Troubleshoot vEdge Bidirectional Forwarding Detection and Data Plane Connections Issues

Contents

Introduction
Prerequisites
Requirements
Components Used
Control Plane Information
Check Control Local Properties
Check Control Connections
Overlay Management Protocol
Verify OMP TLOCs are Advertised from the vEdges
Verify vSmart Receives and Advertises the TLOCs
Bidirectional Forwarding Detection
Understand the show bfd sessions command
Command show tunnel statistics
Access List
Network Address Translation
How to Use tools stun-client to Detect NAT Maps and Filters.
Supported NAT Types for Data Plane Tunnels"Sending" used in CLI
Firewalls
<u>Security</u>
ISP Problems with DSCP Marked Traffic
Debug BFD
Use Packet-Trace to Capture BFD Packets (20.5 and later)
Related Information

Introduction

This document describes vEdge data plane connection problems after a control plane connection however no data plane connectivity between sites.

Prerequisites

Requirements

Cisco recommends knowledge of Cisco Software Defined Wide Area Network (SDWAN) solution.

Components Used

This document is not restricted to specific software and hardware versions. This document is focused on

vEdge platforms.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, ensure that you understand the potential impact of any command.

For Cisco Edge routers (Cisco IOS® XE routers in controller mode) , please read .

Control Plane Information

Check Control Local Properties

In order to check the status of the Wide Area Network (WAN) interfaces on a vEdge, use the command, show control local-properties wan-interface-list.

In this output, you can see the RFC 4787 Network Address Translation (NAT) Type.

vEdge1# show control local-properties wan-interface-list

When the vEdge is behind a NAT device (Firewall, Router, etc), Public and Private IPv4 address, Public and Private source User Datagram Protocol (UDP) ports are used to build the data plane tunnels.

You can also find the state of the tunnel interface, color, and maximum number of control connections configured.

NAT TYPE:	E indicates A indicates N indicates Requires minim	E indicates End-point independent mapping A indicates Address-port dependent mapping N indicates Not learned Requires minimum two vbonds to learn the NAT type							
INTERFACE	PUBLIC IP∨4	PUBLIC PORT	PRIVATE IP∨4	PRIVATE IPv6	PRIVATE PORT	VS/VM	COLOR	STATE	MA) CNT
ge0/0 ge0/1	203.0.113.225 10.20.67.10	4501 12426	10.19.145.2 10.20.67.10	 :: ::	12386 12426	1/1 0/0	gold mpls	up up	2

With this data, you can identify certain information about how the data tunnels must be built and what ports you can expect (from the routers perspective) to use when you form the data tunnels.

Check Control Connections

It is important to ensure that the color that does not form data plane tunnels has a control connection established with the controllers in the overlay.

Otherwise, the vEdge does not send the Transport Locator (TLOC) information to the vSmart via Overlay Management Protocol (OMP).

You can verify if it is operational with the use of show control connections command, and look for the connect state.

						PEER	
PEER	PEER	PEER	SITE	DOMAIN	PEER	PRIV	PEER
TYPE	PROT	SYSTEM IP	ID	ID	PRIVATE IP	PORT	PUBLIC IP
vsmart	dtls	10.1.0.3	3	1	203.0.113.13	12446	203.0.113.1
vbond	dt]s	-	0	0	203.0.113.12	12346	203.0.113.1
vmanage	dtls	10.1.0.1	1	0	203.0.113.14	12646	203.0.113.1

If the interface (that does not form data tunnels) tries to connect, solve it with a successful start-up of the control connections via that color.

Or, set the max-control-connections 0 in the selected interface under the tunnel interface section.

```
vpn 0
 interface ge0/1
 ip address 10.20.67.10/24
  tunnel-interface
   encapsulation ipsec
   color mpls restrict
   max-control-connections 0
   no allow-service bgp
   allow-service dhcp
   allow-service dns
   allow-service icmp
   no allow-service sshd
   no allow-service netconf
   no allow-service ntp
   no allow-service ospf
   no allow-service stun
 no shutdown
 i
```


Note: Sometimes, you can use the no control-connections command to achieve the same goal. However, that command does not establish a maximum number of control connections. This command is deprecated from version 15.4 and is not used on newer software.

Overlay Management Protocol

Verify OMP TLOCs are Advertised from the vEdges

OMP TLOCs cannot be sent because the interface tries to form control connections via that color and is not able to reach the controllers.

Check if the color (that the data tunnels) sends the TLOC for that particular color to the vSmarts.

Use the command show omp tlocs advertised in order to check the TLOCs that are sent to the OMP peers.

Example: Colors mpls and gold. No TLOC is sent to vSmart for color mpls.

<pre>vEdge1# C -> c I -> i Red -> r Rej -> r L -> 1 R -> r S -> s Ext -> e Stg -> s Inv -> i</pre>	show omp tlocs hosen nstalled redistributed rejected ooped resolved ttale extranet ttaged nvalid	advertised						
ADDRESS FAMILY	TLOC IP	COLOR	ENCAP	FROM PEER	STATUS	PSEUDO KEY	PUBLIC IP	P P
ipv4	10.1.0.5 10.1.0.2 10.1.0.2 10.1.0.30 10.1.0.30 10.1.0.4 10.1.0.4	gold mpls blue mpls gold mpls gold	ipsec ipsec ipsec ipsec ipsec ipsec ipsec	0.0.0.0 10.1.0.3 10.1.0.3 10.1.0.3 10.1.0.3 10.1.0.3 10.1.0.3	C,Red,R C,I,R C,I,R C,I,R C,I,R C,I,R C,I,R	1 1 1 1 1 1 1	203.0.113.225 10.20.67.20 198.51.100.187 10.20.67.30 192.0.2.129 10.20.67.40 203.0.113.226	4

Example: Colors mpls and gold. TLOC is sent for both the colors.

vEdge2# show omp tlocs advertised

C -> chosen I -> installed Red -> redistributed Rej -> rejected L -> looped R -> resolved S -> stale Ext -> extranet Stg -> staged Inv -> invalid

ADDRESS					PSEUD	0	P
FAMILY	TLOC IP	COLOR	ENCAP FROM PEER	STATUS	KEY	PUBLIC IP	P
 ipv4	10.1.0.5	gold	ipsec 10.1.0.3	C,I,R	1	203.0.113.225	
	10.1.0.2	mpls	ipsec 0.0.0.0	C,Red,R	1	10.20.67.20	1
	10.1.0.2	blue	ipsec 0.0.0.0	C,Red,R	1	198.51.100.187	1
	10.1.0.30	mpls	ipsec 10.1.0.3	C,I,R	1	10.20.67.30	
	10.1.0.30	gold	ipsec 10.1.0.3	C,I,R	1	192.0.2.129	
	10.1.0.4	mpls	ipsec 10.1.0.3	C,I,R	1	10.20.67.40	
	10.1.0.4	gold	ipsec 10.1.0.3	C,I,R	1	203.0.113.226	

Note: For any locally generated control plane information, "**FROM PEER**" field is set to 0.0.0.0. When you look for locally originated information, ensure to match based on this value.

Verify vSmart Receives and Advertises the TLOCs

TLOCs are now advertised out to the vSmart. Confirm that it receives TLOCs from the correct peer and advertises it to the other vEdge.

Example: vSmart receives the TLOCs from 10.1.0.2 vEdge1.

<#root>

vSmart1# show omp tlocs received

С	->	chosen
I	->	installed
Red	->	redistributed
Rej	->	rejected
L	->	looped
R	->	resolved
S	->	stale
Ext	->	extranet

Stg -> staged Inv -> invalid

ADDRESS FAMILY	TLOC IP	COLOR	ENCAP	FROM PEER	STATUS	PSEUDO KEY	PUBLIC IP	P P
ipv4	10.1.0.5	gold	ipsec	10.1.0.5	C,I,R	1	203.0.113.225	450
	10.1.0.2	mpls	ipsec	10.1.0.2	C,I,R	1	10.20.67.20	1
	10.1.0.2	blue	ipsec	10.1.0.2	C,I,R	1	198.51.100.187	1
	10.1.0.30 10.1.0.30 10.1.0.4 10.1.0.4	mpls gold mpls gold	ipsec ipsec ipsec ipsec	10.1.0.30 10.1.0.30 10.1.0.4 10.1.0.4	C,I,R C,I,R C,I,R C,I,R	1 1 1 1	10.20.67.30 192.0.2.129 10.20.67.40 203.0.113.226	1

If you do not see the TLOCs or you see any other codes here, check these:

<#root>
vSmart-vIPtela-MEX# show omp tlocs received
C -> chosen
I -> installed
Red -> redistributed
Rej -> rejected
L -> looped
R -> resolved
S -> stale
Ext -> extranet

Stg -> staged

Inv -> invalid

ADDRESS FAMILY	TLOC IP	COLOR	ENCAP	FROM PEER	STATUS	PSEUDO KEY	PUBLIC IP	P P
ipv4	10.1.0.5	gold	ipsec	10.1.0.5	C,I,R	1	203.0.113.225	4
	10.1.0.2	mpls	ipsec	10.1.0.2	C,I,R	1	10.20.67.20	1:
	10.1.0.2	blue	ipsec	10.1.0.2	Rej,R,Inv	1	198.51.100.187	12
	10.1.0.30 10.1.0.30 10.1.0.4 10.1.0.4	mpls gold mpls gold	ipsec ipsec ipsec ipsec	10.1.0.30 10.1.0.30 10.1.0.4 10.1.0.4	C,I,R C,I,R C,I,R C,I,R	1 1 1 1	10.20.67.30 192.0.2.129 10.20.67.40 203.0.113.226	1 1

Verify that there is no policy that blocks the TLOCs.

show run policy control-policy - look for any tloc-list that rejects your TLOCs as advertised or received in the vSmart.

```
<#root>
vSmart1(config-policy)# sh config
policy
lists
  tloc-list SITE20
   tloc 10.1.0.2 color blue encap ipsec
  !
 !
 control-policy SDWAN
  sequence 10
  match tloc
    tloc-list SITE20
   !
  action reject ---->
here we are rejecting the TLOC 10.1.0.2, blue, ipsec
  !
  !
 default-action accept
 ļ
apply-policy
site-list SITE20
  control-policy SDWAN in ---->
```

the policy is applied to control traffic coming IN the vSmart, it will filter the tlocs before adding i

Ensure that a policy does not filter the TLOC when it is advertised from the vSmart. You can see that the TLOC is received on the vSmart, but you do not see it on the other vEdge.

Example 1: vSmart with TLOC in C,I,R.

<#root>

vSmart1# show omp tlocs

C -> chosen I -> installed Red -> redistributed Rej -> rejected L -> looped R -> resolved S -> stale Ext -> extranet

Stg -> staged Inv -> invalid

ADDRESS FAMILY	TLOC IP	COLOR	ENCAP FROM PEER	STATUS	PSEUDO KEY	PUBLIC IP	P P
ipv4	10.1.0.5 10.1.0.5	mpls gold	ipsec 10.1.0.5 ipsec 10.1.0.5	C,I,R C,I,R	1 1	10.20.67.10 203.0.113.225	 1 4
10.1.0.	.2 mpls	i	psec 10.1.0.2 C,I,R	1	10.20.0	57.20 12386	1
	10.1.0.2	blue	ipsec 10.1.0.2	C,I,R	1	198.51.100.187	1
	10.1.0.30	mpls	ipsec 10.1.0.30	C,I,R	1	10.20.67.30	
	10.1.0.30	gold	ipsec 10.1.0.30	C,I,R	1	192.0.2.129	
	10.1.0.4	mpls	ipsec 10.1.0.4	C,I,R	1	10.20.67.40	1
	10.1.0.4	gold	ipsec 10.1.0.4	C,I,R	1	203.0.113.226	1

Example 2: vEdge1 does not see the TLOC from color blue that comes of vEdge2. It only sees MPLS TLOC.

<#root>

vEdge1# show omp tlocs С -> chosen -> installed Ι Red -> redistributed Rej -> rejected -> looped 1 -> resolved R S -> stale Ext -> extranet Stg -> staged Inv -> invalid

ADDRESS FAMILY	TLOC IP	COLOR	ENCAP FROM PEEF	R STATUS	PSEUD KEY	O PUBLIC IP	P P
ipv4	10.1.0.5 10.1.0.5	mpls gold	ipsec 0.0.0.0 ipsec 0.0.0.0	C,Red,R C,Red,R C,Red,R	1 1	10.20.67.10 203.0.113.225	11 4
	10.1.0.2	mpls	ipsec 10.1.0.3	C,I,R	1	10.20.67.20	1
	10.1.0.30 10.1.0.30 10.1.0.4 10.1.0.4	mpls gold mpls gold	ipsec 10.1.0.3 ipsec 10.1.0.3 ipsec 10.1.0.3 ipsec 10.1.0.3	C,I,R C,I,R C,I,R C,I,R C,I,R	1 1 1 1	10.20.67.30 192.0.2.129 10.20.67.40 203.0.113.226	

When you check the policy, you can see why the TLOC does not appear on the vEdge1.

```
<#root>
vSmart1# show running-config policy
policy
lists
 tloc-list SITE20
   tloc 10.1.0.2 color blue encap ipsec
  ļ
  site-list SITE10
  site-id 10
  !
 !
 control-policy SDWAN
  sequence 10
  match tloc
    tloc-list SITE20
   !
  action reject
   !
  I
 default-action accept
 !
apply-policy
site-list SITE10
  control-policy SDWAN out
 !
!
```

Bidirectional Forwarding Detection

Understand the show bfd sessions command

These are the key things to look for in the output:

<#root>

vEdge-2# show bfd sessions

SYSTEM IP	SITE ID	STATE	SOURCE TLOC COLOR	REMOTE TLOC COLOR	SOURCE IP
10.1.0.5	10	down	blue	gold	10.19.146.2
10.1.0.30 10.1.0.4	30 40	up up	blue blue	gold gold	10.19.146.2 10.19.146.2
10.1.0.4	40	up	mpls	mpls	10.20.67.10

- **SYSTEM IP:** Peers system-ip
- SOURCE and REMOTE TLOC COLOR: This is useful to know what TLOC is expected to receive and send.
- SOURCE IP: It is the private source IP. If you are behind a NAT, this information is displayed here (it can be seen with the use of show control local-properties <wan-interface-list).
- DST PUBLIC IP: It is the destination that the vEdge uses to form the Data Plane tunnel, whether or not it is behind NAT. (Example: vEdges directly attached to the Internet, or Multi-Protocol Label Switching (MPLS) links)
- DST PUBLIC PORT Public NAT-ed port that the vEdge uses in order to form the Data Plane tunnel to the remote vEdge.
- TRANSITIONS: Number of times the BFD session has changed its status, from NA to UP and vice versa.

Command show tunnel statistics

The show tunnel statistics can display information about the data plane tunnels. You can determine if you send or receive packets for a particular IPSEC tunnel between the vEdges.

This can help you understand if packets arrive on each end, and isolate connectivity issues between the nodes.

In the example, when you run the command multiple times, you can notice an increment or no increment in the tx-pkts or rx-pkts.

Tip: If your counter for tx-pkts increment, you transmit data out to the peer. If your rx-pkts does not increment, it means that data is not received from your peer. In this event, check the other end and confirm if the tx-pkts increments.

<#root>

vEdge2# show tunnel statistics

TUNNEL			SOURCE	DEST			
PROTOCOL	SOURCE IP	DEST IP	PORT	PORT	SYSTEM IP	LOCAL COLOR	REMOTE COLOR

ipsec	172.16.16.147	10.88.244.181	12386	12406	10.1.0.5	public-internet	default	:
insec	172 16 16 147	10 152 201 104	12386	63364	10 1 0 0	nublic-internet d	efault	144
ipsec	172.16.16.147	10.152.204.31	12386	58851	10.1.0.7	public-internet	public-intern	et
ipsec	172.24.90.129	10.88.244.181	12426	12406	10.1.0.5	biz-internet	default	
ipsec	172.24.90.129	10.152.201.104	12426	63364	10.1.0.0	biz-internet d	efault	144
ipsec	172.24.90.129	10.152.204.31	12426	58851	10.1.0.7	biz-internet	public-intern	et
TUNNEL			SOURCE	DEST				
PROTOCOL	SOURCE IP	DEST IP	PORT	PORT	SYSTEM IP	LOCAL COLOR	REMOTE COLOR	
ipsec	172.16.16.147	10.88.244.181	12386	12406	10.1.0.5	public-internet	default	-
-						-		
ipsec	172.16.16.147	10.152.201.104	12386	63364	10.1.0.0	public-internet d	efault	144
ipsec	172.16.16.147	10.152.204.31	12386	58851	10.1.0.7	public-internet	public-intern	et
ipsec	172.24.90.129	10.88.244.181	12426	12406	10.1.0.5	biz-internet	default	
ipsec	172.24.90.129	10.152.201.104	12426	63364	10.1.0.0	biz-internet d	efault	144
ipsec	172.24.90.129	10.152.204.31	12426	58851	10.1.0.7	biz-internet	public-intern	et
-							•	

Another useful command is show tunnel statistics bfd that can be used to check the number of BFD packets sent and received within particular data plane tunnel:

vEdge1# show tunnel statistics bfd

TUNNEL PROTOCOL	SOURCE IP	DEST IP	SOURCE PORT	DEST PORT	BFD ECHO TX PKTS	BFD ECHO RX PKTS	BFD ECHO TX OCTETS	BFD ECHO RX OCTETS	BFD PMTU TX PKTS	BF PM RX PK
ipsec ipsec ipsec	192.168.109.4 192.168.109.4 192.168.109.4	192.168.109.5 192.168.109.5 192.168.109.7	4500 12346 12346	4500 12366 12346	0 1112255 1112254	0 1112253 1112252	0 186302716 186302552	0 186302381 186302210	0 487 487	0 48 48
ipsec	192.168.109.4	192.168.110.5	12346	12366	1112255	1112253	186302716	186302381	487	48

RED

Access List

An access list is a useful and a necessary step after you look at the show bfd sessions output.

Now that the private, and public IPs and Ports are known, you can create an Access Control List (ACL) to match against the SRC_PORT, DST_PORT, SRC_IP, DST_IP.

This can help to verify sent and received BFD messages.

Here, you can find an example of an ACL configuration:

```
policy
access-list checkbfd-out
 sequence 10
  match
```

```
source-ip 192.168.0.92/32
   destination-ip 198.51.100.187/32
    source-port 12426
   destination-port 12426
   I
  action accept
   count bfd-out-to-dc1-from-br1
  !
  ļ
 default-action accept
 !
 access-list checkbfd-in
 sequence 20
  match
   source-ip 198.51.100.187/32
   destination-ip 192.168.0.92/32
   source-port 12426
   destination-port 12426
  !
  action accept
   count bfd-in-from-dc1-to-br1
  1
  I
 default-action accept
 ļ
vpn 0
interface ge0/0
  access-list checkbfd-in in
  access-list checkbfd-out out
  1
 1
ï
```

In the example, this ACL uses two sequences. The sequence 10 matches the BFD messages that are sent from this vEdge to the peer. Sequence 20 does the opposite.

It matches against the source (**Private**) port and destination (**Public**) ports. If the vEdge uses NAT, ensure to check the right source and destination ports.

To check the hits on each sequence counter issue the show policy access-list counters <access-list name>

vEdge1# show policy access-list-counters

NAME	COUNTER NAME	PACKETS	BYTES
checkbfd	bfd-out-to-dc1-from-br1	10	2048
	bfd-in-from-dc1-to-br1	0	0

Network Address Translation

How to Use tools stun-client to Detect NAT Maps and Filters.

If you have done all the steps and you are behind NAT, the next step is to identify the UDP NAT Traversal (RFC 4787) Map and Filter behavior.

This tool is used to discover the local vEdge external IP address when that vEdge is located behind a NAT device.

This command obtains a port mapping for the device and optionally discovers properties about the NAT between the local device and a server (public server: example google stun server).

Note: For more detailed information visit:

vEdgel# tools stun-client vpn 0 options "--mode full --localaddr 192.168.12.100 12386 --verbosity 2 stur stunclient --mode full --localaddr 192.168.12.100 stun.l.google.com in VPN 0 Binding test: success Local address: 192.168.12.100:12386 Mapped address: 203.0.113.225:4501 Behavior test: success Nat behavior: Address Dependent Mapping Filtering test: success Nat filtering: Address and Port Dependent Filtering

On newer versions of software, syntax can be bit different:

<#root>

<#root>

vEdge1# tools stun-client vpn 0 options "--mode full --localaddr 192.168.12.100 --localport 12386 --ver}

In this example, you perform a full NAT detection test with the use of UDP source port 12386 to the Google STUN server.

The output of this command gives you NAT behavior and the NAT filter type based on RFC 4787.

Note: When you use tools stun, remember to allow the STUN service in the tunnel interface, otherwise it does not work. Use allow-service stun in order to let the stun data pass.

<#root>

```
vEdge1# show running-config vpn 0 interface ge0/0
vpn 0
interface ge0/0
ip address 10.19.145.2/30
!
tunnel-interface
encapsulation ipsec
color gold
max-control-connections 1
no allow-service bgp
```

```
allow-service dhcp
allow-service dns
no allow-service icmp
no allow-service sshd
no allow-service netconf
no allow-service ntp
no allow-service ospf
allow-service stun
!
no shutdown
!
```

i

This shows the mapping between STUN terminology (Full-Cone NAT) and RFC 4787 (NAT Behavioral for UDP).

NAT Traversal Mapping Between used Viptela Terminologies							
STUN RFC 3489 Terminology	RFC 4787 Terminology						
	Mapping Behavior	Filtering Behavior					
Full-cone NAT	Endpoint-Independent Mapping	Endpoint-Independent Filtering					
Restricted Cone NAT	Endpoint-Independent Mapping	Address-Dependent Filtering					
Port-Restricted Cone NAT	Endpoint-Independent Mapping	Address and Port-Dependent Filtering					
Symmetric NAT	Address and (or) Port Dependent Manning	Address-Dependent Filtering					
Symmetric NAT	Address-and(or) Fort-Dependent Mapping	Address and Port-Dependent Filtering					

Supported NAT Types for Data Plane Tunnels"Sending" used in CLI

In most of the cases, your public colors like biz-internet or public-internet can be directly attached to the internet.

In other cases, there is a NAT device behind the vEdge WAN interface and the actual Internet Service Provider.

In this manner, the vEdge can have a private IP and the other device (Router, Firewall, etc) can be the device with the public facing IP addresses.

If you have an incorrect NAT type, then it could potentially be one of the most common reasons that do not allow the formation of Data Plane tunnels. These are the supported NAT types.

NAT Traversal Support							
Source	Destination	Supported (YES/NO)					
Full-Cone NAT	Full-cone NAT	Yes					
Full-Cone NAT	Restricted Cone NAT	Yes					
Full-Cone NAT	Port-Restricted Cone NAT	Yes					
Full-Cone NAT	Symmetric NAT	Yes					
Restricted Cone NAT	Full-cone NAT	Yes					
Restricted Cone NAT	Restricted Cone NAT	Yes					
Restricted Cone NAT	Port-Restricted Cone NAT	Yes					
Restricted Cone NAT	Symmetric NAT	Yes					
Port-Restricted Cone NAT	Full-cone NAT	Yes					
Port-Restricted Cone NAT	Restricted Cone NAT	Yes					
Port-Restricted Cone NAT	Port-Restricted Cone NAT	Yes					
Port-Restricted Cone NAT	Symmetric NAT	No					
Symmetric NAT	Full-cone NAT	Yes					
Symmetric NAT	Restricted Cone NAT	yes					
Symmetric NAT	Port-Restricted Cone NAT	No					
Symmetric NAT	Symmetric NAT	No					

Firewalls

If you already checked the NAT and its not in the unsupported **Source** and **Destination** types, it is possible that a Firewall blocks the ports used to form the **Data Plane** tunnels.

Ensure that these ports are open in the Firewall for Data Plane connections: vEdge to vEdge Data Plane:

UDP 12346 to 13156

For control connections from vEdge to controllers:

UDP 12346 to 13156

TCP 23456 to 24156

Ensure that you open these ports in order to achieve successful connection of the Data Plane tunnels.

When you check the source and destination ports used for Data Plane tunnels, you can use show tunnel statistics or show bfd sessions | tab but not show bfd sessions.

It does not show any source ports, only destination ports as you can see:

sessions					
SITE ID	STATE	SOURCE TLOC COLOR	REMOTE TLOC COLOR	SOURCE IP	
50 50	up up	biz-internet private1	biz-internet private1	192.168.109.181 192.168.110.181	
	sessions SITE ID 50 50	sessions SITE ID STATE 50 up 50 up	sessions SOURCE TLOC SITE ID STATE COLOR 50 up biz-internet 50 up private1	sessions SOURCE TLOC REMOTE TLOC SITE ID STATE COLOR COLOR 50 up biz-internet biz-internet 50 up private1 private1	sessionsSOURCE TLOCREMOTE TLOCSITE ID STATECOLORCOLORSOURCE IP50upbiz-internetbiz-internet192.168.109.18150upprivate1192.168.110.181

vEdge1# show bfd sessions | tab

SRC IP	DST IP	PROTO	SRC PORT	DST PORT	SYSTEM IP	SITE ID	LOCAL COLOR	COLOR
192.168.109.181	192.168.109.182	ipsec	12346	12346	192.168.30.105	50	biz-internet	biz-internet
192.168.110.181	192.168.110.182	ipsec	12346	12346	192.168.30.105	50	private1	private1

Note: More information about SD-WAN firewall ports used can be found <u>here</u>.

Security

If you observe that the ACL counter increases inbound and outbound, check several iterations show system statistics diff and ensure there are no drops.

<#root>

vEdge1# show policy access-list-counters

NAME	COUNTER NAME	PACKETS	BYTES
checkbfd	bfd-out-to-dc1-from-br1	55	9405

bfd-in-from-dc1-to-br1 54 8478

In this output, rx_replay_integrity_drops increase with every iteration of the show system statistics diff command.

```
<#root>
vEdge1#show system statistics diff
 rx_pkts : 5741427
 ip_fwd : 5952166
 ip_fwd_arp : 3
 ip_fwd_to_egress : 2965437
 ip_fwd_null_mcast_group : 26
 ip_fwd_null_nhop : 86846
 ip_fwd_to_cpu : 1413393
 ip_fwd_from_cpu_non_local : 15
 ip_fwd_rx_ipsec : 1586149
 ip_fwd_mcast_pkts : 26
 rx_bcast : 23957
 rx_mcast : 304
 rx_mcast_link_local : 240
 rx_implicit_acl_drops : 12832
 rx_ipsec_decap : 21
 rx_spi_ipsec_drops : 16
```

rx_replay_integrity_drops : 1586035

port_disabled_rx : 2 rx_invalid_qtags : 212700 rx_non_ip_drops : 1038073 pko_wred_drops : 3 bfd_tx_record_changed : 23 rx_arp_non_local_drops : 19893 rx_arp_reqs : 294 rx_arp_replies : 34330 arp_add_fail : 263 tx_pkts : 4565384 tx_mcast : 34406 port_disabled_tx : 3 tx_ipsec_pkts : 1553753 tx_ipsec_encap : 1553753 tx_pre_ipsec_pkts : 1553753 tx_pre_ipsec_encap : 1553753 tx_arp_replies : 377 tx_arp_reqs : 34337 tx_arp_req_fail : 2 bfd_tx_pkts : 1553675 bfd_rx_pkts : 21 bfd_tx_octets : 264373160 bfd_rx_octets : 3600 bfd_pmtu_tx_pkts : 78 bfd_pmtu_tx_octets : 53052 rx_icmp_echo_requests : 48 rx_icmp_network_unreach : 75465 rx_icmp_other_types : 47 tx_icmp_echo_requests : 49655 tx_icmp_echo_replies : 48 tx_icmp_network_unreach : 86849 tx_icmp_other_types : 7 vEdge1# show system statistics diff rx_pkts : 151 ip_fwd : 157 ip_fwd_to_egress : 75 ip_fwd_null_nhop : 3 ip_fwd_to_cpu : 43 ip_fwd_rx_ipsec : 41 rx_bcast : 1 rx_replay_integrity_drops : 41 rx_invalid_qtags : 7 rx_non_ip_drops : 21 rx_arp_non_local_drops : 2 tx_pkts : 114 tx_ipsec_pkts : 40 tx_ipsec_encap : 40 tx_pre_ipsec_pkts : 40 tx_pre_ipsec_encap : 40 tx_arp_reqs : 1 bfd_tx_pkts : 40 bfd_tx_octets : 6800 tx_icmp_echo_requests : 1 vEdge1# show system statistics diff rx_pkts : 126 ip_fwd : 125 ip_fwd_to_egress : 58

```
ip_fwd_null_nhop : 3
 ip_fwd_to_cpu : 33
 ip_fwd_rx_ipsec : 36
 rx_bcast : 1
 rx_implicit_acl_drops : 1
rx_replay_integrity_drops : 35
 rx_invalid_qtags : 6
 rx_non_ip_drops : 22
 rx_arp_replies : 1
 tx_pkts : 97
 tx_mcast : 1
 tx_ipsec_pkts : 31
 tx_ipsec_encap : 31
 tx_pre_ipsec_pkts : 31
 tx_pre_ipsec_encap : 31
 bfd_tx_pkts : 32
 bfd_tx_octets : 5442
 rx_icmp_network_unreach : 3
 tx_icmp_echo_requests : 1
 tx_icmp_network_unreach : 3
vEdge1# show system statistics diff
 rx_pkts : 82
 ip_fwd : 89
 ip_fwd_to_egress : 45
 ip_fwd_null_nhop : 3
 ip_fwd_to_cpu : 24
 ip_fwd_rx_ipsec : 22
 rx_bcast : 1
 rx_implicit_acl_drops : 1
rx_replay_integrity_drops : 24
 rx_invalid_qtags : 2
 rx_non_ip_drops : 14
 rx_arp_replies : 1
 tx_pkts : 62
 tx_mcast : 1
 tx_ipsec_pkts : 24
 tx_ipsec_encap : 24
 tx_pre_ipsec_pkts : 24
 tx_pre_ipsec_encap : 24
 tx_arp_reqs : 1
bfd_tx_pkts : 23
bfd_tx_octets : 3908
 rx_icmp_network_unreach : 3
 tx_icmp_echo_requests : 1
 tx_icmp_network_unreach : 3
vEdge1# show system statistics diff
 rx_pkts : 80
 ip_fwd : 84
 ip_fwd_to_egress : 39
 ip_fwd_to_cpu : 20
 ip_fwd_rx_ipsec : 24
```

```
rx_replay_integrity_drops : 22
```

```
rx_invalid_qtags : 3
rx_non_ip_drops : 12
tx_pkts : 66
tx_ipsec_pkts : 21
tx_ipsec_encap : 21
tx_pre_ipsec_pkts : 21
tx_pre_ipsec_encap : 21
bfd_tx_pkts : 21
bfd_tx_octets : 3571
```

First, perform a request security ipsec-rekey on the vEdge. Then, go through several iterations of show system statistics diff and see if you still see rx_replay_integrity_drops.

If you do, check your security configuration.

```
vEdge1# show running-config security
security
ipsec
authentication-type sha1-hmac ah-sha1-hmac
!
!
```

ISP Problems with DSCP Marked Traffic

By default, all control and management traffic from the vEdge router to the controllers travels over DTLS or TLS connections and marked with a DSCP value of CS6 (48 decimal).

For data place tunnels traffic, vEdge routers use IPsec or GRE encapsulation to send data traffic to each other.

For data plane failure detection and performance measurement, routers periodically send each other BFD packets.

These BFD packets are also marked with a DSCP value of CS6 (48 decimal).

From the perspective of ISP, this type of traffic is seen as UDP traffic with DSCP value CS6 as well because vEdge routers and SD-WAN controllers copy DSCP that marks to the outer IP header by default.

Here is how it can look like if tcpdump runs on transit ISP router:

```
14:27:15.993766 IP (tos 0xc0, ttl 64, id 44063, offset 0, flags [DF], proto UDP (17), length 168)
192.168.109.5.12366 > 192.168.20.2.12346: [udp sum ok] UDP, length 140
14:27:16.014900 IP (tos 0xc0, ttl 63, id 587, offset 0, flags [DF], proto UDP (17), length 139)
192.168.20.2.12346 > 192.168.109.5.12366: [udp sum ok] UDP, length 111
14:27:16.534117 IP (tos 0xc0, ttl 63, id 0, offset 0, flags [DF], proto UDP (17), length 157)
192.168.109.5.12366 > 192.168.110.6.12346: [no cksum] UDP, length 129
14:27:16.534289 IP (tos 0xc0, ttl 62, id 0, offset 0, flags [DF], proto UDP (17), length 150)
192.168.110.6.12346 > 192.168.109.5.12366: [no cksum] UDP, length 122
```

As can be seen here, all packets are marked with TOS byte 0xc0 also known as DS field (that is equal to decimal 192, or 110 000 00 in binary.

First 6 high order bits correspond to DSCP bits value 48 in decimal or CS6).

First 2 packets in the output correspond to a control plane tunnel and the 2 that remain, to a data plane tunnel traffic.

Based on the packet length and the TOS mark, it can conclude with high confidence that it was BFD packets (RX and TX directions). These packets are marked with CS6 as well.

Sometimes some service providers (especially MPLS L3 VPN/MPLS L2 VPN service providers) maintain different SLA and can handle a different class of traffic based on DSCP marks differently.

For example, if you have premium service to prioritize DSCP EF and CS6 voice and signaling traffic.

Since priority traffic is almost always policed, even if the total bandwidth of an uplink is not exceeded, for this type of traffic packet loss can be seen and hence BFD sessions can be flapping as well.

It was seen in some cases that if dedicated priority queue on service provider router is starved, you do not see any drops for normal traffic (for example, when you run simple **ping** from vEdge router).

This is because such traffic is marked with default DSCP value 0 as can be seen here (TOS byte):

15:49:22.268044 IP (tos 0x0, tt] 62, id 0, offset 0, flags [DF], proto UDP (17), length 142)
192.168.110.5.12366 > 192.168.109.7.12346: [no cksum] UDP, length 114
15:49:22.272919 IP (tos 0x0, tt] 62, id 0, offset 0, flags [DF], proto UDP (17), length 142)
192.168.110.5.12366 > 192.168.109.7.12346: [no cksum] UDP, length 114
15:49:22.277660 IP (tos 0x0, tt] 62, id 0, offset 0, flags [DF], proto UDP (17), length 142)
192.168.110.5.12366 > 192.168.109.7.12346: [no cksum] UDP, length 114
15:49:22.314821 IP (tos 0x0, tt] 62, id 0, offset 0, flags [DF], proto UDP (17), length 142)
192.168.110.5.12366 > 192.168.109.7.12346: [no cksum] UDP, length 114

But at the same time, your BFD sessions flap:

show bfd history

SYSTEM IP	SITE ID	COLOR	STATE	DST PUBLIC IP	DST PUBLIC PORT	ENCAP	TIME
192.168.30.4	13	public-internet	up	192.168.109.4	12346	ipsec	2019-05-01T0
192.168.30.4	13	public-internet	up	192.168.109.4	12346	ipsec	2019-05-01T0
192.168.30.4	13	public-internet	down	192.168.109.4	12346	ipsec	2019-05-01T0
192.168.30.4	13	public-internet	down	192.168.109.4	12346	ipsec	2019-05-01T0
192.168.30.4	13	public-internet	up	192.168.109.4	12346	ipsec	2019-05-01T0
192.168.30.4	13	public-internet	up	192.168.109.4	12346	ipsec	2019-05-01T0
192.168.30.4	13	public-internet	down	192.168.109.4	12346	ipsec	2019-05-01T0
192.168.30.4	13	public-internet	down	192.168.109.4	12346	ipsec	2019-05-01T0
192.168.30.4	13	public-internet	up	192.168.109.4	12346	ipsec	2019-05-01T0
192.168.30.6	13	public-internet	up	192.168.109.4	12346	ipsec	2019-05-01T0
192.168.30.6	13	public-internet	down	192.168.109.4	12346	ipsec	2019-05-01T0

And here **nping** comes handy in order to troubleshoot:

```
vedge2# tools nping vpn 0 options "--tos 0x0c --icmp --icmp-type echo --delay 200ms -c 100 -q" 192.168.
Nping in VPN 0
Starting Nping 0.6.47 ( http://nmap.org/nping ) at 2019-05-07 15:58 CEST
Max rtt: 200.305ms | Min rtt: 0.024ms | Avg rtt: 151.524ms
Raw packets sent: 100 (2.800KB) | Rcvd: 99 (4.554KB) | Lost: 1 (1.00%)
Nping done: 1 IP address pinged in 19.83 seconds
```

Debug BFD

If deeper investigation is required, run debugging of BFD on the vEdge router.

Forwarding Traffic Manager (FTM) is responsible for BFD operations on vEdge routers and hence you need debug ftm bfd.

All debugging output is stored in /var/log/tmplog/vdebug file and if you want to have those messages on the console (similar to Cisco IOS terminal monitor behavior), you can use monitor start /var/log/tmplog/vdebug.

In order to stop logging, you can use monitor stop /var/log/tmplog/vdebug

Here is how the output looks for BFD session that goes down because of the timeout (remote TLOC with IP address 192.168.110.6 is not reachable anymore):

log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_update_state[1008]: BFD-session TNL</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>ftm_proc_tunnel_public_tloc_msg[252]: tun_rec_index</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	ftm_increment_wanif_bfd_flap[2427]: BFD-session TNL
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_update_state[1119]: BFD-session TNL</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>ftm_tloc_add[1140]: Attempting to add TLOC : from_t</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_set_del_marker_internal[852]: (32771</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_set_del_marker_internal[852]: (32770</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_create[238]: Attempting BFD session</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_clear_delete_marker[828]: (32771:327</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_create[238]: Attempting BFD session</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_clear_delete_marker[828]: (32770:327</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_update_sa[1207]: BFD-session TNL 192</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	ftm_tloc_add[1653]: BFD (32771:32772) src 192.168.1
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	bfdmgr_session_update_sa[1207]: BFD-session TNL 192
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	ftm_tloc_add[1653]: BFD (32770:32772) src 192.168.1
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_update_state[1008]: BFD-session TNL</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>ftm_proc_tunnel_public_tloc_msg[252]: tun_rec_index</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	ftm_increment_wanif_bfd_flap[2427]: BFD-session TNL
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_update_state[1119]: BFD-session TNL</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>ftm_tloc_add[1140]: Attempting to add TLOC : from_t</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_set_del_marker_internal[852]: (32771</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_set_del_marker_internal[852]: (32770</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_create[238]: Attempting BFD session</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_clear_delete_marker[828]: (32771:327</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_create[238]: Attempting BFD session</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_clear_delete_marker[828]: (32770:327</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_update_sa[1207]: BFD-session TNL 192</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	ftm_tloc_add[1653]: BFD (32771:32772) src 192.168.1

log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_update_sa[1207]: BFD-session TNL 192</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	ftm_tloc_add[1653]: BFD (32770:32772) src 192.168.1
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>ftm_send_bfd_msg[499]: Sending BFD notification Dow</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>ftm_tloc_add[1140]: Attempting to add TLOC : from_t</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_set_del_marker_internal[852]: (32771</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_set_del_marker_internal[852]: (32770</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	ftm_tloc_add[1285]: UPDATE local tloc
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_create[238]: Attempting BFD session</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_clear_delete_marker[828]: (32771:327</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_create[238]: Attempting BFD session</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_clear_delete_marker[828]: (32770:327</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_update_sa[1207]: BFD-session TNL 192</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	ftm_tloc_add[1653]: BFD (32771:32772) src 192.168.1
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	<pre>bfdmgr_session_update_sa[1207]: BFD-session TNL 192</pre>
log:local7.debug:	May	7	16:23:09	vedge2	FTMD[674]:	ftm_tloc_add[1653]: BFD (32770:32772) src 192.168.1
log:local7.info:	May	7	16:23:09	vedge2	FTMD[674]: 🤊	Wiptela-vedge2-ftmd-6-INFO-1400002: Notification: 5
log:local7.info:	May	7	16:23:09	vedge2	FTMD[674]: 🤊	Wiptela-vedge2-ftmd-6-INFO-1400002: Notification: 5

Another valuable debug in order to enable is Tunnel Traffic Manager (TTM) events debug is debug ttm events.

Here is how BFD DOWN event looks like from the perspective of TTM:

log:local7.debug:	May	7	16:58:19	vedge2	TTMD[683]:	ttm_debug_announcement[194]:	Received TTM Msg LINK_
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[413]:</pre>	Remote-TLOC: 192.1
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[194]:</pre>	Received TTM Msg LINK_
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[413]:</pre>	Remote-TLOC: 192.1
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[194]:</pre>	Received TTM Msg BFD,
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[402]:</pre>	TLOC: 192.168.30.6
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_af_tloc_db_bfd_status[23</pre>	4]: BFD message: I SA
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[194]:</pre>	Sent TTM Msg TLOC_ADD,
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[213]:</pre>	TLOC: 192.168.30.6
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[217]:</pre>	Attributes: GROU
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[220]:</pre>	Preference: 0
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[223]:</pre>	Weight: 1
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[226]:</pre>	Gen-ID: 214748
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[229]:</pre>	Version: 2
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[232]:</pre>	Site-ID: 13
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[235]:</pre>	Carrier: 4
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[241]:</pre>	Restrict: 0
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[249]:</pre>	Group: Count:
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[262]:</pre>	Groups: 0
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[269]:</pre>	TLOCv4-Public:
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[273]:</pre>	TLOCv4-Private
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[277]:</pre>	TLOCv6-Public:
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[281]:</pre>	TLOCv6-Private
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[285]:</pre>	TLOC-Encap: ip
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[295]:</pre>	Authenticati
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[312]:</pre>	SPI 334, Fla
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[317]:</pre>	Number of pr
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[328]:</pre>	Number of en
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[333]:</pre>	Encrypt type
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[333]:</pre>	Encrypt type
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[339]:</pre>	Number of in
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[344]:</pre>	integrity ty
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[349]:</pre>	#Paths: 0
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[194]:</pre>	Sent TTM Msg TLOC_ADD,
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[213]:</pre>	TLOC: 192.168.30.6
<pre>log:local7.debug:</pre>	May	7	16:58:19	vedge2	TTMD[683]:	<pre>ttm_debug_announcement[217]:</pre>	Attributes: GROU

log:local7.debug:	May	7	16:58:19	vedge2	TTMD[683]:	ttm_debug_annou	<pre>ncement[220]:</pre>	Preference: 0
log:local7.debug:	May	7	16:58:19	vedge2	TTMD[683]:	ttm_debug_annou	<pre>ncement[223]:</pre>	Weight: 1
log:local7.debug:	May	7	16:58:19	vedge2	TTMD[683]:	ttm_debug_annou	ncement[226]:	Gen-ID: 214748
log:local7.debug:	May	7	16:58:19	vedge2	TTMD[683]:	ttm_debug_annou	ncement[229]:	Version: 2
log:local7.debug:	May	7	16:58:19	vedge2	TTMD[683]:	ttm_debug_annou	<pre>ncement[232]:</pre>	Site-ID: 13
log:local7.debug:	May	7	16:58:19	vedge2	TTMD[683]:	ttm_debug_annou	ncement[235]:	Carrier: 4
log:local7.debug:	May	7	16:58:19	vedge2	TTMD[683]:	ttm_debug_annou	ncement[241]:	Restrict: 0
log:local7.debug:	May	7	16:58:19	vedge2	TTMD[683]:	ttm_debug_annou	ncement[249]:	Group: Count:
log:local7.debug:	May	7	16:58:19	vedge2	TTMD[683]:	ttm_debug_annou	ncement[262]:	Groups: 0
log:local7.debug:	May	7	16:58:19	vedge2	TTMD[683]:	ttm_debug_annou	ncement[269]:	TLOCv4-Public:
log:local7.debug:	May	7	16:58:19	vedge2	TTMD[683]:	ttm_debug_annou	ncement[273]:	TLOCv4-Private
log:local7.debug:	May	7	16:58:19	vedge2	TTMD[683]:	ttm_debug_annou	ncement[277]:	TLOCv6-Public:
log:local7.debug:	May	7	16:58:19	vedge2	TTMD[683]:	ttm_debug_annou	ncement[281]:	TLOCv6-Private
log:local7.debug:	May	7	16:58:19	vedge2	TTMD[683]:	ttm_debug_annou	ncement[285]:	TLOC-Encap: in
log:local7.debug:	May	7	16:58:19	vedge2	TTMD[683]:	ttm_debug_annou	ncement[295]:	Authenticati
log:local7.debug:	Mav	7	16:58:19	vedge2	TTMD[683]:	ttm debug annou	ncement[312]:	SPI 334. Fla
log:local7.debug:	Mav	7	16:58:19	vedge2	TTMD[683]:	ttm debug annou	ncement[317]:	Number of pr
log:local7.debug:	Mav	7	16:58:19	vedge2	TTMD[683]:	ttm debug annou	ncement[328]:	Number of er
log:local7.debug:	Mav	7	16:58:19	vedge2	TTMD[683]:	ttm debug annou	ncement[333]:	Encrypt type
log:local7.debug:	Mav	7	16:58:19	vedae2	TTMD[683]:	ttm debug annou	ncement[333]:	Encrypt type
log:local7.debug:	Mav	7	16:58:19	vedge2	TTMD[683]:	ttm debug annou	ncement[339]:	Number of in
log:local7.debug:	Mav	7	16:58:19	vedge2	TTMD[683]:	ttm debug annou	ncement[344]:	integrity ty
log:local7.debug:	May	7	16:58:19	vedge2	TTMD[683]	ttm debug annou	ncement[349]	#Paths: 0
log:local7.debug:	May	7	16.58.19	vedge2	TTMD[683].	ttm_debug_annou	ncement[194]	Sent TTM Msg TLOC ADD
log:local7.debug:	May	7	16.58.19	vedge2	TTMD[683].	ttm_debug_annou	ncement[213]:	TI OC · 192 168 30 6
log:local7.debug:	May	7	16.58.19	vedge2	TTMD[683].	ttm_debug_annou	ncement[217]:	Attributes: CROL
log:local7.debug:	May	7	16.58.19	vedge2	TTMD[683].	ttm_debug_annou	ncement[220]	Preference: 0
log:local7.debug:	May	7	16.58.19	vedge2	TTMD[683].	ttm_debug_annou	ncement[223]:	Weight: 1
log:local7.debug:	May	7	16:58:19	vedge2	TTMD[683].	ttm debug annou	ncement[226]:	Gen-TD: 214748
log:local7.debug:	May	7	16.58.19	vedge2	TTMD[683].	ttm_debug_annou	ncement[220]:	Version: 2
log:local7.debug:	May	7	16.58.19	vedge2	TTMD[683].	ttm_debug_annou	ncement[232]	Site-TD: 13
log:local7.debug:	May	7	16.58.10	vedgez	TTMD[683].	ttm_debug_annou	$n_{compn+}[235]$	Carrier: 4
log:local7.debug.	May	7	16.58.10	veugez	TTMD[005].	ttm_debug_annou	ncomont[241].	Postrict: 0
logilocal7.debugi	May	7	16.58.19	veugez		ttm_debug_annou	ncement[241].	Croupt County
log:local7.debug.	May	7	16.50.19	veugez		ttm_debug_annou	ncement[249].	Groups, O
logilocal7.debugi	May	7	16.50.19	veugez		ttm_debug_annou	ncement[202].	
log:local7.debug:	May	7	16.58:19	veugez		ttm_debug_annou	ncement[209]:	TLOCV4-PUDITC
log: local7.debug:	May	7	16:58:19	veugez		ttm_debug_annou		
log:local7.debug:	May	7	16:58:19	vedge2		ttm_debug_annou	ncement[277]:	
log:local/.debug:	May	7	16:58:19	vedgez		ttm_debug_annou	ncement[281]:	TLOCV6-Private
log:local7.debug:	May	7	16:58:19	vedge2		ttm_debug_annou	ncement[285]:	TLOC-Encap: 1p
log: local7.debug:	May	7	16:58:19	veugez		ttm_debug_annou		
log:local7.debug:	May	7	16.58:19	veugez		ttm_debug_annou	ncement[312]:	SPI 554, Fic
log:local/.debug:	May	7	16:58:19	vedgez		ttm_debug_annou	ncement[317]:	Number of pr
log:local/.debug:	May	7	16:58:19	vedge2	TIMD[683]:	ttm_debug_annou	ncement[328]:	Number of er
log:local/.debug:	May	/	16:58:19	vedge2	TIMD[683]:	ttm_debug_annou	ncement[333]:	Encrypt type
log:local/.debug:	May	/	16:58:19	vedge2	TIMD[683]:	ttm_debug_annou	ncement[333]:	Encrypt type
log:local/.debug:	May	/	16:58:19	vedge2	TIMD[683]:	ttm_debug_annou	ncement[339]:	Number of 1r
log:local/.debug:	мау	/	16:58:19	vedge2	TIMD[683]:	ttm_debug_annou	ncement[344]:	integrity ty
iog:iocal/.debug:	мау	/	10:58:19	vedge2		ttm_debug_annou	ncement[349]:	#Paths: 0
log:local/.debug:	Мау	/	16:58:19	vedge2		ttm_debug_annou	ncement[194]:	Sent IIM Msg DAIA_DEV
iog:iocal/.debug:	мау	_/	10:28:19	vedge2		ttm_debug_annou	ncement[431]:	Device: 192.168.30
log:local/.into:	Мау	/ 1	10:58:19	vedge2	FIMD[6/4]: 5	%viptela-vedge2-	TTMD-6-INFO-1	400002: Notification:
log:local7.info:	Мау	1	16:58:20	vedge2	FIMD[674]: 9	%V1ptela-vedge2-	ttmd-6-INFO-1	400002: Notification: 5

Use Packet-Trace to Capture BFD Packets (20.5 and later)

Another useful tool introduced in 20.5.1 and later software is packet-trace for vEdges.

Because the BFD session uses the same standard ports, generally 12346, it is simplest to filter based on the peer IP address.

For example:

vedge#	show bfd	sessions				
SYSTEM	IP	SITE ID	STATE	SOURCE TLOC COLOR	REMOTE TLOC COLOR	SOURCE IP
10.4.4.	1	101	up	default	default	192.168.16.29
10.4.4.	2	102	up	default	default	192.168.16.29

The packet-trace would be configured:

vedge# debug packet-trace condition ingress-if ge0/0 vpn 0 source-ip 192.168.29.39 vedge# debug packet-trace condition start vedge# debug packet-trace condition stop

The results can be displayed using the show commands noted below. For ingress packets, there is an 'isBFD' flag which is set to '1' (true) for BFD traffic.

<pre>vedge# show packet-trace statistics</pre>					
packet-trace statistics 0					
source-ip	192.168.29.39				
source-port	12346				
destination-ip	192.168.16.29				
destination-port	12346				
source-interface	ge0_0				
destination-interface	loop0.1				
decision	FORWARD				
duration	25				
packet-trace statistics	5 1				
source-ip	192.168.29.39				
source-port	12346				
destination-ip	192.168.16.29				
destination-port	12346				
source-interface	ge0_0				
destination-interface	loop0.1				
decision	FORWARD				
duration	14				
packet-trace statistics	5 2				
source-ip	192.168.29.39				
source-port	12346				
destination-ip	192.168.16.29				
destination-port	12346				
source-interface	ge0_0				
destination-interface	loop0.1				
decision	FORWARD				
duration	14				

vedge# show packet-trace detail 0

Pkt-id	<pre>src_ip(ingress_if)</pre>	<pre>dest_ip(egress_if)</pre>	Duration	Decision
0	192.168.29.39:12346 (ge0_0)	192.168.16.29:12346 (loop0.1)	25 us	FORWARD

INGRESS_PKT: 00 50 56 84 79 be 00 50 56 84 3c b5 08 00 45 c0 00 96 ab 40 40 00 3f 11 e0 c1 c0 a8 1d 27 c0 a8 10 1d 30 3a 30 3a 00 82 00 00 a0 00 01 02 00 00 0e 3f 4b 65 07 bc 61 03 38 71 93 53 58 88 d8 08 41 95 7c 1a ff 8b cc b4 d0 d8 61 44 40 67 cc 1a 01 fd 1f c4 45 95 ea 7e 15 c9 08 2e b6 63 84 00 EGRESS_PKT: al 5e fe 11 00 00 00 00 00 00 00 00 00 00 00 04 00 0c 04 00 41 01 02 00 00 00 00 00 00 00 00 00 00 a4 00 01 00 00 Feature Data -----TOUCH : fp_proc_packet core_id: 2 DSCP: 48 ------TOUCH : fp_proc_packet2 core_id: 2 DSCP: 48 -----TOUCH : fp_ip_forward core_id: 2 DSCP: 48 _____ TOUCH : fp_ipsec_decrypt core_id: 2 DSCP: 48 _____ FP_TRACE_FEAT_IPSEC_DATA: src_ip : 192.168.29.39 src_port : 3784 dst_ip : 192.168.16.29 dst_port : 3784 isBFD : 1 core_id: 2 DSCP: 48 TOUCH : fp_send_pkt core_id: 2 DSCP: 48 _____ TOUCH : fp_hw_x86_pkt_free core_id: 2 DSCP: 48 ------TOUCH : fp_proc_remote_bfd_ core_id: 2 DSCP: 48 ------TOUCH : BFD_ECHO_REPLY core_id: 2 DSCP: 48 -----TOUCH : fp_hw_x86_pkt_free core_id: 2 DSCP: 48

Egress BFD packets are captured in a similar manner. These results identify the specific type, whether an echo request or reply.

vedge# debug packet-trace condition vpn 0 destination-ip 192.168.29.39 vedge# debug packet-trace condition start vedge# debug packet-trace condition stop

vedge# show packet-trace statistics packet-trace statistics 0 source-ip 192.168.16.29 source-port 3784 destination-ip 192.168.29.39 destination-port 3784 source-interface loop0.0 destination-interface ge0_0 decision FORWARD duration 15 packet-trace statistics 1 source-ip 192.168.16.29 source-port 3784 3784 source-port 3784 destination-ip 192.168.29.39 destination-port 3784 source-interface loop0.0 destination-interface ge0_0 decision FORWARD duration 66 packet-trace statistics 2 source-ip192.168.16.29source-port3784destination-ip192.168.29.39destination-port3784source-interface100p0.0 destination-interface ge0_0 decision FORWARD duration 17

vedge# show packet-trace details 0

______ Pkt-id src_ip(ingress_if) dest_ip(egress_if) Duration Decision _____ 192.168.16.29:3784 (loop0.0) 192.168.29.39:3784 (ge0_0) FORWARD 0 15 us INGRESS_PKT: 45 c0 00 4f 00 00 40 00 ff 11 cc 48 c0 a8 10 1d c0 a8 1d 27 0e c8 0e c8 00 3b 00 00 80 c0 07 00 00 00 00 01 00 00 00 01 00 0f 42 40 00 0f 42 40 00 0f 42 40 01 00 0c 01 00 00 1d 3b b1 c9 89 d7 03 00 0f c0 a8 10 1d 30 3a c0 a8 1d 27 30 3a a3 96 07 3b 47 1c 60 d1 d5 76 4c 72 78 1f 9a 0d 00 EGRESS_PKT: 00 50 56 84 3c b5 00 50 56 84 79 be 08 00 45 c0 00 96 ab 40 40 00 3f 11 e0 c1 c0 a8 10 1d c0 a8 1d 27 30 3a 30 3a 00 82 00 00 a0 00 01 01 00 00 5c 3d 88 9a c7 28 23 1b e6 18 ea fe 73 1b b9 e3 79 bf d9 f4 72 41 96 c1 47 07 44 56 77 5a a2 fb 43 59 c1 97 59 47 62 21 77 d4 f4 47 8b 30 b0 00 Feature Data ------TOUCH : fp_send_bfd_pkt core_id: 0 DSCP: 48 _____ TOUCH : BFD ECHO REPLY core_id: 0 DSCP: 48 _____ TOUCH : fp_ipsec_loopback_f core_id: 0

DSCP: 48 ------TOUCH : fp_send_pkt core_id: 0 DSCP: 48 _____ TOUCH : fp_ip_forward core_id: 2 DSCP: 48 -----TOUCH : fp_send_ip_packet core_id: 2 DSCP: 48 _____ TOUCH : fp_send_pkt core_id: 2 DSCP: 48 -----TOUCH : fp_hw_x86_pkt_free core_id: 2 DSCP: 48 vedge# show packet-trace details 1 Pkt-id src_ip(ingress_if) dest_ip(egress_if) Duration Decision _____ 1 192.168.16.29:3784 (loop0.0) 192.168.29.39:3784 (ge0_0) FORWARD 66 us INGRESS_PKT: 45 c0 00 56 00 00 40 00 ff 11 cc 41 c0 a8 10 1d c0 a8 1d 27 0e c8 0e c8 00 42 00 00 80 c0 07 00 00 00 00 01 00 00 00 01 00 0f 42 40 00 0f 42 40 00 0f 42 40 01 00 0c 00 00 1d b8 35 a8 09 88 03 00 0f c0 a8 10 1d 30 3a c0 a8 1d 27 30 3a 04 00 07 01 00 05 a6 38 ff 7e 06 1e da 23 19 d5 00 EGRESS_PKT: 00 50 56 84 3c b5 00 50 56 84 79 be 08 00 45 c0 00 9d ab 40 40 00 3f 11 e0 ba c0 a8 10 1d c0 a8 1d 27 30 3a 30 3a 00 89 00 00 a0 00 01 01 00 00 5c 3e 2d 3b 9e 81 aa 10 26 54 7f 47 5c d8 81 4f 23 2e 3c 39 1e 94 b2 f4 fb a4 ba 98 54 73 99 8f 2e 95 d7 69 fb 91 41 96 93 03 5b a4 e4 e8 82 00 Feature Data ------TOUCH : fp_send_bfd_pkt core_id: 0 DSCP: 48 -----TOUCH : BFD_ECHO_REQUEST core_id: 0 DSCP: 48 ------TOUCH : fp_ipsec_loopback_f core_id: 0 DSCP: 48 -----TOUCH : fp_send_pkt core_id: 0 DSCP: 48 _____ TOUCH : fp_ip_forward core_id: 2 DSCP: 48 ------------TOUCH : fp_send_ip_packet core_id: 2 DSCP: 48 -----

TOUCH : fp_send_pkt core_id: 2 DSCP: 48 -----TOUCH : fp_hw_x86_pkt_free core_id: 2 DSCP: 48

Related Information

<u>Technical Support & Documentation - Cisco Systems</u>