 pps (169.1.20.10,224.0.1.40) Flags: HW SW Forwarding: 0/0/0/0, Other: 0/0/0 HW Forwarding: 0/0/0/0, Other: 0/0/0 TenGigabitEthernet0/0/0.10 Flags: A IC Lspvif0, LSM/1, RPF-ID: *, Flags: F Pkts: 0/0/0 Rate: 0 pps (169.1.20.14,224.0.1.40) Flags: HW

SW Forwarding: 0/0/0/0, Other: 0/0/0

TenGigabitEthernet0/0/0.10 Flags: A IC

0/0/0/0, Other: 0/0/0

HW Forwarding:

```
Lspvif0, LSM/1, RPF-ID: *, Flags: F
   Pkts: 0/0/0
                  Rate: 0 pps
(169.1.100.7,224.0.1.40) Flags: HW
 SW Forwarding: 0/0/0/0, Other: 0/0/0
 HW Forwarding: 0/0/0/0, Other: 0/0/0
 TenGigabitEthernet0/0/0.10 Flags: A IC
 Lspvif0, LSM/1, RPF-ID: *, Flags: F
   Pkts: 0/0/0
                Rate: 0 pps
(169.2.20.2,224.0.1.40) Flags: HW
 SW Forwarding: 0/0/0/0, Other: 0/0/0
 HW Forwarding:
                  0/0/0/0, Other: 0/0/0
 TenGigabitEthernet0/0/0.10 Flags: A IC
 Lspvif0, LSM/1, RPF-ID: *, Flags: F
    Pkts: 0/0/0
                  Rate: 0 pps
(169.2.20.6,224.0.1.40) Flags: HW
 SW Forwarding: 0/0/0/0, Other: 0/0/0
 HW Forwarding:
                  0/0/0/0, Other: 0/0/0
 TenGigabitEthernet0/0/0.10 Flags: A IC
 Lspvif0, LSM/1, RPF-ID: *, Flags: F
   Pkts: 0/0/0
                  Rate: 0 pps
```

Lspvif0 is the virtual tunnel interface like Point-to-Multipoint (P2MP) tunnel, that is, one endpoint to multiple remote endpoints. Lspvif0 tunnel is used in SD-WAN Multicast. Lspvif0 is the virtual tunnel indicating the packets are transmitted through SD-WAN overlay.

```
DC-8500-01#sh interfaces Lspvif0
LspvifO is up, line protocol is up
 Hardware is
 Interface is unnumbered. Using address of SD-WAN-system-intf (169.1.100.3)
 MTU 17892 bytes, BW 10000000 Kbit/sec, DLY 5000 usec,
     reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation LOOPBACK, loopback not set
 Keepalive set (10 sec)
 Last input never, output 00:00:10, output hang never
 Last clearing of "show interface" counters never
 Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
 Queueing strategy: fifo
 Output queue: 0/0 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     3 packets input, 210 bytes, 0 no buffer
     Received 0 broadcasts (3 IP multicasts)
     0 runts, 0 giants, 0 throttles
```

```
O input errors, O CRC, O frame, O overrun, O ignored, O abort 1628856 packets output, 71967520 bytes, O underruns Output O broadcasts (1289488 IP multicasts)
O output errors, O collisions, O interface resets
O unknown protocol drops
O output buffer failures, O output buffers swapped out
```

LSM/1 in the MFIB output indicates the Replication list attached to Lspvif0 tunnel.

As per the design of Cisco SD-WAN Multicast, DC router learns the PIM enabled Branch routers through Overlay Management Protocol (OMP) and the system-IP of these Branch routers are added to replication list.

DC-8500-01#sh SD-WAN omp multicast-auto-discover Code:

C -> chosen

I -> installed

Red -> redistributed

Rej -> rejected

L -> looped

R -> resolved

S -> stale

Ext -> extranet

Stg -> staged

IA -> On-demand inactive

Inv -> invalid

BR-R -> border-router reoriginated

TGW-R -> transport-gateway reoriginated

ADDRESS FAMILY	TENANT	VPN	SOURCE ORIGINATOR	FROM PEER	STATUS
ipv4	0	10 10	169.1.100.3 169.1.100.4	0.0.0.0 2.2.2.1 2.2.2.2	Inv,U
	0	10	169.101.100.1	2.2.2.1 2.2.2	•
	0	10	169.101.100.2	2.2.2.1 2.2.2	C,R C,I,R

Note: The AutoRP packets from the DC router will be sent to the Branch routers through the SD-WAN BFD tunnel (Dataplane). The DC router will encapsulate AutoRP packets to IPsec tunnel and forward it to Branch routers.

• When you see Forwarding flag set in the MFIB of DC Router, it indicates the replication list is built for the system-ips of the Branch routers and will forward the Multicast traffic based on the replication list. In the replication list, you are able to see entries for both the branch routers. Here is the command output of the replication list:

```
DC-8500-01#sh mvpn replication lsm-id 1
Repl ID: 1FFFFF LSM ID: 1
                              Uptime: 1w3d
 Path Set ID
                    : 25
 Replication branches: 2
  IR (169.101.100.1)
                                   Refcount: 2
     Uptime
                   : 1w3d
     Remote Label : 1006
  IR (169.101.100.2)
                   : 1w3d
                                   Refcount: 2
     Uptime
     Remote Label : 1004
```

• Once the system-ips are present in the replication list, check whether indirect Operational Cloud Environment (OCE) chain/forwarding chain is established to the given branch router. As you see in the next output, the indirect OCE is available only for Branch Router 01.

```
DC-8500-01#sh platform software SD-WAN f0 next-hop indirect all
Show SD-WAN next-hop oce all :

OCE ID: Oxf8000d9f, OCE Type: SD-WAN_NH_INDIRECT
Indirect: client_handle 0x5649f38aaa80, ppe addr 418b02c0
   nhobj_type: SD-WAN_NH_LOCAL_SLA_CLASS, nhobj_handle: 0xf80805cf
   label: 1006, dst_vpn: 10, nexthop sys_ip: 169.101.100.1, sla_class: 1
```

The indirect OCE chain is the internal forwarding chain built when the DC router learns the unicast routes from the respective branch router. This is as per design of SD-WAN Multicast, where Multicast will leverage unicast routing to forward Multicast RP information.

The reason for DC router not forwarding the AutoRP mapping to branch router 02 is because the Indirect OCE is built only for Branch Router 01, but not for Branch Router 02. Only when the internal forwarding chain is established to the respective branch router, the DC router will forward the AutoRP mapping to that branch router.

• Since the DC router did not have any unicast routes in Routing Information Base (RIB) learnt from branch router 02, the forwarding chain is not built to branch router 02.

```
DC-8500-01#sh ip route vrf 10 omp
Routing Table: 10
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, m - OMP
       n - NAT, Ni - NAT inside, No - NAT outside, Nd - NAT DIA
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       H - NHRP, G - NHRP registered, g - NHRP registration summary
       o - ODR, P - periodic downloaded static route, l - LISP
       a - application route
       + - replicated route, % - next hop override, p - overrides from PfR
       & - replicated local route overrides by connected
Gateway of last resort is 169.1.10.1 to network 0.0.0.0
     169.101.0.0/16 [251/0] via 169.101.100.1, 2wOd, SD-WAN-system-intf
DC-8500-01#
```

• As you see in the next OMP routes output, the route learnt from Branch Router 02 is not installed to VRF 10 RIB of DC router.

```
DC-8500-01#sh SD-WAN omp routes 169.101.0.0/16
Code:
C -> chosen
  -> installed
Red -> redistributed
Rej -> rejected
   -> looped
  -> resolved
S -> stale
Ext -> extranet
Inv -> invalid
Stg -> staged
IA -> On-demand inactive
U -> TLOC unresolved
BR-R -> border-router reoriginated
TGW-R -> transport-gateway reoriginated
```

TENANT	VPN	PREFIX	FROM PEER	PATH ID	LABEL	STATUS	ATTRIBUTE TYPE	TLOC IP
0	10	169.101.0.0/16	2.2.2.1 2.2.2.1 2.2.2.2 2.2.2.2	15 19 16 21	1004 1006 1004 1006	R C,I,R R C,R	installed installed	169.101.100. 169.101.100. 169.101.100. 169.101.100.

DC-8500-01#

The reason for routes learnt from secondary router is not installed to RIB is because routes learnt from secondary router have higher OSPF cost compared to primary router:

```
<#root>
```

```
DC-8500-01#sh SD-WAN omp routes 169.101.0.0/16 detail
______
omp route entries for tenant-id 0 vpn 10 route 169.101.0.0/16
______
         RECEIVED FROM:
        2.2.2.1
peer
            15
path-id
            1004
label
status
loss-reason origin-metric
lost-to-peer 2.2.2.1
lost-to-path-id 19
   Attributes:
                169.101.100.2
    originator
    type installed
tloc 169.101.100.2, public-internet, ipsec
ultimate-tloc not set
domain-id not set
overlay-id 1
site-id 10
    preference not set
    affinity-group None
    region-id None region-path not set
    route-reoriginator not set
                 not set
    tag
```

```
origin-proto
                      OSPF-external-1
     origin-metric
                      35
     as-path
                      not set
     community
                      not set
     unknown-attr-len not set
            RECEIVED FROM:
peer
                2.2.2.1
path-id
                19
label
                1006
                C,I,R
status
                not set
loss-reason
lost-to-peer
                not set
lost-to-path-id not set
    Attributes:
                      169.101.100.1
     originator
     type
                      installed
                      169.101.100.1, biz-internet, ipsec
     tloc
     ultimate-tloc
                      not set
     domain-id
                      not set
     overlay-id
                       1
     site-id
                      10
     preference
                      not set
     affinity-group None
     region-id
                      None
     region-path
                      not set
     route-reoriginator
                              not set
                      not set
     origin-proto
                      OSPF-external-1
     origin-metric
                      30
     as-path
                      not set
     community
                      not set
     unknown-attr-len not set
            RECEIVED FROM:
                2.2.2.2
peer
path-id
                16
                1004
label
status
                R
                origin-metric
loss-reason
lost-to-peer
                2.2.2.2
lost-to-path-id 21
    Attributes:
     originator
                      169.101.100.2
                      installed
     type
                      169.101.100.2, public-internet, ipsec
     tloc
     ultimate-tloc
                      not set
     domain-id
                      not set
     overlay-id
                       1
     site-id
                      10
     preference
                      not set
     affinity-group
                     None
     region-id
                      None
     region-path
                      not set
     route-reoriginator
                              not set
     tag
                      not set
     origin-proto
                      OSPF-external-1
     origin-metric
                      35
```

```
as-path
                      not set
     community
                      not set
     unknown-attr-len not set
            RECEIVED FROM:
peer
                2.2.2.2
path-id
                21
                1006
label
                C,R
status
                not set
loss-reason
lost-to-peer
               not set
lost-to-path-id not set
    Attributes:
                      169.101.100.1
     originator
                      installed
     type
     tloc
                      169.101.100.1, biz-internet, ipsec
     ultimate-tloc
                      not set
     domain-id
                      not set
     overlay-id
                      1
                      10
     site-id
     preference
                      not set
     affinity-group None
     region-id
                      None
     region-path
                      not set
     route-reoriginator
                             not set
     tag
                      not set
     origin-proto
                      OSPF-external-1
     origin-metric
                      30
     as-path
                      not set
     community
                      not set
     unknown-attr-len not set
DC-8500-01#
```

• Also, only OSPF routes were distributed to OMP on branch routers. Here is the OMP configurations from secondary branch router:

```
<#root>
 omp
 no shutdown
 send-path-limit 16
 ecmp-limit
 graceful-restart
 no as-dot-notation
 timers
                          300
  holdtime
  advertisement-interval 1
  graceful-restart-timer 43200
   eor-timer
                          300
 address-family ipv4 vrf 10
advertise ospf external
 address-family ipv6
```

Possible Workarounds

1. You can configure a Loopback interface on branch router 02 and advertise the prefix through OMP to DC router.

```
Branch-C8300-02#sh run interface Lo0
Building configuration...

Current configuration : 151 bytes
!
interface Loopback0
  description Management loopback
  vrf forwarding 10
  ip address 169.101.100.2 255.255.255
  no ip redirects
  ip mtu 1500
end
```

OMP configurations on branch router 02 to advertise connected routes:

```
<#root>
omp
 no shutdown
              65376
 overlay-as
 send-path-limit 16
 ecmp-limit
 graceful-restart
 no as-dot-notation
 timers
  holdtime
  advertisement-interval 1
  graceful-restart-timer 43200
   eor-timer
 exit
 address-family ipv4 vrf 10
   advertise ospf external
   advertise connected
<==
 address-family ipv6
  advertise connected
  advertise static
 ļ
```

Now you see AutoRP mapping learnt on branch router 02:

```
Branch-C8300-02# sh ip pim vrf 10 rp mapping
PIM Group-to-RP Mappings

Group(s) 239.195.0.0/16
RP 10.125.125.1 (?), v2v1
Info source: 169.1.10.4 (terin.net.afrihost.co.za), elected via Auto-RP
Uptime: 00:02:18, expires: 00:02:47

Branch-C8300-02#
```

Similarly, you can see AutoRP mapping learnt on the branch switch as well:

```
Branch-9k#sh ip pim rp mapping
PIM Group-to-RP Mappings

Group(s) 239.195.0.0/16
RP 10.125.125.1 (?), v2v1
Info source: 169.254.100.9 (?), elected via Auto-RP
Uptime: 00:03:36, expires: 00:02:46

Acl: RP-Region-Ent-Sites, Static-Override
RP: 10.125.125.1 (?)
```

When you inspect the Indirect OCE/Forwarding chain output on the DC router, it has entries for system-ip of both primary and secondary branch routers:

```
<#root>
DC-8500-01#sh platform software SD-WAN f0 next-hop indirect all
Show SD-WAN next-hop oce all :

OCE ID: Oxf80009bf, OCE Type: SD-WAN_NH_INDIRECT
Indirect: client_handle 0x5649f389fbc0, ppe addr 418b05c0
    nhobj_type: SD-WAN_NH_LOCAL_SLA_CLASS, nhobj_handle: Oxf808044f
    label: 1006, dst_vpn: 10,

    nexthop sys_ip: 169.101.100.1

, sla_class: 1

OCE ID: Oxf80009df, OCE Type: SD-WAN_NH_INDIRECT
Indirect: client_handle 0x5649f38a11f0, ppe addr 418b06d0
    nhobj_type: SD-WAN_NH_LOCAL_SLA_CLASS, nhobj_handle: Oxf808045f
    label: 1004, dst_vpn: 10,

    nexthop sys_ip: 169.101.100.2

, sla_class: 1
```

Now you see DC router RIB has prefixes learnt from branch router 02 also installed.

```
DC-8500-01#sh ip route vrf 10 omp
Routing Table: 10
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, m - OMP
       n - NAT, Ni - NAT inside, No - NAT outside, Nd - NAT DIA
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       H - NHRP, G - NHRP registered, g - NHRP registration summary
       o - ODR, P - periodic downloaded static route, 1 - LISP
       a - application route
       + - replicated route, % - next hop override, p - overrides from PfR
       & - replicated local route overrides by connected
Gateway of last resort is 169.1.10.1 to network 0.0.0.0
      169.101.0.0/16 is variably subnetted, 3 subnets, 3 masks
         169.101.0.0/16 [251/0] via 169.101.100.1, 13:59:47, SD-WAN-system-intf
m
         169.101.10.0/28
m
           [251/0] via 169.101.100.2, 00:07:50,
SD-WAN-system-intf
         169.101.100.2/32
m
           [251/0] via 169.101.100.2, 00:07:50,
 SD-WAN-system-intf
```

2. On the branch routers interface connecting to the LAN switch, configure higher IP address on the primary branch router compared to that of secondary router. With this primary branch router will become Designated forwarder, thereby it will be able to forward the AutoRP information to the switch as primary branch router had learnt AutoRP information.

Conclusion

While implementing Multicast over Cisco SD-WAN, you must ensure, all the remote routers (including primary and secondary routers) are advertising unicast prefix to the SD-WAN router closer to RP through OMP. The SD-WAN Multicast leverages unicast routing to build forwarding chain which is required for Multicast control plane information to be transmitted.