
Deploy DNS VNF with SRIOV Network on
Openstack CVIM - Configuration Example for
Prime Network Registrar (DNS)

Contents
Introduction

Prerequisites

Requirements

Components Used

Background Information

Configuration

1. Hardware Requirements

2.Identifying Intel NIC Cards

Step 1. Using lspci Command

Step 2. Verifying XL710

Step 3. Verifying E810CQDA2

Step 4. Confirming Driver Support

3. BIOS/UEFI Configuration

4. OpenStack Setup

5. Cisco Prime Network Registrar (CPNR) VNF Image

6. Administrative Access

Architecture Overview

VNF Network Interface Connectivity Diagram

Flow Chart

Sample Configurations

Key Points

Deploying CPNR VNF with SR-IOV Ports and Active-Backup Bond Interface on
OpenStack

Key Features of the Deployment

Why Cross-NUMA Mode is Required

1. NUMA-Aware Networking in OpenStack

2. Why Cross-NUMA Mode Is Necessary

Conntrack Size Limitation for OVS Ports

What is Conntrack?

How Conntrack Affects OVS Ports

How to Mitigate Conntrack Limitations

How SR-IOV Resolves Conntrack Issues

1. Eliminates Conntrack Dependency

2. Higher Scalability

3. Reduced Latency

Why Active-Backup Mode is Chosen for SR-IOV Ports on CPNR VM

1. Redundancy Without Complexity

2. No Link Aggregation Group (LAG) Required

3. Seamless Failover

4. Hardware Independence

5. Optimized for SR-IOV

What is a Linux Bond Interface?

How Does Active-Backup Mode Work?

Key Features of Active-Backup Mode

How Traffic Flows in Active-Backup Mode

Normal Operation

Failover Scenario

Failback Scenario

Use Case: Active-Backup Bonding with SR-IOV Ports

Step 1. OpenStack Networking

Step 1.1. Create Openvswitch Networks

Step 1.2. Create Subnets for Openvswitch Networks

Step 1.3. Create SR-IOV Networks

Step 2. OpenStack Flavors

Step 2.1. Create a Cross-NUMA Flavor

Step 2.2. Configure NUMA Properties

Step 3. Configure Bonding in Active-Backup Mode

Step 3.1. Bond Interface Configuration

Step 3.2. Configure Slave Interfaces

Step 3.3. Apply Configuration

Verify

1. Verify VNF Status

2. Verify Network Connectivity

3. Verify NUMA Placement

Best Practices

Troubleshoot

1. Verify SR-IOV Configuration

2. Verify NUMA Placement

3. Bond Interface Issues

4. Network Connectivity Issues

Conclusion

Introduction

This document describes the step-by-step deployment of CPNR on OpenStack Cisco Virtualized
Infrastructure Manager (CVIM) using SR-IOV and Active-Backup bonding.

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics:

Familiarity with OpenStack and Single Root Input/Output Virtualization (SR-IOV) concepts•
Working knowledge on Cisco Virtual Interface Manager (VIM) and Cisco Elastic Services Controller
and Linux commands and networking

•

Components Used

This document is not restricted to specific software and hardware versions.

The information in this document was created from the devices in a specific lab environment. All of the
devices used in this document started with a cleared (default) configuration. If your network is live, ensure
that you understand the potential impact of any command

Background Information

In the current networking landscape, Virtual Network Functions (VNFs) play a critical role in enabling
agile, scalable, and efficient network services. For VNFs requiring high-performance network connectivity,
SR-IOV is a commonly used technology. SR-IOV allows VNFs to bypass the hypervisor virtual switch and
directly access physical Network Interface Controller (NIC) resources, thereby, reducing latency and
increasing throughput.

Configuration

Before proceeding with the deployment, ensure these prerequisites are met.

1. Hardware Requirements

SR-IOV Capable NICs:
At least two SR-IOV-capable physical NICs with SR-IOV enabled in the BIOS/Unified
Extensible Firmware Interface (UEFI).

○

Example:sriov0mapped to Non-Uniform Memory Access (NUMA) node 0 andsriov1mapped to
NUMA node 1.

○

•

NUMA-Aware Hosts:
Compute nodes must support NUMA architecture.○

NUMA support must be enabled in the hosts BIOS/UEFI.○

•

2. Identifying Intel NIC Cards

Intel XL710 and E810CQDA2 NIC cards are commonly used for high-performance SR-IOV networking. In
order to verify the NIC card model on the host, refer these steps:

Step 1. Using lspci Command

Execute this command to list Peripheral Component Interconnect (PCI) devices related to network
controllers:

lspci | grep -i ethernet

Output Example:

81:00.0 Ethernet controller: Intel Corporation Ethernet Controller XL710 for 40GbE QSFP+ (rev 02)
82:00.0 Ethernet controller: Intel Corporation Ethernet Controller E810-C for QSFP (rev 03)

Step 2. Verifying XL710

If the NIC is Intel XL710, you can see Ethernet Controller XL710in the output.

Step 3. Verifying E810CQDA2

If the NIC is Intel E810CQDA2, you can see Ethernet Controller E810-Cin the output.

Step 4. Confirming Driver Support

In order to check the NIC driver in use, run:

ethtool -i <NIC_INTERFACE_NAME>

Output Example for XL710:

driver: i40e
version: 2.13.10

Output Example for E810CQDA2:

driver: ice
version: 1.7.12

Ensure that the driver version matches the compatibility matrix for your OpenStack and Linux distribution.

3. BIOS/UEFI Configuration

Enable SR-IOV:•

Ensure that SR-IOV is enabled in the servers BIOS/UEFI.

Enable Virtualization Technology for Directed I/O (VT-d)/AMD-Vi:•

Intel VT-d or AMD-Vi must be enabled for PCI passthrough and SR-IOV functionality.

4. OpenStack Setup

Core OpenStack Services:•

Ensure OpenStack services such as Nova, Neutron, Glance, and Keystone are installed and configured.

Neutron Configuration:•

Neutron must support both Openvswitch (OVS) for orchestration/management networks and SR-IOV for
application/service networks.

SR-IOV Configuration:•

The compute nodes must be configured to support SR-IOV, with Virtual Functions (VFs) created on the
NICs.

5. Cisco Prime Network Registrar (CPNR) VNF Image

VNF Image Compatibility:•

The CPNR VNF image must support SR-IOV interfaces and include necessary drivers.

Upload to Glance:•

Ensure the CPNR VNF image is available in OpenStack Glance.

6. Administrative Access

OpenStack CLI:•

Ensure access to the OpenStack CLI for creating networks, flavors, and launching the VNF.

Root or Admin Privileges:•

Root or administrative access to configure networking on the Linux host and within the VNF.

Architecture Overview

VNF Network Interface Connectivity Diagram

Flow Chart

SRIOV

Sample Configurations

Here is a sample Cisco Elastic Services Controller (ESC) XML, demonstrating
Virtual Machine (VM) deployment using SR-IOV networking (with
type>direct</type>) for a tenant named test-tenant and a VM named sriov-vm-
1. This includes multiple interfaces, including SR-IOV (direct) interfaces:

<esc_datamodel xmlns="http://www.cisco.com/esc/esc">
 <tenants>
 <tenant>
 <name>test-tenant</name>
 <managed_resource>true</managed_resource>
 <vim_mapping>false</vim_mapping>
 <deployments>
 <deployment>
 <name>sriov-vm-deployment</name>
 <vm_group>
 <name>sriov-vm-1-group</name>
 <locator>
 <vim_id>vim1</vim_id>
 <vim_project>default</vim_project>
 </locator>
 
 <flavor>custom-flavor</flavor>
 <bootup_time>300</bootup_time>
 <recovery_wait_time>30</recovery_wait_time>
 <recovery_policy>
 <action_on_recovery>REBOOT_ONLY</action_on_recovery>
 </recovery_policy>
 <interfaces>
 <!-- Management Interface -->
 <interface>
 <nicid>0</nicid>
 <network>mgmt-net</network>
 <ip_address>192.168.10.101</ip_address>
 </interface>

 <!-- SR-IOV Interface 1 -->
 <interface>
 <nicid>1</nicid>
 <type>direct</type>
 <network>sriov-net-1</network>
 <addresses>
 <address>
 <address_id>0</address_id>
 <subnet>sriov-subnet-1</subnet>
 <ip_address>10.10.10.10</ip_address>
 </address>
 </addresses>
 </interface>

 <!-- SR-IOV Interface 2 -->
 <interface>
 <nicid>2</nicid>
 <type>direct</type>
 <network>sriov-net-2</network>
 <addresses>
 <address>
 <address_id>0</address_id>
 <subnet>sriov-subnet-2</subnet>
 <ip_address>10.10.20.10</ip_address>
 </address>
 </addresses>
 </interface>

 </interfaces>
 <scaling>
 <min_active>1</min_active>
 <max_active>1</max_active>
 <elastic>false</elastic>
 </scaling>
 <config_data>
 <configuration>
 <dst>--user-data</dst>
 <file>file://tmp/init/sriov-vm-1.cfg</file>
 </configuration>
 </config_data>
 </vm_group>
 </deployment>
 </deployments>
 </tenant>
 </tenants>
</esc_datamodel>

Key Points

type>direct</type> under <interface> enables SR-IOV (PCI passthrough) for that NIC.•

Each SR-IOV interface has its own network and subnet.•

You can associate IPv4/IPv6 in <addresses> as needed.•

Sample Day0 File to pass on the Cisco ESC XML:

Content-Type: multipart/mixed; boundary="===============2678395050260980330=="
MIME-Version: 1.0`

--===============2678395050260980330==
MIME-Version: 1.0
Content-Type: text/cloud-boothook; charset="us-ascii"

#cloud-boothook
#!/bin/bash
if [! -f /etc/cloud/cloud.cfg.orig]; then
cp /etc/cloud/cloud.cfg /etc/cloud/cloud.cfg.orig
cp /etc/cloud/cloud.cfg.norootpasswd /etc/cloud/cloud.cfg
fi

--===============2678395050260980330==
MIME-Version: 1.0
Content-Type: text/cloud-config; charset="us-ascii"

#cloud-config
hostname: cpnr
ssh_authorized_keys:
 - ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQC7pf8gvOWH/Zv8iAlTv6LWEiPGA3B6t96G6LwTHF6iXOqQxyIUkg8IkqZ6wNwxsDV8DYESOzFGp//aXO6wZDtoawMExe9sNEx0qVOt/ueP3IYQ8731fNJwFtWQsCQTM7VQjpcg5/d6eMxQ8zvmiIYo2huwfclE+zLdihjL/Y6v4HK760u/DQ+OaEIgqTgrwePJK5Db/gMDf+oXI9KvNxDb2vtxzroX0APEnZ9JX+Ic0JGWTkD4smMkTdWsjaqDYXqW6SUsyCc4Bf9tHL5Irr1AgUR4hEbLnbk6NlIqWrgVeI5CQVMMFpWqV0o2hyDz2rMA7tbBeYzD/ynslQAerU7DmBRb1FDVh79+JeaCNIM8EpwbCUKHT6CQAjPK8cYBieO1yEHKjHyFTsZgpvdi4rVMP+Qsvab+J5RPPcJeKj7o8KIrtyyESXbLNcZv1uGwZ8nLZKfZQSJP04HUkRKoQJ/JoMvMurEKG/cJ1VtocV4AJiRHj+367D3uzrKd6eHYlM9oD+zpPeJ1P1J2TDPUp2K7GcKCrItn9blSGo/n/+gYBO793QjSdkmc/Ag4TEVhUfG17l0WlSvAw4L0csMlYBAGGqKAUEEx3BJGYNJ851bj23m6JBe83OVWGRWrDIIE+G14/tx8qYXDaFxFUFPb2zj+gmDXq80hYpv++/yFtTocbw== cpnr@INVITN14SLM1BULD01CO
 - ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQDAmkQGCZUrYqkZ0C0J9t7mF9La9zYOqfzzFkk1wWtPga+aANOaFgjqbjj+VlBdd3zJy1p6BMWZhaZIcOh0+knCisJArcHM3HlurQZXO45zHtBcm7tB1FQ0W1HI9GbvJ+IPIe7kpPme/socd5ytTx0ZkYtlcRDDZuxTwYY4P4/vpnzXuwPS2dfcfQscubj6MkSlx4JHhc/hkDsmtJUipkWEungE/UsldjQzkj8oJorymYHQXE/czNxwzCGizK1YinhebeHFcmHd6Jcqd5oZZWnmkGKGeW6o0ddSFI5NmwzHd5RzwjztU2nqmiyOA8mu7YkCm6X82uhACwQlfY0pGRpTVkIhlf+tKDwKQRuwpcbR1ZUHmli0zi5QZtbzc31aLNlUPpR21BptS4GSfbKJaMOaDUClfe8rGk+9GCgm6wnZiT+SMa4/wEA9NILlwobrwHxVsb/kFlFKXg0aPkdvmqWPNcd09vF50enrs0aXFsqCyl6CPMJpZtGAgckvX8iU2bCJkxzD9F4rAu2D/FNb8KG5cbw7uptiwB4yoek6Q36NyxHYYJyOGiV4oQJ02T9MRPkvjLf7ASx9HA25nG+J4CZXWkuV7XYX1N5DFvOg/kwA7xMPyNgTEkblTRpIcfXU2PCWYSZcn1vYmsazf2uVCY+mjfLcvi85c/1mLnUGikiovQ== admin@invitn14slm1escx01co
runcmd:
 - /usr/sbin/useradd FMLVL1 -d /home/FMLVL1 -s /bin/bash -g users; (/bin/echo changeme; /bin/echo changeme) | /usr/bin/passwd FMLVL1
 - nmcli con add type ethernet con-name eth0 ifname eth0 ip4 10.xx.xx.xx/24
 - nmcli con add type ethernet con-name eth1 ifname eth1 ip4 172.xx.xx.xx/23
 - nmcli connection add type bond con-name bond0 ifname bond0 bond.options "mode=active-backup,miimon=1000,fail_over_mac=1" ipv4.addresses 'xx.xx.xx.xx/29' ipv4.gateway 'xx.xx.xx.xx' ipv4.method manual ipv6.addresses '2402:xxxx:xx:0025::5/64' ipv6.gateway '2402:xxxx:xx:0025::1' ipv6.method manual

 - nmcli connection add type ethernet ifname ens6 master bond0
 - nmcli connection add type ethernet ifname ens7 master bond0
 - nmcli con up eth0
 - nmcli con up eth1
 - nmcli con up bond-slave-ens6
 - nmcli con up bond-slave-ens7
 - nmcli con down bond0
 - nmcli con up bond0
 - nmcli connection reload
 - hostnamectl set-hostname CPNRDNS01CO

--===============2678395050260980330==

Deploying CPNR VNF with SR-IOV Ports and Active-Backup
Bond Interface on OpenStack

CPNR is a vital Virtual Network Function (VNF) that provides IP Address Management (IPAM), DHCP,
and Domain Name Server (DNS) services for enterprise and service provider networks. Deploying CPNR as
a VNF in OpenStack requires careful planning, especially when leveraging SR-IOV ports, cross-NUMA
configurations, and an Active-Backup bond interface for redundancy and performance.

This article explains the step-by-step process for deploying the CPNR VNF on OpenStack. It includes:

Configuring cross-NUMA mode, which is critical for accessing SR-IOV NICs from multiple NUMA
nodes.

•

Setting up Active-Backup bonding, ensuring high availability without requiring switch-side
configurations.

•

Configuring OpenStack networks, flavors, and Glance.•
IP address planning, configuring Linux networking using ifcfg files, and deploying the VNF using
Cisco ESC.

•

Key Features of the Deployment

Cross-NUMA Awareness:

The CPNR VNF spans NUMA nodes to access SR-IOV NICs (sriov0 on NUMA 0 and sriov1
on NUMA 1).

•

Cross-NUMA mode is required because, in single-NUMA mode, OpenStack only allows a VNF
to connect to NICs that are physically located on the same NUMA node where the VNF is
launched. By enabling cross-NUMA mode, the VNF can utilize NICs and resources from both
NUMA nodes.

•

1.

Active-Backup Bonding:

A bond0 interface is created using SR-IOV NICs (eth2 from sriov0 and eth3 from sriov1).•
Active-Backup mode ensures redundancy and fault tolerance without requiring switch-side
configurations.

•

2.

OpenStack Networking:

Orchestration and Management Networks: Openvswitch-based for control and administrative •

3.

traffic.
Application/Service Networks: SR-IOV-based for high-performance traffic.•

Why Cross-NUMA Mode is Required

1. NUMA-Aware Networking in OpenStack

NUMA is a memory architecture where each CPU (and its local memory and devices) is grouped into a
NUMA node. In OpenStack, NUMA-aware placement ensures VNFs are optimally assigned to resources on
the same NUMA node to minimize latency and maximize performance.

SR-IOV NICs Are NUMA-Local:

Each physical NIC is tied to a specific NUMA node. For example:
sriov0 is connected to NUMA node 0.○

sriov1 is connected to NUMA node 1.○

○

•

Single-NUMA Mode Limitation:

When a VNF is launched in single-NUMA mode, OpenStack only allows the VNF to connect to
NICs that are local to the NUMA node where the VNF is launched. This means:

If the VNF is launched on NUMA 0, it can only connect to NICs on sriov0.○

If the VNF is launched on NUMA 1, it can only connect to NICs on sriov1.○

○

•

2. Why Cross-NUMA Mode Is Necessary

The CPNR VNF requires access to:

Orchestration Network(Openvswitch, NUMA-agnostic)•
Management Network(Openvswitch, NUMA-agnostic)•
SR-IOV Network 1: Connected tosriov0(NUMA node 0)•
SR-IOV Network 2: Connected tosriov1(NUMA node 1).•

In this deployment, the CPNR VNF requires access to SR-IOV NICs from both NUMA 0 (sriov0) and
NUMA 1 (sriov1) to provide redundancy and high availability. In order to achieve this:

The VNF must be launched in cross-NUMA mode, which allows OpenStack to allocate CPU,
memory, and NICs from multiple NUMA nodes.

•

This ensures the VNF can connect to NICs on sriov0 and sriov1, enabling the use of both SR-IOV
ports in an Active-Backup bond configuration.

•

Conntrack Size Limitation for OVS Ports

What is Conntrack?

Conntrack is a Linux kernel feature used to track network connections, particularly for Network Address
Translation (NAT) and firewall rules. For OVS-based ports in OpenStack, conntrack is used to manage
connection state and enforce security group rules.

How Conntrack Affects OVS Ports

Conntrack Table:1.

Each active connection consumes an entry in the conntrack table.•
The size of the conntrack table is limited by thenf_conntrack_maxparameter.

•

Default Limit:

By default, the conntrack table size is 65536 entries. For workloads with high connection rates
(for example, VNFs with many simultaneous flows), this limit can be quickly exhausted,
resulting in dropped packets.

•

2.

Impact on OVS Ports:

If the conntrack table is full, new connections are dropped, which can severely impact VNF
performance.

•

This is especially relevant for theOrchestrationandManagement networks, which use OVS
ports.

•

3.

How to Mitigate Conntrack Limitations

Increase Conntrack Table Size:

View the current limit:

sysctl net.netfilter.nf_conntrack_max

•

Increase the limit:

sysctl -w net.netfilter.nf_conntrack_max=262144

•

Make the change persistent:

echo "net.netfilter.nf_conntrack_max=262144" >> /etc/sysctl.conf

•

1.

Monitor Conntrack Usage:

Check conntrack statistics:

cat /proc/sys/net/netfilter/nf_conntrack_count

2.

Optimize Security Group Rules:

Reduce the number of rules applied to OVS ports to minimize conntrack overhead.

3.

How SR-IOV Resolves Conntrack Issues

1. Eliminates Conntrack Dependency

SR-IOV ports bypass the OVS datapath and Linux kernel features like conntrack. This removes connection
tracking overhead entirely.

2. Higher Scalability

Unlike OVS ports, which are limited by the conntrack table size (nf_conntrack_max), SR-IOV ports can
handle a virtually unlimited number of connections.

3. Reduced Latency

By offloading packet processing to the NIC hardware, SR-IOV ports eliminate the latency introduced by
software-based conntrack processing.

Why Active-Backup Mode is Chosen for SR-IOV Ports on CPNR
VM

The Active-Backup bonding mode is particularly well-suited for this deployment due to its simplicity, fault
tolerance, and compatibility with SR-IOV interfaces. Here is why:

1. Redundancy Without Complexity

Active-Backup Mode: Only one interface (theactiveinterface) transmits and receives traffic at any
given time. The other interface(s) remain in standby mode.

•

If the active interface fails (for example, due to a link failure or hardware issue), the bond
automatically switches to a standby interface. This ensures continuous network connectivity without
requiring manual intervention.

•

2. No Link Aggregation Group (LAG) Required

Unlike other bonding modes (for example,802.3adorbalance-alb), Active-Backup mode does not
require Link Aggregation Control Protocol (LACP) or switch-side configurations.

•

This is especially important for SR-IOV ports, as SR-IOV VFs typically do not support LACP or
LAG configurations.

•

3. Seamless Failover

Failover is near-instantaneous, with minimal disruption to traffic.•
When the active interface fails, the bond immediately promotes a standby interface to active status.•

4. Hardware Independence

Active-Backup mode works independently of the underlying physical switches or hardware. The failover
logic resides entirely in the Linux kernel, making it highly portable and versatile.

5. Optimized for SR-IOV

SR-IOV VFs are tied to specific physical NICs and NUMA nodes. By using Active-Backup mode, you can
combine VFs from different NUMA nodes into a single logical bond interface (bond0). This ensures high
availability while making efficient use of NUMA resources.

Active-Backup mode is one of the simplest and most widely used modes in Linux bonding. It is designed to
provide high availability by ensuring that traffic continues to flow seamlessly even if one of the bonded
interfaces fails. This is an in-depth explanation of how Active-Backup mode works, its key characteristics,
and advantages.

What is a Linux Bond Interface?

A bond interface in Linux combines two or more network interfaces into a single logical interface. This
logical interface, referred to as the bond (for example, bond0), is used to provide:

Redundancy: Ensuring high availability of network connectivity.•
Performance Improvement: In other modes (for example,balance-rror802.3ad), it can also aggregate
bandwidth.

•

How Does Active-Backup Mode Work?

In Active-Backup mode, only one interface (called the active interface) is used at any given time to
transmit and receive traffic. The other interface(s) remain in a standby mode. If the active interface fails,
one of the standby interfaces is promoted to active status, and traffic is automatically rerouted to the new
active interface.

Key Features of Active-Backup Mode

Single Active Interface:

At any given time, only one physical interface in the bond is active for transmitting and
receiving traffic.

•

Standby interfaces are completely passive unless a failover occurs.

•

1.

Automatic Failover:

If the active interface fails (for example, due to a hardware issue, cable disconnection, or link
failure), the bond automatically switches to a standby interface.

•

Failover is seamless and does not require manual intervention.

•

2.

Failback Support:

Once the failed interface is restored, it can automatically become active again (if configured to do so)
or remain in standby mode, depending on the bonding configuration.

3.

No Switch-Side Requirements:

Unlike other bonding modes (for example,802.3adorbalance-rr), Active-Backup mode does
not require any special configuration on the physical switches (for example, LAG or LACP).

•

This makes it ideal for scenarios where switch-side configuration is not possible or when
bonding SR-IOV virtual functions, which do not support LAG.

•

4.

Monitoring:

The bond continuously monitors the health of all member interfaces using themiimon(Media
Independent Interface Monitor) parameter.

•

If a link failure is detected, the bond immediately switches to a healthy standby interface.•

5.

How Traffic Flows in Active-Backup Mode

Normal Operation

Active Interface:

Traffic flows exclusively through the active interface (for example,eth2in a bond
ofeth2andeth3).

•

The standby interface (eth3) remains idle and does not transmit or receive traffic.

•

1.

Monitoring:

The bond periodically monitors the status of all member interfaces. This is done using:
miimon: Checks the link status of each interface at a configurable interval (for example,
every 100ms).

○

Address Resolution Protocol (ARP) monitoring(optional): Sends ARP requests to ensure
the active interface is reachable.

○

•

2.

Failover Scenario

Link Failure on Active Interface:

If the active interface (eth2) fails (for example, cable unplugged, NIC hardware failure, or link down),
the bond immediately detects the failure usingmiimonor ARP monitoring.

1.

Automatic Failover:

The bond switches to the standby interface (eth3), which becomes the new active interface.•
Traffic is rerouted through the new active interface without requiring manual intervention.

•

2.

Failover Timeliness:

The failover process is near-instantaneous (typically within a few milliseconds, depending on
themiimoninterval).

3.

Failback Scenario

Restoration of Failed Interface:

When the previously failed interface (eth2) is restored, it can:
Automatically reclaim the active role (if configured to do so).○

Remain in standby mode (default behavior).○

•

1.

Traffic Continuity:2.

Failback is seamless, ensuring no disruption to ongoing traffic flows.

Use Case: Active-Backup Bonding with SR-IOV Ports

Active-Backup mode is particularly well-suited for SR-IOV interfaces because:

SR-IOV VFs typically do not support link aggregation protocols like LACP.•
The bond in Active-Backup mode can provide redundancy without any switch-side configuration.•

For example:

eth2is mapped to an SR-IOV VF onsriov0(NUMA node 0).•
eth3is mapped to an SR-IOV VF onsriov1(NUMA node 1).•
The bond (bond0) combines these interfaces, providing seamless failover between SR-IOV VFs.•

Step 1. OpenStack Networking

The CPNR VNF requires the these four networks:

Orchestration Network: For control and orchestration traffic (Openvswitch-based).1.
Management Network: For administrative access (Openvswitch-based).2.
SR-IOV Network 1: Application/service traffic on sriov0.3.
SR-IOV Network 2: Application/service traffic on sriov1.4.

Step-by-Step Deployment:

Step 1.1. Create Openvswitch Networks

Orchestration Network:

openstack network create --provider-network-type vxlan orchestration-network

•

Management Network:

openstack network create --provider-network-type vxlan management-network

•

Step 1.2. Create Subnets for Openvswitch Networks

Orchestration Subnet:

openstack subnet create --network orchestration-network \
--subnet-range 192.168.100.0/24 orchestration-subnet

•

Management Subnet:

openstack subnet create --network management-network \
--subnet-range 10.10.10.0/24 management-subnet

•

Step 1.3. Create SR-IOV Networks

SR-IOV Network 1:

openstack network create --provider-network-type vlan \
--provider-physical-network sriov0 --provider-segment 101 sriov-network-1

•

SR-IOV Network 2:

openstack network create --provider-network-type vlan \
--provider-physical-network sriov1 --provider-segment 102 sriov-network-2

•

Step 2. OpenStack Flavors

Step 2.1. Create a Cross-NUMA Flavor

In order to ensure the VNF can access SR-IOV NICs from both NUMA nodes, create a flavor with cross-
NUMA support:

openstack flavor create --ram 8192 --vcpus 4 --disk 40 cross-numa-flavor

Step 2.2. Configure NUMA Properties

Set NUMA-specific properties:

openstack flavor set cross-numa-flavor \
--property hw:numa_nodes=2 \
--property hw:cpu_policy=dedicated \

--property hw:mem_page_size=large

Step 3. Configure Bonding in Active-Backup Mode

After launching the VNF, configure the bond interface for SR-IOV ports (eth2 and eth3) on the VNF.

Step 3.1. Bond Interface Configuration

Create a bond interface (bond0) in Active-Backup mode:

vi /etc/sysconfig/network-scripts/ifcfg-bond0

DEVICE=bond0
BOOTPROTO=static
ONBOOT=yes
BONDING_OPTS="mode=active-backup miimon=100"
IPADDR=172.16.1.10
NETMASK=255.255.255.0
GATEWAY=172.16.1.1

Step 3.2. Configure Slave Interfaces

eth2:

vi /etc/sysconfig/network-scripts/ifcfg-eth2

DEVICE=eth2
ONBOOT=yes
MASTER=bond0
SLAVE=yes

•

eth3:

vi /etc/sysconfig/network-scripts/ifcfg-eth3

•

DEVICE=eth3
ONBOOT=yes
MASTER=bond0
SLAVE=yes

Step 3.3. Apply Configuration

Restart the network service in order to apply the configuration:

systemctl restart network

Verify

After deploying the VNF, verify its functionality using the these steps:

1. Verify VNF Status

Check that the VNF instance is active:

openstack server show cpnr-instance

Ensure the status is ACTIVE.

2. Verify Network Connectivity

Ping Test: Verify that the VNF can communicate over all networks:

ping <IP_ADDRESS_OF_ORCHESTRATION_NETWORK>
ping <IP_ADDRESS_OF_MANAGEMENT_NETWORK>

•

Bond Interface:

Confirm thatbond0 is active:

cat /proc/net/bonding/bond0

Look for:

○

•

Currently Active Slave: Indicates the active interface.○

Slave Interface: Confirms botheth2andeth3 are part of the bond.

○

3. Verify NUMA Placement

Ensure the VNF is using resources from both NUMA nodes:

nova show <INSTANCE_ID> --human | grep numa

Best Practices

Monitoring and Troubleshooting: Use tools liketcpdumpandethtoolto monitor the SR-IOV interfaces.•

Security: Carefully manage access to the physical network and enforce strict isolation between
tenants.

•

Scaling: Plan for physical NIC capacity when scaling SR-IOV deployments, as the number of
available VFs is limited by the NIC hardware.

•

Troubleshoot

If the deployment does not work as expected, refer to these troubleshooting steps:

1. Verify SR-IOV Configuration

Check if SR-IOV is enabled in the BIOS:

dmesg | grep -i "SR-IOV"

•

Confirm VFs are created on NICs:

lspci | grep Ethernet

•

2. Verify NUMA Placement

If the VNF cannot access both NICs, ensure cross-NUMA mode is enabled:

Check NUMA properties of the flavor:

openstack flavor show cross-numa-flavor

•

3. Bond Interface Issues

Check the bond status:

cat /proc/net/bonding/bond0

•

If the bond is not functioning:
Ensure the slave interfaces (eth2andeth3) are correctly configured as part of the bond.○

Restart the network service:

systemctl restart network

○

•

4. Network Connectivity Issues

Verify the OpenStack port bindings:

openstack port list --server cpnr-instance

•

Check for correct IP configuration within the VNF:

ip addr show

•

Conclusion

Deploying CPNR VNF on OpenStack with SR-IOV ports requires cross-NUMA mode to enable the VNF
to connect to NICs from both NUMA nodes. This is essential because OpenStack restricts VNFs in single-
NUMA mode to only access resources (NICs, CPUs, memory) within the NUMA node where the VNF is
launched. Combining cross-NUMA mode with Active-Backup bonding ensures high availability, fault
tolerance, and efficient resource utilization, making this deployment highly resilient and performant.

