
Collect Data when NSO Consumes High CPU

Contents

Introduction
Prerequisites
Requirements
Components Used
Background Information
Data to be collected
Additional Information
Related Information

Introduction

This document describes the Network Services Orchestrator (NSO) data collection needed when
CPU consumption increases to 100-150%.

Prerequisites

Requirements

There are no specific requirements for this document.

Components Used

This document is not restricted to specific software and hardware versions.

The information in this document was created from the devices in a specific lab environment. All of
the devices used in this document started with a cleared (default) configuration. If your network is
live, ensure that you understand the potential impact of any command.

Background Information

When multiple transactions are processed from NB, the NSO CPU consumption increases to
approximately 100-150% of normal consumption. When this happens, you need to find the cause
that downgrades CPU performance. And, at the same time, the NSO does not respond to
RESTCONF (if used) queries correctly.

This article highlights all the important data that needs to be collected during the problem so that
the issue can be properly troubleshooted and also suggest some remedy steps.

Data to be collected

From Linux perspective:

lscpu●

top●

free -h●

vmstat●

cat /proc/meminfo●

pstree -c●

ps auxw | sort●

Note: You can capture these details (except 'lscpu') at regular intervals in order to
understand how the system behaves when the requests come from NB.

From NSO perspective:

ncs --status | grep lock●

Enable the progress trace: admin@ncs(config)# commit dry-run cli { local-node { data
progress { + trace all { + destination { + file progress-
all.txt; + format log; + } + } } }}admin@ncs(config)#
commit

●

Capture the next information every 'n' seconds (it can be run as a script):●

seq=0
while ncs --status >& /dev/null; do
ncs --debug-dump ncs.dd.$((seq++));
ncs --status > ncs.stat.$((seq++));
sleep 30; #Configured according to user
done

Next are some remedy steps that can also be performed to mitigate the issue:

Limit the number of sessions as follows (presently, you don’t have this set):1.
<session-limits>

 <session-limit>

 <context>rest</context>

 <max-sessions>100</max-sessions>

 </session-limit>

</session-limits>

b. Enable audit rule to ascertain if NSO process was killed by something and if in case it was,
record it in audit.log:

sudo auditctl -a exit,always -F arch=b64 -S kill -k audit_kill

To troubleshoot and analyze, you need the previous details along with the audit.log, devel.log
(preferably set at level=trace), ncs-java-vm.log and NB logs.

Additional Information

Q. How does NSO actually handle RESTCONF requests from a NB application?

A. When a northbound application sends a RESTCONF request, it is treated as a unique
transaction based on NSO. This means that NSO can lock the entire CDB, and not allow any other
transactions until the current transaction is completed.If this is done, the transactional nature of
NSO is preserved and it ensures that a rollback can be done in case of any issues.

The NSO commit-queue can process each subsequent transaction request as it completes, and
you can track the transaction lock in the devel.log as they start/complete. In use cases where a
large amount of queries are done, this introduces a large amount of overhead in NSO; and
transactions are in the commit queue for longer than expected. In case the RESTCONF requests
were grouped, the throughput would increase, as the transaction overhead would be lessened.
Also, NSO would be able to do as much as it can at the same time, inside of a single transaction.
For example, if a transaction contains 2 device configuration changes, NSO can lock the CDB,
reach out to and edit both devices at the same time, then complete the transaction This is in
contrast to 2 transactions that each contain 1 device and both are changed; as NSO can lock the
CDB for the first transaction, edit the first device, complete the transaction, then do the same steps
for the second device.

Related Information

Cisco Technical Support & Downloads●

https://www.cisco.com/c/en/us/support/index.html?referring_site=bodynav

	Collect Data when NSO Consumes High CPU
	Contents
	Introduction
	Prerequisites
	Requirements
	Components Used

	Background Information
	Data to be collected
	Additional Information
	Related Information

