Xconnect over VRF Aware L2TPv3 in ASR1K

Contents

Introduction

Background Information

Test Case I: L2TPv3 Xconnect over IP network with Endpoints in VRF

Test Case II: L2TPv3 Xconnect over MPLS network with Endpoints in VRF

Introduction

This document describes how the Virtual Routing and Forwarding (VRF) can be used when you configure Layer 2 Tunneling Protocol (L2TP)v3 Xconnect over IP and Multiprotocol Label Switching (MPLS) network.

Background Information

L2TP is the tunneling protocol used by Internet Service Providers (ISPs) in order to provide Virtual Private Network (VPN) in the dial access space over the internet.

It combines the best of Cisco's Layer 2 Forwarding (L2F) protocol and Microsoft's Point-to-Point Tunneling Protocol (PPTP). The main components of L2TP are L2TP Access Controller (LAC) and L2TP Network Server (LNS).

L2TP Access Controller: LAC is an access server connected to Public Switched Telephone Network (PSTN). The LAC is the initiator of incoming calls and the receiver of outgoing calls. It is connected to LNS over LAN or WAN.

L2TP Network Server: LNS is the network server for L2TP protcol where PPP sessions terminate and are authenticated. The LNS is the initiator of outgoing calls and the receiver of incoming calls.

L2TPv2 was designed to carry PPP traffic over IP networks. Network access equipment (DSL, cable modem or dial-up access interfaces) accepted PPP connections from subscribers and tunnelled the PPP sessions to the ISP over L2TP. The new version L2TPv3 is designed to carry any Layer 2 payload in addition to PPP which was the only payload that was supported by version 2. Specifically, L2TPv3 defines the L2TP protocol for tunneling Layer 2 payloads over an IP core network with the use Layer 2 VPNs. Benefits of this feature include this:

- L2TPv3 simplifies deployment of VPNs
- L2TPv3 does not require MPLS
- L2TPv3 supports Layer 2 tunneling over IP for any payload

Here is the sample configuration of L2TPv3 pseudowire:

1.enable

2.configureterminal

3.interface type slot/port

4.xconnectpeer-ip-address vcidencapsulation l2tpv3pw-class-pw-class-name

Now take a look at how L2TPv3 Xconnect behaves when VRF is used. Here is the topology that is used for demonstration in which we Xconnect is configured between CPE and ASR1002 (IP) and ASR1004 (MPLS) with endpoints at ASR1000 in VRF (VRF Aware L2TPv3 is not supported on ASR1000 platform).

Test Case I: L2TPv3 Xconnect over IP network with Endpoints in VRF

PE-1 and PE-2 make the MPLS network for ISP. CPE is connected to PE-1 over VRF and ASR1002 is connected to PE-2 over VRF. ASR1002 also has VRF on the interface connected to PE-2. The reachability of CPE loopback from ASR1002 is via VRF over IP interface.

Configuration on CPE for Xconnect towards ASR1002:

interface FastEthernet4.2381

encapsulation dot1Q 2381

xconnect 3.3.3.3 2381 encapsulation 12tpv3 pw-class PSEUDO_CLASS >>>>>> Xconnect with ASR1002

```
pseudowire-class PSEUDO_CLASS
encapsulation 12tpv3
interworking vlan
protocol 12tpv3 L2TP_CLASS
ip local interface Loopback0
ip tos reflect
12tp-class L2TP_CLASS
authentication
password cisco
interface Gigabit0/1
ip address 192.168.8.190 255.255.255.0
end
Interface Loopback0
ip address 1.1.1.1 255.255.255.255
end
ip route 0.0.0.0 0.0.0.0 192.168.8.1 >>>>>>> Default route towards PE-1
Working Configuration on ASR1002:
encapsulation dot1Q 906
ip vrf forwarding L2TP_VRF
ip address 10.1.1.1 255.255.255.252
interface GigabitEthernet0/0/1.2381
encapsulation dot1Q 2381
xconnect 1.1.1.1 2381 encapsulation 12tpv3 pw-class PSEUDO_CLASS
pseudowire-class PSEUDO_CLASS
encapsulation 12tpv3
```

```
interworking vlan
protocol 12tpv3 L2TP_CLASS
ip local interface Loopback11
12tp-class L2TP_CLASS
authentication
password cisco
interface Loopback11
ip address 3.3.3.3 255.255.255.255
router bgp 1
address-family ipv4 vrf L2TP_VRF
redistribute connected
neighbor 10.1.1.2 activate
neighbor 10.1.1.2 soft-reconfiguration inbound
exit-address-family
VRF L2TP_VRF:
     Let us now check the status of Xconnect on CPE:
CPE #sh xconnect all de
Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State
qU=qU
       DN=Down
                     AD=Admin Down IA=Inactive
SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware
```

Interworking: vlan Session ID: 1906980494

Tunnel ID: 2886222725

Protocol State: DOWN

Remote Circuit State: DOWN

pw-class: PSEUDO_CLASS_VLAN

It says Segment 2 is down, which means the path from CPE to ASR1002 is having an issue. However, we are able to ping the Endpoint. The debugs on CPE shows that tunnel to Endpoint is failed or there is no route to endpoint.

CPE #sh xconnect all de

Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State

UP=Up DN=Down AD=Admin Down IA=Inactive

SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware

XC ST Segment 1 S1 Segment 2 S2

Interworking: vlan Session ID: 1906980494

Tunnel ID: 2886222725

Protocol State: DOWN

Remote Circuit State: DOWN

pw-class: PSEUDO_CLASS_VLAN

The main issue here is that Endpoint is reachable via VRF on ASR1002. The Xconnect endpoint needs to be in Global Routing Table for it to come up. Let us now configure a route for CPE Loopback 1.1.1.1/32 in global pointing to interface GigabitEthernet0/0/0.906 which is itself in VRF.

ip route 1.1.1.1 255.255.255.255 GigabitEthernet0/0/0.906 10.1.1.2

S 1.1.1.1/32 [1/0] via 10.1.1.2, GigabitEthernet0/0/0.906

Once the dummy static route is configured, Xconnect comes up. You can also point it to Null0.

This is a workaround to let the router believe that Endpoint is reachable via Global not VRF and is just used for Control Plane. The actual data plane traffic will be via VRF only.

Here are the ping results with and without VRF:

ip route 1.1.1.1 255.255.255.255 GigabitEthernet0/0/0.906 10.1.1.2

S 1.1.1.1/32 [1/0] via 10.1.1.2, GigabitEthernet0/0/0.906

Status of Xconnect on CPE:

CPE #sh xconnect all de

Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State

 ${\tt UP=Up} \qquad \qquad {\tt DN=Down} \qquad \qquad {\tt AD=Admin~Down} \qquad \qquad {\tt IA=Inactive}$

SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware

XC ST Segment 1 S1 Segment 2 S2

Interworking: vlan Session ID: 1906980494

Tunnel ID: 2886222725

Protocol State: UP

Remote Circuit State: UP

pw-class: PSEUDO_CLASS_VLAN

Test Case II: L2TPv3 Xconnect over MPLS network with Endpoints in VRF

PE-1, PE-2 and PE-3 make the MPLS network for ISP with PE-2 acting as Route Reflector (RR). CPE is connected to PE-1 over VRF and ASR1004 is connected to PE-2 with MPLS enabled on the interface. ASR1004 also has VRF in which it is supposed to receive the VPNv4 routes from PE-1 via RR. The reachability of CPE looback from ASR1004 is via VRF over MPLS interface.

Configuration on CPE for Xconnect towards ASR1004:

CPE #sh xconnect all de

Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State

UP=Up DN=Down AD=Admin Down IA=Inactive

SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware

XC ST Segment 1 S1 Segment 2 S2

Interworking: vlan Session ID: 1906980494

Tunnel ID: 2886222725

Protocol State: UP

Remote Circuit State: UP

pw-class: PSEUDO_CLASS_VLAN

Configuration on ASR1004:

CPE #sh xconnect all de

Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State

UP=Up DN=Down AD=Admin Down IA=Inactive

SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware

XC ST Segment 1 S1 Segment 2 S2

Interworking: vlan Session ID: 1906980494

Tunnel ID: 2886222725

Protocol State: UP

Remote Circuit State: UP

pw-class: PSEUDO_CLASS_VLAN

Route entry for Xconnect End Point:

Routing Table: L2TP_VRF Routing entry for 1.1.1.1/32

Known via "bgp 2", distance 200, metric 0, type internal

Last update from 11.11.11.11 6d17h ago

Routing Descriptor Blocks:

* 11.11.11.11 (default), from 22.22.22, 6d17h ago

Route metric is 0, traffic share count is 1

AS Hops 0 MPLS label: 18

MPLS Flags: MPLS Required

We observed that Segment 2 was continuously flapping on both ends.

ASR1004#sh xc all de

Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State

UP=Up DN=Down AD=Admin Down IA=Inactive

SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware

Interworking: vlan Session ID: 2543426569

Tunnel ID: 3352120314

Protocol State: DOWN

Remote Circuit State: DOWN

pw-class: PSEUDO_CLASS_VLAN

ASR1004#sh xc all de

Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State

UP=Up DN=Down AD=Admin Down IA=Inactive

SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware

XC ST Segment 1 S1 Segment 2 S2

Interworking: vlan Session ID: 2543426569

Tunnel ID: 3352120314

Protocol State: UP

Remote Circuit State: UP

pw-class: PSEUDO_CLASS_VLAN

Logs from CPE:

CPE#sh xconnect all de

Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State

UP=Up DN=Down AD=Admin Down IA=Inactive

SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware

DN pri ac Fa4.2380:2380(Eth VLAN) UP 12tp 2.2.2.2:2380

XC ST Segment 1 S1 Segment 2 S2

Flapping with ASR1004

Interworking: vlan Session ID: 3434660693

Tunnel ID: 1760690853

DN -----à

Protocol State: DOWN

Remote Circuit State: DOWN

pw-class: PSEUDO_CLASS

UP pri ac Fa4.2381:2381(Eth VLAN) UP 12tp 3.3.3.3:2381 UP -----

--- à Stable with ASR1002

Session ID: 1906980494 Interworking: vlan

Tunnel ID: 2886222725

Protocol State: UP

Remote Circuit State: UP

pw-class: PSEUDO_CLASS

CPE#sh 12tp session

L2TP Session Information Total tunnels 2 sessions 2

LocID RemID TunID Username, Intf/ State Last Chg Uniq ID

Vcid, Circuit

2714490989 3697021268 1760690853 2380, Fa4.2380:2380 est **00:00:03 0** ————> Flapping with

ASR1004

1906980494 2361475239 2886222725 2381, Fa4.2381:2381 est **15:37:06 0** ————> Stable

You cannot configure a static route in this case as exit interface is MPLS enabled interface. As a workaround, there are two interfaces looped back to each other and configured one in VRF with other in global. Then configured a static route in global pointing towards VRF interface, with this Xconnect became stable.

CPE#sh xconnect all de

Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State

AD=Admin Down IA=Inactive qU=qU DN=Down

SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware

XC ST Segment 1 S1 Segment 2 S2

Flapping with ASR1004

Session ID: 3434660693 Interworking: vlan

Tunnel ID: 1760690853

Protocol State: DOWN

Remote Circuit State: DOWN

pw-class: PSEUDO_CLASS

UP pri ac Fa4.2381:2381(Eth VLAN) UP 12tp 3.3.3.3:2381

IIP -----

--- à Stable with ASR1002

Session ID: 1906980494 Interworking: vlan

Tunnel ID: 2886222725

Protocol State: UP

Remote Circuit State: UP

pw-class: PSEUDO_CLASS

CPE#sh 12tp session

L2TP Session Information Total tunnels 2 sessions 2

LocID RemID TunID Username, Intf/ State Last Chg Uniq ID

Vcid, Circuit

2714490989 3697021268 1760690853 2380, Fa4.2380:2380 est 00:00:03 0 -------> Flapping with

ASR1004

1906980494 2361475239 2886222725 2381, Fa4.2381:2381 est **15:37:06 0**

with ASR1002

L2TP Session Information Total tunnels 2 sessions 2:

Username, Intf/ State Last Chg Uniq ID LocTD RemID TunTD

Vcid, Circuit

2714490989 3697021268 1760690853 2380, Fa4.2380:2380 est 00:20:03 0

1906980494 2361475239 2886222725 2381, Fa4.2381:2381 est 15:37:06 0

The traffic flow is seen as in case of ASR1004:

- When traffic comes from CPE on ASR1004, it comes in MPLS interface Gi0/0/1 and gets switched directly to Gi0/0/0 Access port.
- When traffic comes from Access Port Gi0/0/0, it takes the looped path of Gi0/0/0 -> Gi0/0/2 -> Gi0/0/3 -> Gi0/0/1.

The main issue with this workaround is for QFP utilization on ASR1000 platform as packet processing is done twice:

LocID RemID TunID Username, Intf/ State Last Chg Uniq ID

Vcid, Circuit

2714490989 3697021268 1760690853 2380, Fa4.2380:2380 est **00:20:03 0**

1906980494 2361475239 2886222725 2381, Fa4.2381:2381 est **15:37:06 0**

This behavior is documented in Doc Bug: CSCvi42964