Introduction

This document describes the configuration of VASI NAT on routers that run Cisco IOS-XE

Contributed by Rohit Nair, Cisco TAC Engineer.

Prerequisites

Requirements

There are no specific requirements for this document.

Components Used

This document is not restricted to specific software and hardware versions. This document applies to all Cisco routers and switches that run Cisco IOS-XE.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Background Information

Devices that run on IOS-XE do not support classical inter-vrf nat configurations as those found on
IOS devices. Support for Inter-vrf NAT on IOS-XE is achieved via VASI implementation.

VASI provides the ability to configure services such as IPsec, firewall and NAT to traffic that flows between VRF instances.

VASI is implemented by configuring VASI pairs, where each of the interfaces in the pair is associated with a different VRF instance. The VASI virtual interface is the next-hop interface for any packet that needs to be switched between these two VRF instances. The pairing is done automatically based on the two interface indexes such that the vasileft interface is automatically paired to the vasiright interface. Any packet that enters the vasileft interface is automatically forwarded to its paired vasiright interface.

Working of VASI

![Diagram of VASI](image)

When an inter-VRF VASI is configured on the same device, the packet flow happens in the following order:

1. A packet enters the physical interface that belongs to VRF 1.
2. Before forwarding the packet, a forwarding lookup is done in the VRF 1 routing table. Vasileft1 is chosen as the next hop, and the Time to Live (TTL) value is decremented from the packet. Usually, the forwarding address is selected on the basis of the default route in the VRF. However, the forwarding address can also be a static route or a learned route. The packet is sent to the egress path of vasileft1 and then automatically sent to the vasiright1 ingress path.
3. When the packet enters vasiright1, a forwarding lookup is done in the VRF 2 routing table, and the TTL is decremented again (second time for this packet).
4. VRF 2 forwards the packet to the physical interface.

Configure

The following scenarios describe basic inter-vrf NAT configuration.

Network Diagram
Initial Configurations

SanJose:

interface GigabitEthernet0/0/0
 ip address 192.168.1.1 255.255.255.0

ip route 0.0.0.0 0.0.0.0 192.168.1.2

Bombay:

vrf definition VRF_LEFT
 rd 1:1
 !
 address-family ipv4
 exit-address-family

vrf definition VRF_RIGHT
 rd 2:2
 !
 address-family ipv4
 exit-address-family

interface GigabitEthernet0/0/0
 vrf forwarding VRF_LEFT
 ip address 192.168.1.2 255.255.255.0

interface GigabitEthernet0/0/1
 vrf forwarding VRF_RIGHT
 ip address 172.16.1.2 255.255.255.0

Sydney:

interface GigabitEthernet0/0/0
 ip address 172.16.1.1 255.255.255.0

VASI Interface configuration

Each VASI interface will be paired to a different VRF instance.

interface vasileft1
 vrf forwarding VRF_LEFT
 ip address 10.1.1.1 255.255.255.252

interface vasiright1
 vrf forwarding VRF_RIGHT
 ip address 10.1.1.2 255.255.255.252

NAT Configuration:

In this example, NAT is to be configured with the following requirements:

1. Static NAT - Source IP of 192.168.1.1 should be translated to 172.16.1.5
2. Dynamic NAT - Source subnet of 192.168.1.0/24 should be translated to 172.16.1.5

Scenario 1 - NAT on Vasiright

In most cases, the WAN interface would be on the outgoing VRF, VRF_RIGHT in this topology. In such cases, NAT can be configured between the vasiright and the WAN interface; traffic coming in on the vasiright interface from vasileft will be configured as NAT inside, while the WAN interface would be the NAT outside interface.

In this scenario, we use static routes to traffic between the VRFs. A static route for the destination 172.16.0.0 subnet is configured on VRF_LEFT pointing to the vasileft interface and another route for the source subnet 192.168.0.0 is configured on VRF_RIGHT pointing to the vasiright interface.

Note

Do not configure NAT to translate the source IP to the WAN interface IP; the router will treat return traffic to be destined to itself and will not forward traffic to the vasi interface.

Static NAT:

```bash
!--- Interface configuration

interface vasiright1
vrf forwarding VRF_RIGHT
ip address 10.1.1.2 255.255.255.252
ip nat inside

interface GigabitEthernet0/0/1
vrf forwarding VRF_RIGHT
ip address 172.16.1.2 255.255.255.0
ip nat outside

!--- Static route configuration

ip route vrf VRF_LEFT 172.16.0.0 255.255.0.0 vasileft1 10.1.1.2
ip route vrf VRF_RIGHT 192.168.0.0 255.255.0.0 vasiright1 10.1.1.1

!--- NAT configuration

ip nat inside source static 192.168.1.1 172.16.1.5 vrf VRF_RIGHT

Verification:

<table>
<thead>
<tr>
<th>Pro</th>
<th>Inside global</th>
<th>Inside local</th>
<th>Outside local</th>
<th>Outside global</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>172.16.1.5</td>
<td>192.168.1.1</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>icmp</td>
<td>172.16.1.5:8</td>
<td>192.168.1.1:8</td>
<td>172.16.1.1:8</td>
<td>172.16.1.1:8</td>
</tr>
<tr>
<td>tcp</td>
<td>172.16.1.5:47491</td>
<td>192.168.1.1:47491</td>
<td>172.16.1.1:23</td>
<td>172.16.1.1:23</td>
</tr>
</tbody>
</table>

Total number of translations: 3

**Dynamic NAT**:
--- Interface configuration

interface vasiright1
  vrf forwarding VRF_RIGHT
  ip address 10.1.1.2 255.255.255.252
  ip nat inside

interface GigabitEthernet0/0/1
  vrf forwarding VRF_RIGHT
  ip address 172.16.1.2 255.255.255.0
  ip nat outside

--- Static route configuration

ip route vrf VRF_LEFT 172.16.0.0 255.255.0.0 vasileft1 10.1.1.2
ip route vrf VRF_RIGHT 192.168.0.0 255.255.0.0 vasiright1 10.1.1.1

--- Access-list configuration

Extended IP access list 100
10 permit tcp 192.168.1.0 0.0.0.255 host 172.16.1.1
20 permit udp 192.168.1.0 0.0.0.255 host 172.16.1.1
30 permit icmp 192.168.1.0 0.0.0.255 host 172.16.1.1

--- NAT configuration

ip nat pool POOL 172.16.1.5 172.16.1.5 prefix-length 24
ip nat inside source list 100 pool POOL vrf VRF_RIGHT overload

Verification:

Bombay#sh ip nat translations

<table>
<thead>
<tr>
<th>Pro</th>
<th>Inside global</th>
<th>Inside local</th>
<th>Outside local</th>
<th>Outside global</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp</td>
<td>172.16.1.1:1</td>
<td>192.168.1.1:15</td>
<td>172.16.1.1:15</td>
<td>172.16.1.1:1</td>
</tr>
</tbody>
</table>

Total number of translations: 2

Scenario 2 - NAT on Vasileft

NAT can also be configured solely on the vasileft side, i.e VRF_LEFT and have traffic NATTED before it is sent to VRF_RIGHT. The incoming interface on VRF_LEFT will be considered as the NAT inside interface, and vasileft 1 will be configured as the NAT outside interface.

In this scenario, we use static routes to traffic between the VRFs. A static route for the destination 172.16.0.0 subnet is configured on VRF_LEFT pointing to the vasileft interface and another route for the source natted IP 172.16.1.5 is configured on VRF_RIGHT pointing to the vasiright interface.

Static NAT:

--- Interface configuration

interface GigabitEthernet0/0/0
  vrf forwarding VRF_LEFT
  ip address 192.168.1.2 255.255.255.0
  ip nat inside
interface vasileft1  
  vrf forwarding VRF_LEFT  
  ip address 10.1.1.1 255.255.255.252  
  ip nat outside  

!--- Static route configuration  

  ip route vrf VRF_LEFT 172.16.0.0 255.255.0.0 vasileft1 10.1.1.2  
  ip route vrf VRF_RIGHT 172.16.1.5 255.255.255.255 vasiright1 10.1.1.1  

!--- NAT configuration  

  ip nat inside source static 192.168.1.1 172.16.1.5 vrf VRF_LEFT  

Verification:  

Bombay#sh ip nat translations vrf VRF_LEFT  
Pro Inside global Inside local Outside local Outside global  
--- 172.16.1.5 192.168.1.1 --- ---  
icmp 172.16.1.5:5 192.168.1.1:5 172.16.1.1:5 172.16.1.1:5  
tcp 172.16.1.5:35414 192.168.1.1:35414 172.16.1.1:23 172.16.1.1:23  
Total number of translations: 3  

Dynamic NAT:  

!--- Interface configuration  

interface GigabitEthernet0/0/0  
  vrf forwarding VRF_LEFT  
  ip address 192.168.1.2 255.255.255.0  
  ip nat inside  

interface vasileft1  
  vrf forwarding VRF_LEFT  
  ip address 10.1.1.1 255.255.255.252  
  ip nat outside  

!--- Static route configuration  

  ip route vrf VRF_LEFT 172.16.0.0 255.255.0.0 vasileft1 10.1.1.2  
  ip route vrf VRF_RIGHT 172.16.1.5 255.255.255.255 vasiright1 10.1.1.1  

!--- Access-list configuration  

  Extended IP access list 100  
  10 permit tcp 192.168.1.0 0.0.0.255 host 172.16.1.1  
  20 permit udp 192.168.1.0 0.0.0.255 host 172.16.1.1  
  30 permit icmp 192.168.1.0 0.0.0.255 host 172.16.1.1  

!--- NAT configuration  

  ip nat pool POOL 172.16.1.5 172.16.1.5 prefix-length 24  
  ip nat inside source list 100 pool POOL vrf VRF_LEFT overload  

Verification:  

Bombay#sh ip nat translations vrf VRF_LEFT
Verify

1. Check if dynamic/static routes are configured to route traffic between the two VRF instances.
2. Check if NAT has been configured for the correct VRF.

Troubleshoot

There is currently no specific troubleshooting information available for this configuration.

Related Information

- Configuring the VRF-Aware Software Infrastructure