Introduction

This document describes the Embedded Packet Capture (EPC) feature in Cisco IOS® software.

Prerequisites

Requirements

There are no specific requirements for this document.

Components Used

The information in this document is based on these software and hardware versions:

- Cisco IOS Release 12.4(20)T or later
- Cisco IOS-XE Release 15.2(4)S - 3.7.0 or later

The information in this document was created from devices in a lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Background Information

When enabled, the router captures the packets sent and received. The packets are stored within a buffer in DRAM and are thus not persistent through a reload. Once the data is captured, it can be examined in a summary or detailed view on the router. In addition, the data can be exported as a packet capture (PCAP) file to allow for further examination. The tool is configured in exec mode and is considered a temporary assistance tool. As a result, the tool configuration is not stored within the router configuration and will not remain in place after a system reload.
The Packet Capture Config Generator and Analyzer tool is available for Cisco Customers to aid in the configuration, capture, and extraction of packet captures.

Cisco IOS Configuration Example

Basic EPC Configuration

1. Define a 'capture buffer', which is a temporary buffer that the captured packets are stored within. There are various options that can be selected when the buffer is defined; such as size, maximum packet size, and circular/linear:

```
monitor capture buffer BUF size 2048 max-size 1518 linear
```

2. A filter can also be applied to limit the capture to desired traffic. Define an Access Control List (ACL) within config mode and apply the filter to the buffer:

```
ip access-list extended BUF-FILTER
 permit ip host 192.168.1.1 host 172.16.1.1
 permit ip host 172.16.1.1 host 192.168.1.1
monitor capture buffer BUF filter access-list BUF-FILTER
```

3. Define a 'capture point', which defines the location where the capture occurs. The capture point also defines whether the capture occurs for IPv4 or IPv6 and in which switching path (process versus cef):

```
monitor capture point ip cef POINT fastEthernet 0 both
```

4. Attach the buffer to the capture point:

```
monitor capture point associate POINT BUF
```

5. Start the capture:

```
monitor capture point start POINT
```

6. The capture is now active. Allow collection of the necessary data.

7. Stop the capture:

```
monitor capture point stop POINT
```

8. Examine the buffer on the unit:

```
show monitor capture buffer BUF dump
```

Note: This output only shows the hex dump of the packets captures. In order to see them in human readable there are two ways. Export the buffer from the router for further analysis:

```
monitor capture buffer BUF export tftp://10.1.1.1/BUF.pcap
```

Tip: Enhancement request CSCuw77601 has been filed in order to add a mail-to option under export so you can email the buffer directly to an email-id. However the previous method is not always practical as it required T/FTP access to the router. In such situations, you can take a copy of the hex dump and use any online hex-pcap convertor in order to view the files.

9. Once the necessary data has been collected, delete the 'capture point' and 'capture buffer':

```
no monitor capture point ip cef POINT fastEthernet 0 both
no monitor capture buffer BUF
```

Notes:
In releases earlier than Cisco IOS Release 15.0(1)M, the buffer size was limited to 512K.
In releases earlier than Cisco IOS Release 15.0(1)M, the captured packet size was limited to 1024 bytes.
The packet buffer is stored in DRAM and will not persist through reloads.
The capture configuration is not stored in NVRAM and will not persist through reloads.
The capture point can be defined to capture in the cef or process switching paths.
The capture point can be defined to capture only on an interface or globally.
When the capture buffer is exported in PCAP format, L2 information (such as Ethernet encapsulation) is not preserved.
See Best Practices for searching Commands in order to obtain more information on the commands used in this section.

Cisco IOS-XE Configuration Example

The Embedded Packet Capture feature was introduced in Cisco IOS-XE Release 3.7 - 15.2(4)S. The configuration of the capture is different than Cisco IOS as it adds more features.

Basic EPC Configuration

1. Define the location where the capture will occur:

 monitor capture CAP interface GigabitEthernet0/0/1 both

2. Associate a filter. The filter may be specified inline, or an ACL or class-map can be referenced:

 monitor capture CAP match ipv4 protocol tcp any any

3. Start the capture:

 monitor capture CAP start

4. The capture is now active. Allow it to collect the necessary data.

5. Stop the capture:

 monitor capture CAP stop

6. Examine the capture in a summary view:

 show monitor capture CAP buffer brief

7. Examine the capture in a detailed view:

 show monitor capture CAP buffer detailed

8. In addition, export the capture in PCAP format for further analysis:

 monitor capture CAP export ftp://10.0.0.1/CAP.pcap

9. Once the necessary data has been collected, remove the capture:

 no monitor capture CAP

Notes:

- The capture can be performed on physical interfaces, sub-interfaces, and tunnel interfaces.
• Network Based Application Recognition (NBAR) based filters, that use the `match protocol` command under the class-map, are currently not supported.
• See [Best Practices for searching Commands](#) in order to obtain more information on the commands used in this section.

Verify

There is currently no verification procedure available for this configuration.

Troubleshoot

This section provides information you can use to troubleshoot your configuration.

For EPC that runs on Cisco IOS-XE, this debug command can be used to ensure EPC is set up properly:

```
no monitor capture CAP
```

Related Information

- [Embedded Packet Capture - Cisco IOS-XE](#)
- [Embedded Packet Capture - Cisco IOS](#)
- [Technical Support & Documentation - Cisco Systems](#)