
Understand and Configure NAT64

Contents
Introduction

Prerequisites

Requirements

Components Used

Background Information

Why There is a Need for NAT64

How to Make Communication Between IPv4 and IPv6 Possible

Types of NAT64 Translation

Stateless NAT64

Stateful NAT64

Scenario 1: How to Communicate to IPv4 Server (Located in IPv4 Network) from Host 
in IPv6 Network

Packet Flow in Case of Stateful NAT64

Guide to Configure NAT64

Configuration on NAT 46 Router

Verify NAT64 Details

Scenario 2: Traffic Initiated from IPv4-only Clients to IPv6-only Servers

Guide to Configure NAT46

Configuration on NAT 46 Router

Translation Scenarios and Their Applicability

Important Troubleshooting Commands in Case There are Issues During NAT64 
Implementation

Introduction

This document describes how to understand and configure Network Address Translation (NAT).

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics:

IPv6 •
NAT•

Components Used

This document is not restricted to specific software and hardware versions.

The information in this document was created from the devices in a specific lab environment. All of the 
devices used in this document started with a cleared (default) configuration. If your network is live, ensure 



that you understand the potential impact of any command.

Background Information

NAT64 is a mechanism for IPv4-to-IPv6 transition and IPv4-IPv6 coexistence. Together with DNS64, the 
primary purpose of NAT64 is to allow an IPv6-only client to initiate communications to an IPv4-only 
server. NAT64 can also be used for IPv4-only clients initiating communications with IPv6-only servers 
using static or manual bindings. Both scenarios are explained in this document.

Why There is a Need for NAT64

Almost all modern IP devices are IPv6-capable, but still many older devices are IPv4-only. We need a 
way to connect these devices across an IPv6 network.

•

Some older applications that incorporate IPv4 addresses into the upper layers can be expected to still 
be around for a while and must be adapted to IPv6.

•

As IPv4 addresses become unavailable, IPv6 addresses are assigned to new devices; however, the 
majority of reachable content on the Internet is still IPv4. These new devices must reach that content.

•

After few years, the opposite can apply: The majority of content can be IPv6, but the few remaining 
IPv4-only devices must still reach it.

•

IPv4-only devices must speak to IPv6-only devices with minimal or no user awareness.•

How to Make Communication Between IPv4 and IPv6 Possible

Since IPv6 is not backward compatible with IPv4, you are left with the necessity of transition mechanisms, 
which fall into one of three classes:

Dual-stacked interfaces: The simplest solution to IPv4 and IPv6 co-existence (not interoperability) is 
to make interfaces bilingual, so they can speak IPv4 to IPv4 devices and IPv6 to IPv6 devices. Which 
version they use depends either on the version of packets they receive from a device or the type of 
address DNS gives them when they query for a device address. Dual stack was the intended means of 
transitioning from IPv4 to IPv6, but the assumption was that the transition would be complete before 
IPv4 was depleted. That has not happened, so dual stacking becomes more complex: How do you give 
every interface both an IPv4 address and an IPv6 address when not enough IPv4 addresses are 
available to go around?

•

Tunnels: Tunnels are also about co-existence, not interoperability. They allow devices or sites of one 
version to communicate across a network segment—including the Internet—of the other version. So 
two IPv4 devices or sites can exchange IPv4 packets across an IPv6 network, or two IPv6 devices or 
sites can exchange IPv6 packets across an IPv4 network.

•

Translators: Translators create interoperability between an IPv4 device and an IPv6 device by 
changing the header of a packet of one version to the header of the other version. 

•

#Like other transition methods, translation is not a long-term strategy and the ultimate goal can be native 
IPv6.  However translation offers two major advantages over tunneling:

Translation provides a means for gradual and seamless migration to IPv6.•
Content providers can provide services transparently to IPv6 Internet users.•

Types of NAT64 Translation



Stateless NAT64

In stateless NAT64, state is not preserved which means for every IPv6 user a dedicated IPv4 address is 
required. As we are in IPv4 depletion phase, it is very difficult to adopt this mode of NAT64. The only 
advantage of using stateless NAT64 when you have few numbers of IPv6 addresses (NAT46).

Stateful NAT64

In stateful NAT64, states are maintained. A single IP Address is used for all the private users with different 
port numbers. In the previous diagram, a single IPv4 address is used with different port numbers for all the 
users of IPv6 which are in that LAN to access a public IPv4 server.

Here are more details about the difference between Stateful and Stateless NAT64 translation:

Stateless NAT64 Stateful NAT64

1:1 translation 1:N translation

No conservation of IPv4 address Conserves IPv4 address

Assures end-to-end address transparency and 
scalability

Uses address overloading, hence lacks in end-to-
end address transparency

No state or bindings created on the translation
State or bindings are created on every unique 
translation

Requires IPv4-translatable IPv6 addresses assignment 
(mandatory requirement)

No requirement on the nature of IPv6 address 
assignment

Requires either manual or DHCPv6 based address 
assignment for IPv6 hosts

Free to choose any mode of IPv6 address 
assignment viz. Manual, DHCPv6, SLAAC

In this document, it is demonstrated stateful NAT64 with LAB exercise where IPv6 host wants to 
communicate to IPv4 server. Also, it is demonstrated stateless NAT64 where IPv4 hosts wants to 
reach out to IPv6 server. This scenario is also called NAT46.

•

Scenario 1: How to Communicate to IPv4 Server (Located in IPv4 
Network) from Host in IPv6 Network



In the previous picture, Host located in IPv6 network wants to reach to web server 
(www.example.com) with ip 10.1.113.2 located in ipv4 network.

•

If you can directly ping the ipv4 address (10.1.113.2) from host in ipv6 network, the device does not 
understand this ipv4 address as it understands only ipv6 addresses. So the packet can get dropped on 
the host.

•

Similarly, if you ping ipv6 address from ipv4 network, the device cannot understand that ip and it can 
throw an error as it is by default configured for ipv4 network only.

•

Also, an ipv4 packet cannot get routed through an ipv6 only network and vice-versa. Hence, there is 
the need for translation so that you can translate the packets on edge devices to ipv4 or ipv6 
depending upon requirement.

•

There are three main components to NAT64.

NAT64 prefix: Any /32, /40, /48, /56, /64, or /96 prefix used with a converted IPv4 address to transmit 
the packet over the IPv6-only network. The NAT64 prefix can be a network-specific prefix (NSP) or a 
well-known prefix (WKP). An NSP is assigned by an organization and is usually a subnet from the 
organization’s IPv6 prefix. The WKP for NAT64 is 64:ff9b::/96. If an NSP is not specified or 
configured, NAT64 can use the WKP to prepend the converted IPv4 address. The NAT64 prefix is 
also referred to as Pref64::/n.

•

DNS64 server: The DNS64 server functions as a normal DNS server for IPv6 AAAA records but can 
also attempt to locate an IPv4 A record when a AAAA record is not available. If an A record is 
located, DNS64 converts the IPv4 A record into an IPv6 AAAA record using the NAT64 prefix. This 
gives the impression to the IPv6-only host that it can communicate with a server using IPv6.

•

NAT64 router: The NAT64 router advertises the NAT64 prefix into the IPv6-only network along with 
performing the translation between the IPv6-only and IPv4-only networks.

•

Packet Flow in Case of Stateful NAT64

http://www.example.com


1. Suppose, in the previous picture, host present in IPv6 network wants to communicate to web server 
www.example.com (10.1.113.2) which is IPv4 only server.

2. To make this communication possible, you must have DNS64 server installed in IPv6 network which can 
understand and resolve DNS for ipv4 requests.

3. The DNS64 server functions as a normal DNS server for IPv6 AAAA records, but can also attempt to 
locate an IPv4 A record when a AAAA record is not available. If an A record is located, DNS64 converts 
the IPv4 A record into an IPv6 AAAA record using the NAT64 prefix. This gives the impression to the 
IPv6-only host that it can communicate with a server using IPv6.

4. Now DNS resolution request for www.example.com is sent to DNS64 server. It first looks up in its IPv6 
AAAA record table but it does not find any IPv6 AAAA record because this website server belongs to Ipv4 
address. After that, it looks in its IPv4 database and it finds IPv4 address matched to this website. Now 
DNS64 server can convert this IPv4 address into IPv6 address by converting this IPv4 address into hex and 
prepending NAT64 prefix to it. By doing so, this can give impression to IPv6 only host that it can 
communicate with web server using IPv6.

5. The packets gets routed in the IPv6 only network towards device doing NAT64 with the help of NAT64 
prefix that was prepended to hex value of IPv4 address.

6. The NAT64 router advertises the NAT64 prefix into the IPv6-only network along with performing the 
translation between the IPv6-only and IPv4-only networks.

7. Once packet hits device doing NAT64 translation, the packets can be matched against ACL that you have 
configured for Nat64. If packets match this ACL, then packet can be translated using NAT64 further. If 
packet does not match configured ACL, then it can be routed using normal IPv6 routing towards its 
destination.

8. Stateful NAT64 utilizes configured access control lists (ACLs) and prefix lists to filter IPv6-initiated 
traffic flows that are allowed to create the NAT64 state. Filtering of IPv6 packets is done in the IPv6-to-IPv4 
direction because dynamic allocation of mapping between an IPv6 host and an IPv4 address can be done 
only in this direction. Stateful NAT64 supports endpoint-dependent filtering for the IPv4-to-IPv6 packet 
flow with PAT configuration.

9. In a Stateful NAT64 PAT configuration, the packet flow must have originated from the IPv6 realm and 
created the state information in NAT64 state tables. Packets from the IPv4 side that do not have a previously 
created state are dropped. Endpoint-independent filtering is supported with static Network Address 
Translation (NAT) and non-PAT configurations.

The first IPv6 packet is routed to the NAT Virtual Interface (NVI) based on the automatic routing setup that 

http://www.example.com
http://www.example.com


is configured for the stateful prefix. Stateful NAT64 performs a series of lookups to determine whether the 
IPv6 packet matches any of the configured mappings based on an access control list (ACL) lookup. Based 
on the mapping, an IPv4 address (and port) is associated with the IPv6 destination address.

The IPv6 packet is translated and the IPv4 packet is formed by using these methods:

Extracting the destination IPv4 address by stripping the prefix from the IPv6 address. The 
source address is replaced by the allocated IPv4 address (and port).

1. 

The rest of the fields are translated from IPv6-to-IPv4 to form a valid IPv4 packet.2. 

10. A new NAT64 translation is created in the session database and in the bind database. The pool and port 
databases are updated depending on the configuration.

11.The return traffic and the subsequent traffic of the IPv6 packet flow can use this session database entry 
for translation.

For NAT64 to work, there can be reachability to ipv6 address of interface which is in ipv6 network 
from the ipv6  and also the reachability can be from NAT64 router to ipv4 address of the server.

•

Guide to Configure NAT64

Step 1. Host A is an IPv6-only host that wants to communicate with the server www.example.com. This 
triggers a DNS query (AAAA: www.example.com) to the DNS64 server. The DNS64 is a key component to 
this process. A DNS64 server is both a DNS server for IPv6 and IPv4. It creates the illusion for the client 
that IPv4 servers can be reached using an IPv6 address.

Host A sends a DNS query (AAAA: www.example.com) to the DNS64 server. As far as host A is 
concerned, this is a normal DNS AAAA query for an IPv6 server.

Step 2. The DNS64 server receives the DNS AAAA query from host A. In an attempt to resolve the domain 
name, the DNS64 server sends a query to the DNS AAAA authoritative server for www.example.com.

Step 3. The IPv6 DNS AAAA authoritative server returns a response indicating that it does not have a 
AAAA resource record for www.example.com.

Step 4. On receiving an empty answer (name error) response to the AAAA query, this triggers the DNS64 
server to send an A query (A: www.example.com) to the IPv4 DNS A authoritative server.

Step 5. The IPv4 DNS A authoritative server does have an A resource record for www.example.com and 
returns a response with the IPv4 address for the server (A: www.example.com 10.1.113.2).

http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com


Step 6. The DNS64 server receives the IPv4 address from the DNS A authoritative server and synthesizes a 
AAAA record by prefixing the address with its NAT64 prefix, 2800:1503:2000:1:1::/96, and converts the 
IPv4 address to hexadecimal, 0a01:7102.This address can be used by host A as the destination IPv6 address 
for reaching the www.example.com  server.

Step 7. The synthesized AAAA record is completely transparent to host A. To host A, it appears as if 
www.example.com  is reachable over the IPv6 network and Internet. Host A now has the addressing 
information necessary to transmit IPv6 packets to www.example.com with these:

IPv6 destination address: 2800:1503:2000:1:1::0a01:7102•
IPv6 source address: 2001:DB8:3001::9•

Step 8. The NAT64 router receives the IPv6 packet sent by host A on its NAT64-enabled interface .It 
matches the incoming packets to configured ACL. If match is not found then the packet is forwarded 
untranslated using normal IPv6 routing. If match is found then the packet undergoes this translation:

The IPv6 header is translated into an IPv4 header.•
The IPv6 destination address is translated into an IPv4 address by removing the IPv6 stateful NAT64 
prefix 2800:1503:2000:1:1::/96 . The lower 32 bits of the IPv6 address, 0a01:7102, are represented as 
the dotted-decimal IPv4 address 10.1.113.2.

•

The IPv6 source address is translated into an IPv4 address using the configured IPv4 address pool. 
Depending upon the NAT64 configuration, this can be either a 1:1 address translation or use IPv4 
address overloading. This is similar to NAT for IPv4. In this scenario, host A’s source IPv6 address is 
translated to the IPv4 address.

•

Stateful NAT64 IP address translation states are created for both the source and destination addresses. 
These states are created the first time the translation is performed on the packet. This state is 
maintained for subsequent packets in the flow. The state ends when the traffic and the state 
maintenance timer expire.

•

Step 9. After the NAT64 translation, the translated IPv4 packet is forwarded using the normal IPv4 route 
lookup process. In this scenario, the IPv4 destination address 10.1.113.2 is used to forward the packet.

Step 10. The www.example.com  server at 10.1.113.2 replies, which is ultimately received by the NAT64 
router.

Step 11. The NAT64 router receives the IPv4 packet from the www.example.com  server on one of its 
NAT64-enabled interfaces. The router examines the IPv4 packet to determine whether a NAT64 translation 
state exists for the IPv4 destination address. If a translation state does not exist, the packet is discarded. If a 
translation state does exist for the IPv4 destination address, the NAT64 router performs these tasks:

The IPv4 header is translated into an IPv6 header.•
The IPv4 source address is translated into an IPv6 source address using the existing NAT64 
translation state. In this scenario, the source address is translated from an IPv4 address of 10.1.113.2 
to the IPv6 address 2800:1503:2000:1:1::0a01:7102. The destination address is translated from an 
IPv4 address to 2001:DB8:3001::9.

•

http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com


Step 12. After the translation, the IPv6 packet is forwarded using the normal IPv6 route lookup process.

Configuration on NAT 46 Router

1. IPv6 facing interface:

2. IPv4 facing interface:

3. Create ACL matching ipv6 traffic.



4. Enable NAT64 IPv6-to-IPv4 address mapping:

#nat64 prefix stateful 2800:1503:2000:1:1::/96     ---------------> Server IP can get mapped to this ipv6 ip 
address. You can configure any ipv6 network address here but this ipv6 network address can be reachable 
from your ipv6 network. Also, DNS64 server must have mapping of this ipv6 network address to server ipv4 
address.

#nat64 v4 pool pool1 10.50.50.50   ---------------> Original ipv6 source address can get translated to 
ips of this pool while packet can be entering into ipv4 network.

5. 

#nat64 v6v4 list nat64acl pool pool1 overload  --------------->This can translate ipv6 addresses 
matching nat64acl to ipv4 address from the pool

6. 

Hex value of 10.1.113.2 is 0a01:7102 .Once this configuration is done, ping 
2800:1503:2000:1:1::0a01:7102  address from PC A.

7. 

#ping 2800:1503:2000:1:1::0a01:7102 

Verify NAT64 Details

#show nat64 translation

#show nat64 statistics



Scenario 2: Traffic Initiated from IPv4-only Clients to IPv6-only 
Servers



The previous figure shows a scenario where clients in an IPv4-only network communicate with an 
IPv6-only server using NAT64. The goal is to provide access to IPv6 services transparent to the IPv4 
clients. In this scenario, the DNS64 server is not required. Static mapping between the IPv6 and IPv4 
address is configured on the NAT64 router.

•

This scenario is unlikely for the foreseeable future. Most servers that are enabled for IPv6 can also be 
IPv4 capable. It is more likely that IPv6 servers can be running dual-stack for quite some time. IPv6-
only servers can eventually become more common, but not anytime soon.

•

Guide to Configure NAT46

Step 1. The first step is to configure IPv6-to-IPv4 static mapping on NAT46 router to provide access to the 
IPv6 server 2001:DB8:3001::9/64 from the IPv4 address 10.1.113.2. Also, the IPv4 address 10.50.50.50 
needs to be registered as a DNS resource record for www.examplev6.com  on the DNS server. The static 
NAT64 mapping is created using this command:

NAT64-Router(config)# nat64 v6v4 static 2001:DB8:3001::9 10.50.50.50

Step 2. PC A is an IPv4-only host that wants to communicate with the server www.examplev6.com . This 
triggers a DNS query (A: www.examplev6.com) to its IPv4 DNS authoritative server.

Step 3. The DNS server responds with an A resource record for www.examplev6.com, 10.50.50.50.

Step 4. Host A now has the addressing information necessary to transmit IPv4 packets to 
www.examplev6.com with

IPv4 destination address: 10.50.50.50•
IPv4 source address: 10.1.113.2•

Step 5. The NAT64 router receives the IPv4 packet on its NAT64-enabled interface and performs 
these tasks:

The IPv4 header is translated into an IPv6 header.•
The IPv4 destination address is translated into an IPv6 address using the existing NAT64 translation 
state created by the static configuration in Step 1. The destination IPv4 address of 10.50.50.50 is 
translated to the IPv6 destination address 2001:DB8:3001::9.

•

The IPv4 source address is translated into an IPv6 address by adding the stateful NAT64 prefix 
 2800:1503:2000:1:1::/96 to the IPv4 address. This results in an IPv6 source address of 
2800:1503:2000:1:1::0a01:7102. (0a01:7102 is the hexadecimal equivalent of 10.1.113.2.)

•

Step 6. After the translation, the IPv6 packet is routed using the normal IPv6 routing process. The packet is 
ultimately routed to the www.examplev6.com server at 2001:DB8:3001::9 .

http://www.examplev6.com
http://www.examplev6.com
http://www.examplev6.com
http://www.examplev6.com
http://www.examplev6.com
http://www.examplev6.com


Step 7. The server www.examplev6.com replies with a packet destined for host A.

Step 8. The NAT64 router receives the IPv6 packet sent by the IPv6 server on its NAT64-enabled interface 
and performs these tasks:

The IPv6 header is translated into an IPv4 header.•
The IPv6 source address is translated to 10.50.50.50 using stateful translation table.•
The IPv6 destination address is translated into an IPv4 address by removing the IPv6 stateful NAT64 
prefix 2800:1503:2000:1:1::/96. The lower 32 bits of the IPv6 address, 0a01:7102, are represented as 
the dotted-decimal IPv4 address 10.1.113.2.

•

Step 9. After the translation, the NAT64 router forwards the packet to 10.1.113.2 using the normal IPv4 
routing process.

Similar to the previous scenario, transparent communication is established between the IPv4-only 
client and the IPv6-only server using stateful NAT64. The configurations are similar except for the 
static mapping command discussed in Step 1.

•

Configuration on NAT 46 Router

IPv4 facing interface:1. 

IPv6 facing interface:2. 

http://www.examplev6.com


Other configs needed on the router to translate traffic successfully from IPv4 to IPv6:3. 

After the configuration is successful, ping 10.50.50.50 from IPv4 host.

#ping 10.50.50.50

Verifying NAT46

#show nat64 translations

#show nat46 statistics



Translation Scenarios and Their Applicability

Scenarios for 
IPv6/IPv4 
Translation

Applicability Example

Scenario 1: An IPv6 
network to the IPv4 
Internet

•  IPv6-only network wanting to 
transparently access both IPv6 and 
existing IPv4 content.

• Initiated from IPv6 hosts and network.

• ISPs rolling out new services and 
networks for IPv6-only smartphones (third-
generation [3G], Long-Term Evolution 
[LTE], and so on) handsets.

• Enterprises deploying IPv6-only network.

Scenario 2: The IPv4 
Internet to an IPv6 

• Servers in  IPv6-only network wanting 
to transparently serve both IPv4 and IPv6 

Upcoming or existing content providers 
rolling out services in IPv6-only 



network users.

• Initiated from IPv4 hosts and network.

environment.

Scenario 3: The IPv6 
Internet to an IPv4 
network

• Servers in existing IPv4-only network 
wanting to serve IPV6 Internet users.

• Initiated from IPv6 hosts and network.

Existing content providers migrating to 
IPv6 and thus wanting to offer services to 
IPv6 Internet users as part of coexistence 
strategy.

Scenario 4: An IPv4 
network to the IPv6 
Internet

Not a viable case in the near future; this 
scenario can probably occur only some 
time after the early stage of the 
IPv6/IPv4 transition.

None

Scenario 5: An IPv6 
network to an IPv4 
network

Both an IPv4 network and an IPv6 
network are within the same 
organization.

Similar to scenario 1, catering to Intranet 
instead of Internet.

Scenario 6: An IPv4 
network to an IPv6 
network

Both an IPv4 network and an IPv6 
network are within the same 
organization.

Similar to scenario 2, catering to intranet 
instead of Internet.

Scenario 7: The IPv6 
Internet to the IPv4 
Internet

Would suffer from poor throughput. None

Scenario 8: The IPv4 
Internet to the IPv6 
Internet

No viable translation technique to handle 
unlimited IPv6 address translation.

None

Important Troubleshooting Commands in Case There are Issues 
During NAT64 Implementation

#show platform hardware qfp active statistics drop (to see if there are any NAT64 drops)

#show running-config | include nat64 (to see if everything is configures on Cisco IOS®)

#show platform hardware qfp active feature nat64 datapath statistics (to check the reason for drop counter)

#show platform hardware qfp active feature nat64 datapath pool (to check the pool is configured properly)

#show platform hardware qfp active feature nat64 datapath map (to check and see pool to mapping config is 
done properly)

#show platform software object-manager F0 pending-ack-update (to check if there are any pending objects)


