Troubleshoot DHCP in Layer 2 Only VLAN - Wireless

Contents

Introduction

Prerequisites

Requirements

L2 Only Overview

Overview

DHCP Behavior Change in L2 Only VLANs

Underlay Multicast

Broadcast Over Access-Tunnel Interfaces

Topology

L2 Only VLAN Configuration

L2 Only VLAN Deployment from Catalyst Center

L2 Only VLAN Configuration - Fabric Edges

L2 Only VLAN Configuration - Wireless LAN Controller

L2 Hand-off Configuration (Fabric Border)

Wireless Multicast Enablement

DHCP Traffic Flow

DHCP Discover and Request - Wireless Side

DHCP Discover and Request - Fabric Edge

MAC Learning using WLC Notification

DHCP Broadcast Bridged in L2 Flooding

Packet Captures

DHCP Discover and Request - L2 Border

Packet Captures

DHCP Offer and ACK - Broadcast - L2 Border

MAC Learning and Gateway Registration

DHCP Broadcast Bridged in L2 Flooding

DHCP Offer and ACK - Broadcast - Edge

DHCP Offer and ACK - Unicast - L2 Border

DHCP Offer and ACK - Unicast - Edge

DHCP Transaction - Wireless Verification

Introduction

This document describes how to troubleshoot DHCP for wireless endpoints in a Layer-2 Only network in SD-Access (SDA) fabric.

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics:

- Internet Protocol (IP) Forwarding
- Locator/ID Separation Protocol (LISP)
- Protocol Independent Multicast (PIM) Sparse-Mode
- Fabric Enabled Wireless

Hardware & Software Requirements

- Catalyst 9000 series switches
- Catalyst Center Version 2.3.7.9
- Catalyst 9800 series wireless LAN controllers
- Catalyst 9100 series access points
- Cisco IOS® XE 17.12 and later

Limitations

• Only one L2 Border can handoff a unique VLAN/VNI concurrently, unless robust loop prevention mechanisms, such as FlexLink+ or EEM scripts to disable links, are properly configured.

L2 Only Overview

Overview

In typical SD-Access deployments, the L2/L3 boundary resides at the Fabric Edge (FE), where the FE hosts the client's gateway in the form of an SVI, which is often called "Anycast Gateway". L3 VNIs (Routed) are established for inter-subnet traffic, while L2 VNIs (Switched) manage intra-subnet traffic. Consistent configuration across all FEs enables seamless client roaming. Forwarding is optimized: intra-subnet (L2) traffic is directly bridged between FEs, and inter-subnet (L3) traffic is routed either between FEs or between an FE and a Border Node.

For endpoints in SDA Fabrics that require a strict network entry point outside the fabric, the SDA Fabric must provide an L2 channel from the Edge to an external gateway.

This concept is analogous to traditional Ethernet campus deployments where a Layer 2 access network connects to a Layer 3 router. Intra-VLAN traffic remains within the L2 network, while inter-VLAN traffic is routed by the L3 device, often returns to a different VLAN on the L2 network.

Within a LISP context, the Site Control Plane primarily tracks MAC addresses and their corresponding MAC-to-IP bindings, much like traditional ARP entries. L2 VNI/L2-only pools are designed to facilitate registration, resolution, and forwarding exclusively based on these two EID types. Therefore, any LISP-based forwarding in an L2-only environment relies solely on MAC and MAC-to-IP information, it completely disregards IPv4 or IPv6 EIDs. To complement LISP EIDs, L2-only pools heavily depend on flood-and-learn mechanisms, similar to the behavior of traditional switches. Consequently, L2 Flooding becomes a critical component for handling Broadcast, Unknown Unicast, and Multicast (BUM) traffic within this solution, requires the use of Underlay Multicast. Conversely, normal unicast traffic is forwarded using standard LISP forwarding processes, primarily via Map-Caches.

Both Fabric Edges and the "L2 Border" (L2B) maintain L2 VNIs, which map to local VLANs (this mapping is locally device-significant within SDA, allowing different VLANs to map to the same L2 VNI across nodes). In this specific use case, no SVI is configured on these VLANs at these nodes, meaning there is no corresponding L3 VNI.

DHCP Behavior Change in L2 Only VLANs

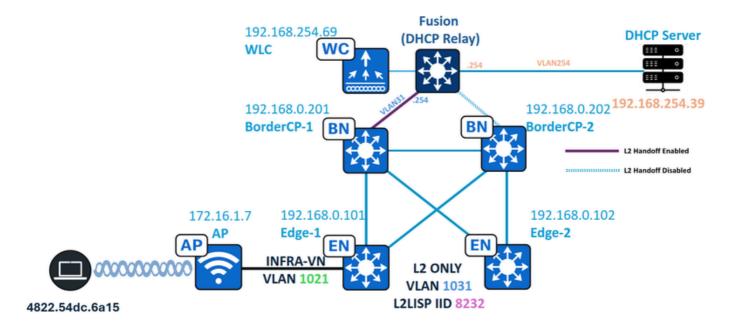
In Anycast Gateway pools, DHCP presents a challenge because every Fabric Edge acts as the gateway for its directly connected endpoints, with the same gateway IP across all FEs. To properly identify the original source of a DHCP relayed packet, FEs must insert DHCP Option 82 and its sub-options, including the LISP RLOC information. This is achieved with DHCP Snooping on the client VLAN at the Fabric Edge. DHCP Snooping serves a dual purpose in this context: it facilitates the insertion of Option 82 and, crucially, prevents the flood of DHCP broadcast packets across the bridge-domain (VLAN/VNI). Even when Layer-2 Flooding is enabled for an Anycast Gateway, DHCP Snooping effectively suppresses the broadcast packet to be forwarded out of the Fabric Edge as a broadcast.

In contrast, a Layer 2 Only VLAN lacks a gateway, which simplifies DHCP source identification. Since packets are not relayed by any Fabric Edges, complex mechanisms for source identification are unnecessary. Without DHCP Snooping on the L2 Only VLAN, the flood-control mechanism for DHCP packets is effectively bypassed. This allows DHCP broadcasts to be forwarded via L2 Flooding to their final destination, which could be a DHCP server directly connected to a Fabric Node or a Layer 3 device that provides DHCP relay functionality.

Warning: The "Multiple IP to MAC" functionality within an L2 Only pool automatically activates DHCP Snooping in Bridge VM mode, which enforces DHCP flood control. Consequently, this

renders the L2 VNI pool incapable to support DHCP for its endpoints.

Underlay Multicast


Given DHCP's heavy reliance on broadcast traffic, Layer 2 flooding must be leveraged to support this protocol. As with any other L2 Flooding-enabled pool, the underlay network must be configured for multicast traffic, specifically Any-Source-Multicast utilizing PIM Sparse-Mode. While underlay multicast configuration is automated via the LAN Automation workflow, if this step was omitted, additional configuration is required (manual or template).

- Enable IP Multicast Routing on all nodes (Borders, Edges, Intermediate Nodes, etc.).
- Configure PIM Sparse-Mode on the Loopback0 interface of each Border and Edge node.
- Enable PIM Sparse-Mode on each IGP (underlay routing protocol) interface.
- Configure the PIM Rendezvous Point (RP) on all nodes (Borders, Edges, Intermediate Nodes), RP placement on Borders is encouraged.
- Verify PIM Neighbors, PIM RP, and PIM Tunnel status.

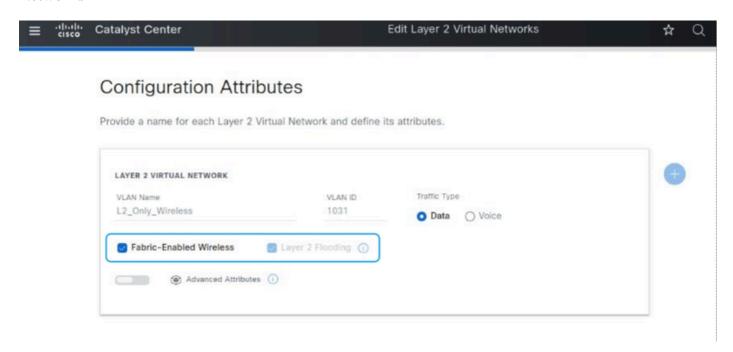
Broadcast Over Access-Tunnel Interfaces

Fabric Enabled Wireless employs local switching and VTEP functionality at the AP and FE. However, an IOS-XE 16.10+ limitation prevents egress broadcast forwarding over VXLAN to APs. In L2 Only networks, this blocks DHCP Offers/ACKs from reaching wireless clients. The "flood access-tunnel" feature addresses this by enabling broadcast forwarding on Fabric Edge access tunnel interfaces.

Topology

Network Topology

In this topology:


- 192.168.0.201 and 192.168.0.202 are Collocated Borders for the Fabric Site, BorderCP-1 is the only Border with the Layer 2 Hand-off feature enabled.
- 192.168.0.101 and 192.168.0.102 are Fabric Edge Nodes

- 172.16.1.7 is the Access Point in INFRA-VN with VLAN 1021
- 192.168.254.39 is the DHCP Server
- 192.168.254.69 is the Wireless LAN Controller
- 4822.54dc.6a15 is the DHCP-enabled endpoint
- The Fusion device acts as DHCP Relay for the fabric subnets.

L2 Only VLAN Configuration

L2 Only VLAN Deployment from Catalyst Center

Path: Catalyst Center / Provision / Fabric Site / Layer 2 Virtual Networks / Edit Layer 2 Virtual Networks

L2VNI Configuration with Fabric-Enabled Wireless

L2 Only VLAN Configuration - Fabric Edges

Fabric Edge nodes have the VLAN configured with CTS enabled, IGMP and IPv6 MLD disabled, and the required L2 LISP configuration. This L2 Only pool is a Wireless pool; therefore, features typically found in L2 Only Wireless Pools, such as RA-Guard, DHCPGuard, and Flood Access Tunnel, are configured. ARP Flooding is not enabled on a wireless pool.

Fabric Edge (192.168.0.101) Configuration

```
<#root>
ipv6 nd raguard policy
dnac-sda-permit-nd-raguardv6

device-role router
ipv6 dhcp guard policy
dnac-sda-permit-dhcpv6
```

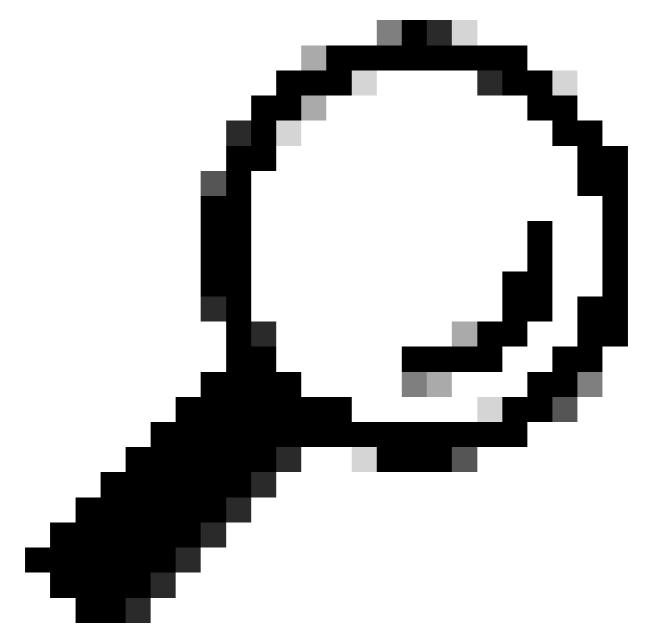
```
device-role server
vlan configuration
1031
 ipv6 nd raguard attach-policy
dnac-sda-permit-nd-raguardv6
 ipv6 dhcp guard attach-policy
dnac-sda-permit-dhcpv6
cts role-based enforcement vlan-list
1031
vlan
1031
name L2_Only_Wireless
ip igmp snooping querier
no ip igmp snooping vlan 1031 querier
no ip igmp snooping vlan 1031
no ipv6 mld snooping vlan 1031
router lisp
 instance-id
8240
  remote-rloc-probe on-route-change
  service ethernet
 eid-table vlan 1031
```

broadcast-underlay 239.0.17.1

```
flood unknown-unicast
flood access-tunnel 232.255.255.1 vlan 1021
```

database-mapping mac locator-set rloc_91947dad-3621-42bd-ab6b-379ecebb5a2b exit-service-ethernet

The flood-access tunnel command is configured in it's multicast replication variation, where all BUM traffic is encapsulated to APs using the source specific multicast group (232.255.255.1) using the INFRA-VN Access Point VLAN as the VLAN that is consulted by IGMP snooping to forward the BUM traffic.


L2 Only VLAN Configuration - Wireless LAN Controller

On the WLC (Wireless LAN Controller) side, site tags associated with fabric access points must be configured with "no fabric ap-arp-caching" to disable proxy-ARP functionality. Additionally, "fabric ap-dhcp-broadcast" must be enabled, this configuration allows DHCP broadcast packets to be forwarded from the AP to wireless endpoints.

Fabric WLC (192.168.254.69) Configuration

<#root>

wireless tag site RTP-Site-Tag-3
description "Site Tag RTP-Site-Tag-3"
no fabric ap-arp-caching
fabric ap-dhcp-broadcast

Tip: The wireless multicast group 232.255.255.1 is the default group used by all site-tags.

<#root>

WLC#

show wireless tag site detailed RTP-Site-Tag-3

Site Tag Name :

RTP-Site-Tag-3

Description : Site Tag RTP-Site-Tag-3

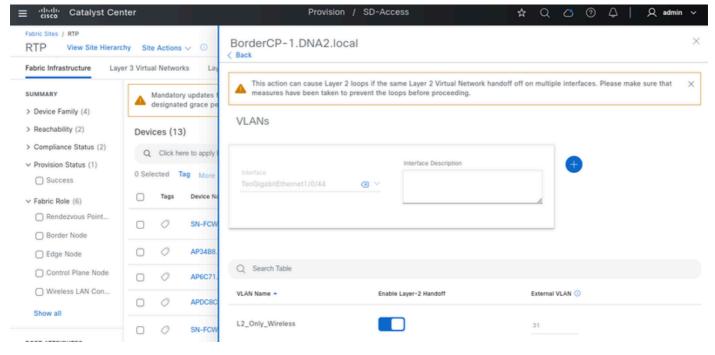
AP Profile : default-ap-profile

Local-site : Yes Image Download Profile: default Fabric AP DHCP Broadcast:

Enabled

Fabric Multicast Group IPv4 Address:

232.255.255.1


RTP-Site-Tag-3 Load : 0

L2 Hand-off Configuration (Fabric Border)

From an operational perspective, the DHCP server (or Router/Relay) is allowed to be connected to any Fabric Node, including both Borders and Edges.

Using Border nodes to connect the DHCP server is the recommended approach, however, requires careful design consideration. This is because the Border must be configured for L2 Hand-Off on a per-interface basis. This allows the Fabric Pool to be handed off to either the same VLAN as within the Fabric or a different one. This flexibility in VLAN IDs between Fabric Edges and Borders is possible because both are mapped to the same L2 LISP Instance-ID. L2 Hand-off physical ports must not be simultaneously enabled with the same VLAN to prevent Layer 2 loops within the SD-Access network. For redundancy, methods such as StackWise Virtual, FlexLink+, or EEM scripts are required.

In contrast, connecting the DHCP Server or Gateway Router to a Fabric Edge requires no additional configuration.

L2 Hand-off Configuration

Fabric Border/CP (192.168.0.201) Configuration

<#root>

ipv6 nd raguard policy

```
device-role router
ipv6 dhcp guard policy
dnac-sda-permit-dhcpv6
 device-role server
vlan configuration
1
 ipv6 nd raguard attach-policy
dnac-sda-permit-nd-raguardv6
 ipv6 dhcp guard attach-policy
dnac-sda-permit-dhcpv6
cts role-based enforcement vlan-list
31
vlan
name L2_Only_Wireless
ip igmp snooping querier
no ip igmp snooping vlan 1031 querier
no ip igmp snooping vlan 1031
no ipv6 mld snooping vlan 1031
router lisp
 instance-id
```

8240

dnac-sda-permit-nd-raguardv6

```
remote-rloc-probe on-route-change
service ethernet

eid-table vlan 31

broadcast-underlay 239.0.17.1

flood unknown-unicast
flood access-tunnel 232.255.255.1 vlan 1021

database-mapping mac locator-set rloc_91947dad-3621-42bd-ab6b-379ecebb5a2b
exit-service-ethernet

interface TenGigabitEthernet1/0/44

switchport mode trunk
<---

DHCP Relay/Server interface
```

Wireless Multicast Enablement

Fabric Edges are configured to forward broadcast packets to access points via the **flood access-tunnel** mechanism. these packets are encapsulated into the 232.255.255.1 multicast group on the INFRA-VN VLAN. Access points automatically join this multicast group, as their site-tag is pre-configured to utilize it.

```
<#root>
WLC#
show ap name AP1 config general | i Site

Site Tag Name
RTP-Site-Tag-3

WLC#
show wireless tag site detailed RTP-Site-Tag-3

Site Tag Name :
RTP-Site-Tag-3
```

Description : Site Tag RTP-Site-Tag-3

AP Profile : default-ap-profile

Local-site

Yes

Image Download Profile: default
Fabric AP DHCP Broadcast :

Enabled

Fabric Multicast Group IPv4 Address:

232.255.255.1

RTP-Site-Tag-3 Load: 0

From the access point, upon a fabric wireless endpoint's association, a VXLAN tunnel is formed (dynamic on the AP side, always-on on the Fabric Edge side). Within this tunnel, the CAPWAP fabric multicast group is verified with commands from the AP terminal.

<#root>

AP1#

show ip tunnel fabric

Fabric GWs Information:

Tunnel-Id GW-IP GW-MAC Adj-Status Encap-Type Packet-I

n Bytes-In Packet-Out Bytes-out

1

192.168.0.101

00:00:0C:9F:F2:BC

Forward

VXLAN

111706302

6 1019814432 1116587492 980205146

AP APP Fabric Information:

GW_ADDR ENCAP_TYPE VNID SGT FEATURE_FLAG GW_SRC_MAC GW_DST_MAC

AP1#

show capwap mcast

IPv4 Multicast:

Vlan Group IP Version Query Timer Sent QRV left Port

0

232.255.255.1

From the Fabric Edge side, confirm that IGMP snooping is enabled for the INFRA-VN AP VLAN, the access points have formed an access-tunnel interface and they have joined the multicast group 232.255.255.1

<#root>

Edge-1#

show ip igmp snooping vlan 1021 | i IGMP

Global IGMP Snooping configuration:

IGMP snooping :

Enabled

IGMPv3 snooping :

Enabled

IGMP snooping :

Enabled

IGMPv2 immediate leave : Disabled CGMP interoperability mode : IGMP_ONLY

Edge-1#

show ip igmp snooping groups vlan

1021 232.255.255.1

Vlan Group Type Version Port List

1021 232.255.255.1

igmp v2

Te1/0/12 ---- Access Point Port

Edge-1#

show device-tracking database interface te1/0/12 | be Network

Network Layer Address
Interface vlan prlvl age state Time left

DH4 172.16.1.7

```
Te1/0/12 1021
```

0024 1s REACHABLE 251 s(76444 s)

Edge-1#

show access-tunnel summary

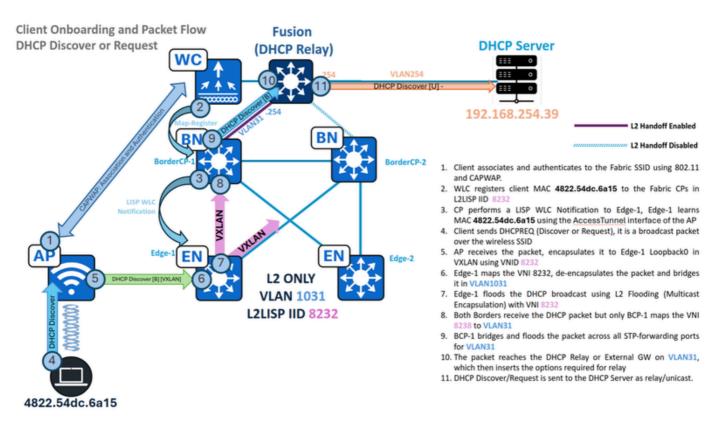
Access Tunnels General Statistics:

Number of AccessTunnel Data Tunnels = 1

Name RLOC IP(Source) AP IP(Destination) VRF ID Source Port Destination Port

Ac2

192.168.0.101


172.16.1.7

0 N/A 4789 <snip>

These verifications confirm the successful enablement of wireless multicast across the Access Point, Fabric Edge, and Wireless LAN Controller.

DHCP Traffic Flow

DHCP Discover and Request - Wireless Side

Control plane name :

default-control-plane

identify the wireless endpoint's state, its connected access point, and associated fabric properties. <#root> WLC# show wireless client summary | i MAC|-|4822.54dc.6a15 MAC Address AP Name Type ID State Protocol Meth 4822.54dc.6a15 AP1 WLAN 17 Run 11n(2.4) MAB Local WLC# show wireless client mac 4822.54dc.6a15 detail | se AP Name | Policy Profile | Fabric AP Name: AP1 Policy Profile: RTP_POD1_SSID_profile Fabric status: Enabled RLOC 192.168.0.101 VNID 8232 SGT : 0

It is important to confirm that both central-switching and central-dhcp features are disabled on the policy profile. The commands "no central dhcp" and "no central switching" must be configured on the policy profile for the SSID.

<#root>

WLC#

show wireless profile policy detailed RTP_POD1_SSID_profile | i Central

Flex Central Switching : DISABLED

Flex Central Authentication : ENABLED

Flex Central DHCP : DISABLED

VLAN based Central Switching : DISABLED

These verifications confirm that the endpoint is connected to "AP1", which is associated with the Fabric Edge RLOC 192.168.0.101. Consequently, its traffic is encapsulated via VXLAN with VNID 8232 for transmission from the Access Point to the Fabric Edge.

DHCP Discover and Request - Fabric Edge

MAC Learning using WLC Notification

During endpoint onboarding, the WLC registers the wireless endpoint's MAC address with the Fabric Control Plane. Simultaneously, the Control Plane notifies the Fabric Edge node (to which the Access Point is connected) to create a special "CP_LEARN" MAC learning entry, pointing to the Access Point's access-tunnel interface.

<#root>

Edge-1#

show lisp session

Sessions for VRF default, total: 2, established: 2

Peer State Up/Down In/Out Users

192.168.0.201:4342 Up

2w2d 806/553 44

192.168.0.202:4342 Up

2w2d 654/442 44

Edge-1#

show lisp instance-id 8232 ethernet database wlc 4822.54dc.6a15

```
WLC clients/access-points information for LISP 0 EID-table Vlan
1031
 (IID
8232
Hardware Address:
4822.54dc.6a15
Type: client
Sources: 2
Tunnel Update: Signalled
Source MS:
192.168.0.201
RLOC:
192.168.0.101
Up time:
                 1w6d
Metadata length: 34
Metadata (hex): 00 01 00 22 00 01 00 0C AC 10 01 07 00 00 10 01 00 02 00 06 00 00 00 03 00 0C 00 00 00 68 99
                  6A D2
Edge-1#
show mac address-table address 4822.54dc.6a15
        Mac Address Table
-----
Vlan Mac Address Type Ports
1031
4822.54dc.6a15
CP_LEARN
 Ac2
```

If the endpoint's MAC address is correctly learned via the access-tunnel interface corresponding to its connected access point, this stage is considered complete.

DHCP Broadcast Bridged in L2 Flooding

When DHCP Snooping is disabled, DHCP Broadcasts are not blocked; instead, they are encapsulated in

multicast for Layer 2 Flooding. Conversely, enabling DHCP Snooping prevents the flooding of these broadcast packets.

```
Edge-1#
show ip dhcp snooping

Switch DHCP snooping isenabled

Switch DHCP gleaning is disabled
DHCP snooping is configured on following VLANs:
12-13,50,52-53,333,1021-1026

DHCP snooping isoperationalon following VLANs:

12-13,50,52-53,333,1021-1026
<--

VLAN1031 should not be listed, as DHCP snooping must be disabled in L2 Only pools.

Proxy bridge is configured on following VLANs:
1024
Proxy bridge is operational on following VLANs:
1024
<--

Snip>
```

Since DHCP Snooping is disabled, the DHCP Discover/Request utilizes the L2LISP0 interface, bridging traffic via L2 Flooding. Depending on the Catalyst Center version and applied Fabric Banners, the L2LISP0 interface may have access-lists configured in both directions; therefore, ensure DHCP traffic (UDP ports 67 and 68) is not explicitly denied by any Access Control Entries (ACEs).

```
<#root>
interface L2LISP0

ip access-group

SDA-FABRIC-LISP

in

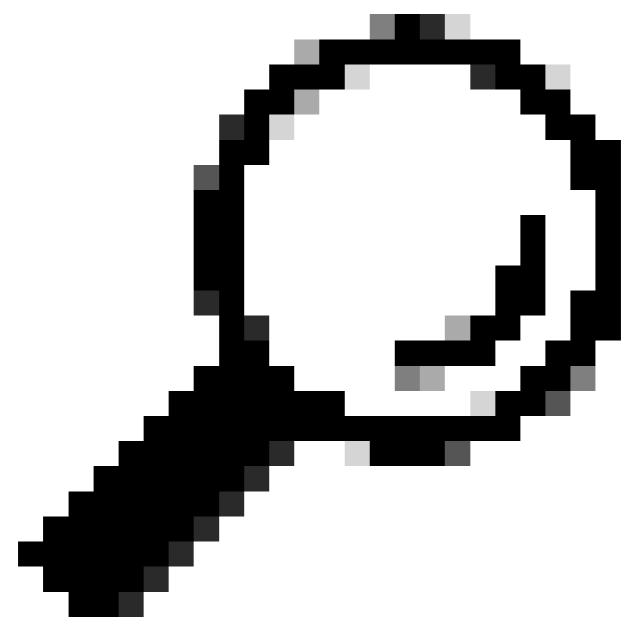
ip access-group

SDA-FABRIC-LISP out

Edge-1#
show access-list SDA-FABRIC-LISP
```

Extended IP access list SDA-FABRIC-LISP

```
10 deny ip any host 224.0.0.22
20 deny ip any host 224.0.0.13
30 deny ip any host 224.0.0.1
```


40 permit ip any any

Utilize the configured broadcast-underlay group for the L2LISP instance and the Fabric Edge's Loopback0 IP address to verify the L2 Flooding (S,G) entry that bridges this packet to other Fabric Nodes. Consult the mroute and mfib tables to validate parameters such as the incoming interface, outgoing interface list, and forwarding counters.

```
<#root>
Edge-1#
show ip interface loopback 0 | i Internet
 Internet address is
192.168.0.101/32
Edge-1#
show running-config | se 8232
interface L2LISP0.8232
instance-id 8232
  remote-rloc-probe on-route-change
 service ethernet
   eid-table vlan 1031
broadcast-underlay 239.0.17.1
Edge-1#
show ip mroute 239.0.17.1 192.168.0.101 | be \(
(192.168.0.101, 239.0.17.1)
, 00:00:19/00:03:17, flags: FT
 Incoming interface:
Null0
, RPF nbr 0.0.0.0
```

Local S,G IIF must be Null0

```
Outgoing interface list:
 TenGigabitEthernet1/1/2
Forward
/Sparse, 00:00:19/00:03:10, flags:
1st OIF = Te1/1/2 = Border2 Uplink
 TenGigabitEthernet1/1/1
Forward
/Sparse, 00:00:19/00:03:13, flags:
2nd OIF = Te1/1/1 = Border1 Uplink
Edge-1#
show ip mfib 239.0.17.1 192.168.0.101 count
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kilobits per second
Other counts:
                   Total/RPF failed/Other drops(OIF-null, rate-limit etc)
Default
 13 routes, 6 (*,G)s, 3 (*,G/m)s
Group:
239.0.17.1
  Source:
192.168.0.101
   SW Forwarding: 1/0/392/0, Other: 1/1/0
   HW Forwarding:
/0/231/0, Other: 0/0/0
<--
HW Forwarding counters (First counter = Pkt Count) must increase
```


Tip: Tip: If an (S,G) entry is not found or the Outgoing Interface List (OIL) contains no Outgoing Interfaces (OIFs), it indicates an issue with the underlay multicast configuration or operation.

Packet Captures

Configure a simultaneous embedded packet capture on the switch to record both the ingress DHCP packet from the AP and the corresponding egress packet for L2 Flooding.

Fabric Edge (192.168.0.101) packet catpures

```
monitor capture cap interface TenGigabitEthernet1/0/12 IN
                                                            <-- Access Point Port
monitor capture cap interface TenGigabitEthernet1/1/1 OUT <-- Multicast Route (L2 Flooding) OIF
monitor capture cap match any
monitor capture cap buffer size 100
monitor capture cap limit pps 1000
monitor capture cap start
monitor capture cap stop
Upon packet capture, three distinct packets must be observed:

    DHCP Discover - VXLAN - AP to Edge

   • DHCP Discover - CAPWAP - AP to WLC

    DHCP Discover - VXLAN - Edge to Multicast Group

<#root>
Edge-1#
show monitor capture cap buffer display-filter "bootp and dhcp.hw.mac_addr==4822.54dc.6a15"
<-- 4822.54dc.6a15 is the endpoint MAC
Starting the packet display ...... Press Ctrl + Shift + 6 to exit
                    0.0.0.0 -> 255.255.255.255 DHCP
  129
      4.865410
394
DHCP Discover - Transaction ID 0x824bdf45
<--
From AP to Edge
                    0.0.0.0 -> 255.255.255.255 DHCP
      4.865439
 130
420
DHCP Discover - Transaction ID 0x824bdf45
From AP to WLC
```

```
0.0.0.0 -> 255.255.255.255 DHCP
 131
       4.865459
394
DHCP Discover - Transaction ID 0x824bdf45
<--
From Edge to L2 Flooding Group
Edge-1#
show monitor capture cap buffer display-filter "bootp and dhcp.hw.mac_addr==4822.54dc.6a15
and vxlan"
Starting the packet display ...... Press Ctrl + Shift + 6 to exit
 129
       4.865410
                     0.0.0.0 -> 255.255.255 DHCP
394
DHCP Discover - Transaction ID 0x824bdf45
       4.865459
                    0.0.0.0 -> 255.255.255.255 DHCP
394
DHCP Discover - Transaction ID 0x824bdf45
Edge-1#
show monitor capture cap buffer display-filter "bootp and dhcp.hw.mac_addr==4822.54dc.6a15
and udp.port==5247"
Starting the packet display ...... Press Ctrl + Shift + 6 to exit
                     0.0.0.0 -> 255.255.255.255 DHCP
 130
       4.865439
420
DHCP Discover - Transaction ID 0x824bdf45
Edge-1#
show monitor capture cap buffer display-filter "bootp and dhcp.hw.mac_addr==4822.54dc.6a15 and vxlan"
detail
| i Internet
Internet Protocol Version 4, Src:
172.16.1.7
, Dst:
192.168.0.101
                 <-- From AP to Edge
Internet Protocol Version 4, Src: 0.0.0.0, Dst: 255.255.255.255
Internet Protocol Version 4, Src:
192.168.0.101
```

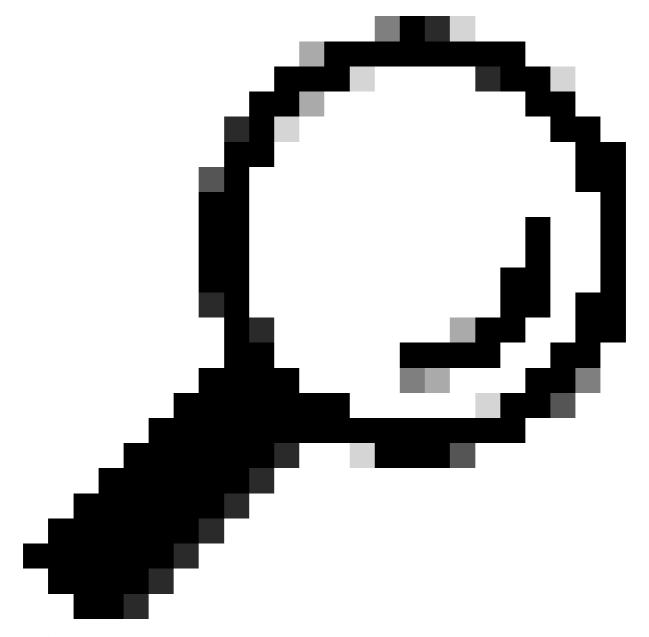
239.0.17.1 <-- From Edge to Upstream (Layer 2 Flooding)

Internet Protocol Version 4, Src: 0.0.0.0, Dst: 255.255.255

Tip: On Fabric Enabled Wireless, VXLAN encapsulated packets deliver DHCP traffic to clients or servers. CAPWAP DATA (UDP 5247) encapsulated packets, however, transmit to the WLC solely for tracking purposes, such as IP Learn state or Wireless Device-Tracking.

DHCP Discover and Request - L2 Border

After the Edge sends the DHCP Discover and Request packets via Layer 2 Flooding, encapsulated with the Broadcast-Underlay group 239.0.17.1, these packets are received by the L2 Hand-Off Border, specifically


Border/CP-1 in this scenario.

L2LISP0.8232

For this to occur, Border/CP-1 must possess a multicast route with the (S,G) of the Edge, and its outgoing interface list must include the L2LISP instance of the L2 Handoff VLAN. It's important to note that L2 Hand-Off Borders share the same L2LISP Instance-ID, even if they utilize different VLANs for the Hand-Off.

```
<#root>
BorderCP-1#
show vlan id 31
VLAN Name
                                 Status
                                         Ports
31
L2_Only_Wireless
active
   L2LI0:
8232
Te1/0/44
BorderCP-1#
show ip mroute 239.0.17.1 192.168.0.101 | be \(
192.168.0.101
239.0.17.1
), 00:03:20/00:00:48, flags: MTA
 Incoming interface:
TenGigabitEthernet1/0/42
, RPF nbr 192.168.98.3
<-- IIF Te1/0/42 is the RPF interface for 192.168.0.101 (Edge RLOC)
 Outgoing interface list:
  TenGigabitEthernet1/0/26, Forward/Sparse, 00:03:20/00:03:24, flags:
```

```
, Forward/Sparse-Dense, 00:03:20/00:02:39, flags:
BorderCP-1#
show ip mfib 239.0.17.1 192.168.0.101 count
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kilobits per second
Other counts:
                  Total/RPF failed/Other drops(OIF-null, rate-limit etc)
Default
13 routes, 6 (*,G)s, 3 (*,G/m)s
Group:
239.0.17.1
 Source:
192.168.0.101,
  SW Forwarding: 1/0/392/0, Other: 0/0/0
  HW Forwarding:
3
/0/317/0, Other: 0/0/0
<-- HW Forwarding counters (First counter = Pkt Count) must increase
 Totals - Source count: 1, Packet count: 4
```


Tip: If an (S,G) entry is not found, it indicates an issue with the underlay multicast configuration or operation. If the L2LISP for the required instance is not present as OIF, it indicates an issue with the operation UP/DOWN status of the L2LISP sub-interface or the IGMP enablement status of the L2LISP interface.

Similar to the Fabric Edge node, ensure no Access Control Entry denies the ingress DHCP packet on the L2LISP0 interface.

<#root>

BorderCP-1#

show ip access-lists SDA-FABRIC-LISP

Extended IP access list SDA-FABRIC-LISP 10 deny ip any host 224.0.0.22

```
20 deny ip any host 224.0.0.13
30 deny ip any host 224.0.0.1
```

40 permit ip any any

After the packet is de-encapsulated and placed on the VLAN matching VNI 8240, its broadcast nature dictates that it is flooded out all Spanning Tree Protocol forwarding ports for hand-off VLAN 141.

<#root>

BorderCP-1#

show spanning-tree vlan 31 | be Interface

Interface Role Sts Cost Prio.Nbr Type

Te1/0/44

Desg

FWD

2000 128.56 P2p

The Device-Tracking table confirms that interface Te1/0/44, which connects to the Gateway/DHCP Relay, must be an STP-forwarding port.

<#root>

BorderCP-1#

show device-tracking database address 172.16.141.254 | be Network

Network Layer Address
Interface vlan prlvl age state Time left
ARP

172.16.131.254

f87b.2003.7fd5

Te1/0/44

31

0005 34s REACHABLE 112 s try 0

Packet Captures

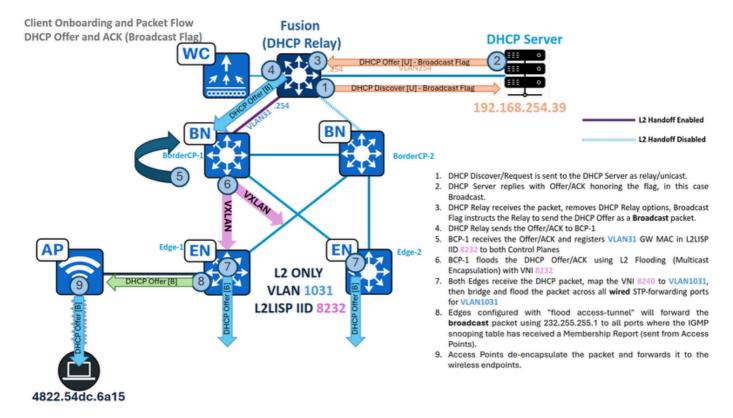
Configure a simultaneous embedded packet capture on the switch to record both the incoming DHCP packet from L2 Flooding (S,G incoming interface) and the corresponding egress packet to the DHCP Relay. Upon packet capture, two distinct packets should be observed: the VXLAN encapsulated packet from Edge-1, and the de-encapsulated packet that goes to the DHCP Relay.

Fabric Border/CP (192.168.0.201) packet catpures

```
<#root>
monitor capture cap interface TenGigabitEthernet1/0/42 IN
 Ingress interface for Edge's S,G Mroute (192.168.0.101, 239.0.17.1)
monitor capture cap interface TenGigabitEthernet1/0/44 OUT
                                                              <-- Interface that connects to the DHCP Re
monitor capture cap match any
monitor capture cap buffer size 100
monitor capture cap start
monitor capture cap stop
BorderCP-1#
show monitor capture cap buffer display-filter "bootp and dhcp.hw.mac_addr==4822.54dc.6a15"
Starting the packet display ...... Press Ctrl + Shift + 6 to exit
                    0.0.0.0 -> 255.255.255.255 DHCP
  324 16.695022
394
DHCP Discover - Transaction ID 0x824bdf45
<-- 394 is the Lenght of the VXLAN encapsulated packet
                      0.0.0.0 -> 255.255.255.255 DHCP
  325 10.834141
420
DHCP Discover - Transaction ID 0x168bd882
<-- 420 is the Lenght of the CAPWAP encapsulated packet
  326 16.695053
                      0.0.0.0 -> 255.255.255.255 DHCP
352
DHCP Discover - Transaction ID 0x824bdf45
<-- 352 is the Lenght of the VXLAN encapsulated packet
```

```
Packet 324: VXLAN Encapsulated
BorderCP-1#
show monitor capture cap buffer display-filter "frame.number==324" detail | i Internet
Internet Protocol Version 4, Src:
192.168.0.101, Dst: 239.0.17.1
Internet Protocol Version 4, Src:
0.0.0.0, Dst: 255.255.255.255
Packet 326: Plain (dot1Q cannot be captured at egress due to EPC limitations)
BorderCP-1#
show monitor capture cap buffer display-filter "frame.number==326" detailed | i Internet
Internet Protocol Version 4, Src: 0.0.0.0, Dst: 255.255.255.255
At this point, the Discover/Request packet has exited the SD-Access fabric, concluding this section.
However, before proceeding, a crucial parameter—the DHCP Broadcast Flag, determined by the endpoint
itself—will dictate the forwarding scenario for subsequent Offer or ACK packets. We can examine one of
our Discover packets to inspect this flag.
<#root>
BorderCP-1#
show monitor capture cap buffer display-filter "bootp.type==1 and dhcp.hw.mac_addr==4822.54dc.6a15
" detailed | sect Dynamic
Dynamic Host Configuration Protocol (Discover)
   Message type: Boot Request (1)
    Hardware type: Ethernet (0x01)
    Hardware address length: 6
    Hops: 0
    Transaction ID: 0x00002030
```

Seconds elapsed: 3


Bootp flags: 0x8000, Broadcast flag (Broadcast)

.000 0000 0000 0000 = Reserved flags: 0x0000

Tip: The bootp.type==1 can be used to filter only Discover and Request packets.

DHCP Offer and ACK - Broadcast - L2 Border

Traffic Flow - Broadcast DHCP Offer and ACK in L2 Only

Now that the DHCP Discover has exited the SD-Access fabric, the DHCP relay will insert traditional DHCP Relay Options (e.g., GiAddr/GatewayIPAddress) and forward the packet as a unicast transmission to the DHCP Server. In this flow, the SD-Access fabric does not append any special DHCP options.

Upon the arrival of a DHCP Discover/Request to the server, the server honors the embedded **Broadcast** or **Unicast** flag. This flag dictates whether the DHCP Relay Agent forwards the DHCP Offer to the downstream device (our Borders) as a broadcast or unicast frame. For this demonstration, a broadcast scenario is assumed.

MAC Learning and Gateway Registration

When the DHCP relay sends a DHCP Offer or ACK, the L2BN node must learn the gateway's MAC address, add it to its MAC address table, then to the L2/MAC SISF table, and finally to the L2LISP Database for VLAN 141, mapped to L2LISP Instance 8232.

<#root>

BorderCP-1#

show mac address-table interface te1/0/44

	Mac Address T	Table	
Vlan	Mac Address	Туре	Ports

```
DYNAMIC
```

BorderCP-1#

show vlan id 31

VLAN Name Status Ports

31

L2_Only_Wireless active L2LIO:

8232

Te1/0/44

BorderCP-1#

show device-tracking database mac | i 7fd5|vlan

MAC Interface vlan prlvl state Time left Policy

f87b.2003.7fd5

Te1/0/44 31

NO TRUST

MAC-REACHABLE

61 s LISP-DT-GLEAN-VLAN 64

BorderCP-1#

show lisp ins 8232 dynamic-eid summary | i Name|f87b.2003.7fd5

Dyn-EID Name Dynamic-EID Interface Uptime Last Pending

Auto-L2-group-8232

f87b.2003.7fd5

N/A 6d06h never

0

BorderCP-1#

show lisp instance-id 8232 ethernet database

```
LISP ETR MAC Mapping Database for LISP O EID-table Vlan
31
 (IID
8232
), LSBs: 0x1
Entries total 1, no-route 0, inactive 0, do-not-register 0
f87b.2003.7fd5/48
dynamic-eid Auto-L2-group-8240, inherited from default locator-set
rloc_0f43c5d8-f48d-48a5-a5a8-094b87f3a5f7, auto-discover-rlocs
 Uptime: 6d06h, Last-change: 6d06h
 Domain-ID: local
 Service-Insertion: N/A
 Locator
                Pri/Wgt Source
                                    State
 192.168.0.201
 10/10 cfg-intf site-self, reachable
                               ACK Domain-ID
 Map-server Uptime
192.168.0.201
 6d06h
Yes
 0
192,168,0,202
 6d06h
Yes
 0
```

If the MAC address of the gateway is correctly learned and the ACK flag has been marked as "Yes" for the Fabric Control planes, this stage is considered completed.

DHCP Broadcast Bridged in L2 Flooding

Without DHCP Snooping enabled, DHCP Broadcasts are not blocked and are encapsulated in multicast for Layer 2 Flooding. Conversely, if DHCP Snooping is enabled, the flood of DHCP Broadcast packets is prevented.

<#root>
BorderCP-1#

```
Switch DHCP snooping is enabled

Switch DHCP gleaning is disabled

DHCP snooping is configured on following VLANs:

1001

DHCP snooping is operational on following VLANs:

1001

-- VLAN31 should not be listed, as DHCP snooping must be disabled in L2 Only pools.

Proxy bridge is configured on following VLANs:
```

Because DHCP Snooping is not enabled in the L2Border, **DHCP Snooping Trust configuration is not needed.**

At this stage, L2LISP ACL validation is already done in both devices.

Proxy bridge is operational on following VLANs:

none <snip>

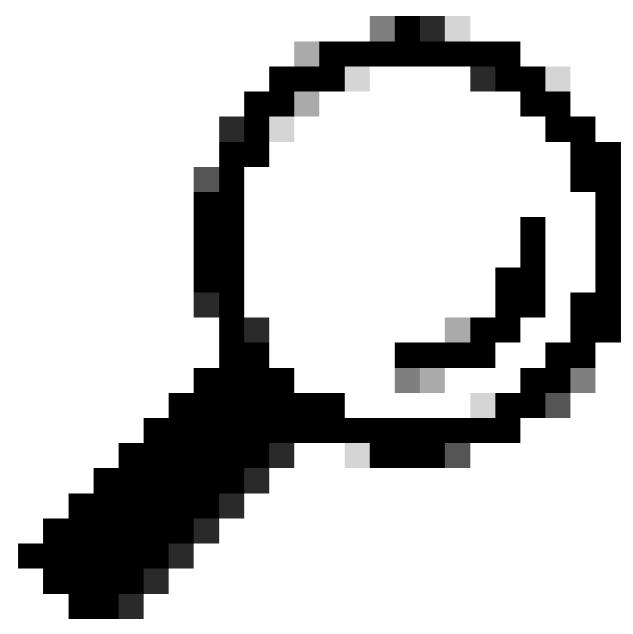
Utilize the configured broadcast-underlay group for the L2LISP instance and the L2Border Loopback0 IP address to verify the L2 Flooding (S,G) entry that will bridge this packet to other Fabric Nodes. Consult the mroute and mfib tables to validate parameters such as the incoming interface, outgoing interface list, and forwarding counters.

```
<#root>
BorderCP-1#
show ip int loopback 0 | i Internet

Internet address is

192.168.0.201/32

BorderCP-1#
show run | se 8232


interface L2LISP0.8232

instance-id 8232

remote-rloc-probe on-route-change service ethernet eid-table vlan
```

```
broadcast-underlay 239.0.17.1
BorderCP-1#
show ip mroute 239.0.17.1 192.168.0.201 | be \(
(
192.168.0.201, 239.0.17.1
), 1w5d/00:02:52, flags: FTA
  Incoming interface:
Null0
, RPF nbr 0.0.0.0
          <-- Local S,G IIF must be Null0
  Outgoing interface list:
 TenGigabitEthernet1/0/42
, Forward/Sparse, 1w3d/00:02:52, flags:
<-- Edgel Downlink
    TenGigabitEthernet1/0/43
, Forward/Sparse, 1w3d/00:02:52, flags:
<-- Edge2 Downlink
BorderCP-1#
show ip mfib 239.0.17.1 192.168.0.201 count
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kilobits per second
Other counts:
                   Total/RPF failed/Other drops(OIF-null, rate-limit etc)
Default
 13 routes, 6 (*,G)s, 3 (*,G/m)s
Group:
239.0.17.1
  Source:
192.168.0.201
   SW Forwarding: 1/0/392/0, Other: 1/1/0
   HW Forwarding:
92071
/0/102/0, Other: 0/0/0
```

Totals - Source count: 1, Packet count: 92071

Tip: If an (S,G) entry is not found or the Outgoing Interface List (OIL) contains no Outgoing Interfaces (OIFs), it indicates an issue with the underlay multicast configuration or operation.

With these validations, along packet captures similar to the previous steps, we conclude this section, as the DHCP Offer will be forwaded as a broadcast to all Fabric Edges using the outgoing interface list contents, in this case, out of interface TenGig1/0/42 and TenGig1/0/43.

DHCP Offer and ACK - Broadcast - Edge

Exactly as the previous flow, we now check the L2Border S,G in the Fabric Edge, where the incoming

interface points towards the L2BN and the OIL contains the L2LISP instance mapped to VLAN 1031.

```
<#root>
Edge-1#show vlan id 1031
VLAN Name
                                   Status Ports
______
                                                 _____
1031
L2_Only_Wireless
                active L2LIO:
8232
, Te1/0/2, Te1/0/17, Te1/0/18, Te1/0/19, Te1/0/20,
Ac2
, Po1
Edge-1#
show ip mroute 239.0.17.1 192.168.0.201 | be \(
192.168.0.201
239.0.17.1
), 1w3d/00:01:52, flags: JT
  Incoming interface:
TenGigabitEthernet1/1/2
, RPF nbr 192.168.98.2
<-- IIF Te1/1/2 is the RPF interface for 192.168.0.201 (L2BN RLOC)a
  Outgoing interface list:
L2LISP0.8232
, Forward/Sparse-Dense, 1w3d/00:02:23, flags:
Edge-1#
show ip mfib 239.0.17.1 192.168.0.201 count
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kilobits per second
Other counts:
                Total/RPF failed/Other drops(OIF-null, rate-limit etc)
Default
 13 routes, 6 (*,G)s, 3 (*,G/m)s
```

Group:

Source:

192.168.0.201,

SW Forwarding: 1/0/96/0, Other: 0/0/0


HW Forwarding:

76236

/0/114/0, Other: 0/0/0

<-- HW Forwarding counters (First counter = Pkt Count) must increase

Totals - Source count: 1, Packet count: 4

Tip: If an (S,G) entry is not found, it indicates an issue with the underlay multicast configuration or operation. If the L2LISP for the required instance is not present as OIF, it indicates an issue with the operation UP/DOWN status of the L2LISP sub-interface or the IGMP enablement status of the L2LISP interface.

L2LISP ACL validation is already done in both devices.

After the packet is de-encapsulated and placed on the VLAN matching VNI 8232, its broadcast nature dictates that it is flooded out all **wired** Spanning Tree Protocol forwarding ports for VLAN1031.

```
<#root>
Edge-1#
show spanning-tree vlan 1041 | be Interface
                     Role Sts Cost
Interface
                                         Prio.Nbr Type
Te1/0/2
         Desg
FWD
 20000
           128.2
                     P2p Edge
Te1/0/17
                     Desg
FWD
2000
           128.17
                     P2p
                     Back
Te1/0/18
BLK
2000
           128.18
                     P2p
Te1/0/19
                     Desg
FWD
 2000
           128.19
                     P2p
Te1/0/20
                     Back
BLK
 2000
           128.20
                     P2p
```

However, the interface we are looking for to broadcast the DHCP Offer is the Access-Tunnel interface associated with the Access-Point. This is only possible because "flood access-tunnel" is enabled on the L2LISP IID 8232, otherwise this packet is blocked to be forwarded to the AccessTunnel interface.

```
<#root>
Edge-1#
show lisp instance-id 8232 ethernet | se Multicast Flood
```

Multicast Flood Access-Tunnel:
enabled

Multicast Address:
232.255.255.1

Vlan ID:
1021

Edge-1#
show ip igmp snooping groups vlan 1021 232.255.255.1

Vlan Group Type Version

232.255.255.1

v2

iqmp

Te1/0/12 <-- AP1 Port

With the IGMP snooping entry for the multicast flooding group, DHCP Offers and ACKs are forwarded to the AP's physical port.

Version Port List

The DHCP Offer and ACK process remains consistent. Without DHCP Snooping enabled, no entries are created in the DHCP Snooping table. Consequently, the Device-Tracking entry for the DHCP-enabled endpoint are generated by gleaned ARP packets. It is also expected that commands like "show platform dhcpsnooping client stats" display no data, as DHCP snooping is disabled.

<#root>

1021

Edge-1#

show device-tracking database interface Ac2 | be Network

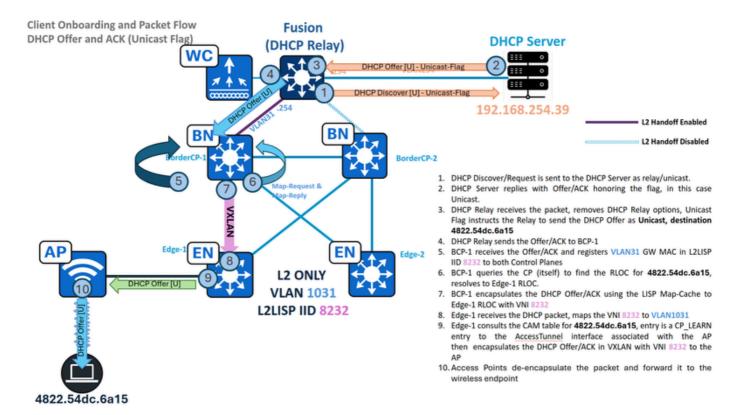
Network Layer Address
Interface vlan prlvl age state Time left

ARP

172.16.131.4

4822.54dc.6a15

1031


0005 45s REACHABLE 207 s try 0

Edge-1#show ip dhcp snooping binding vlan 1041

MacAddress IpAddress Lease(sec) Type VLAN Interface

Total number of bindings: 0

DHCP Offer and ACK - Unicast - L2 Border

 ${\it Traffic Flow - Unicast DHCP\ Offer\ and\ ACK\ in\ L2\ Only}$

Here the scenario is a bit different, the endpoint sets the DHCP Broadcast Flag as unset or "0".

The DHCP Relay does not send the DHCP Offer/ACK as Broadcast, but as a unicast packet instead, with a destination MAC address derived from the client hardware address inside the DHCP payload. This drastically modifies the way the packet is handled by the SD-Access fabric, it uses the L2LISP Map-Cache to forward the traffic, not the Layer 2 Flooding multicast encapsulation method.

Fabric Border/CP (192.168.0.201) packet catpure: Ingress DHCP Offer

```
BorderCP-1#
show monitor capture cap buffer display-filter "bootp.type==1 and
dhcp.hw.mac_addr==4822.54dc.6a15" detailed | sect Dynamic
Dynamic Host Configuration Protocol (
Discover
)
    Message type: Boot Request (1)
    Hardware type: Ethernet (0x01)
    Hardware address length: 6
    Hops: 0
    Transaction ID: 0x00002030
    Seconds elapsed: 0
    Bootp flags: 0x0000, Broadcast flag (Unicast)
        0... = Broadcast flag: Unicast
        .000\ 0000\ 0000\ 0000 = Reserved\ flags:\ 0x0000
    Client IP address: 0.0.0.0
    Your (client) IP address: 0.0.0.0
    Next server IP address: 0.0.0.0
```

Relay agent IP address: 0.0.0.0

Client MAC address: 48:22:54:dc:6a:15 (48:22:54:dc:6a:15)

In this scenario, L2 Flooding is exclusively used for Discover/Requests, while Offers/ACKs are forwarded via L2LISP Map-Caches, simplifying the overall operation. Adhering to unicast forwarding principles, the L2 Border queries the Control Plane for the destination MAC address. Assuming successful "MAC Learning and WLC Notification" on the Fabric Edge, the Control Plane has have this Endpoint ID (EID) registered.

```
<#root>
BorderCP-1#
show lisp instance-id 8232 ethernet server 4822.54dc.6a15
LISP Site Registration Information
Site name: site_uci
Description: map-server configured from Catalyst Center
Allowed configured locators: any
Requested EID-prefix:
 EID-prefix:
4822.54dc.6a15/48
 instance-id 8232
    First registered:
                          00:53:30
   Last registered:
                          00:53:30
    Routing table tag:
    Origin:
                          Dynamic, more specific of any-mac
    Merge active:
```

Proxy reply: Yes Skip Publication: No Force Withdraw: No

TTL: 1d00h

State: complete

Extranet IID: Unspecified

Registration errors:

Authentication failures: 0

Allowed locators mismatch: 0

ETR 192.168.0.101:51328, last registered 00:53:30, proxy-reply, map-notify

TTL 1d00h, no merge, hash-function shal state complete, no security-capability

nonce 0xBB7A4AC0-0x46676094

xTR-ID 0xDEF44F0B-0xA801409E-0x29F87978-0xB865BF0D

site-ID unspecified Domain-ID 1712573701 Multihoming-ID unspecified

sourced by reliable transport
State Pri/Wgt Scope

Locator Local State Pri/Wgt Scope 192.168.0.101 yes up 10/10 IPv4 none

ETR 192.168.254.69:58507

, last registered 00:53:30, no proxy-reply, no map-notify

<-- Registered by the Wireless LAN Controller

TTL 1d00h, no merge, hash-function sha2

state complete

, no security-capability

nonce 0x00000000-0x00000000

xTR-ID N/A site-ID N/A

sourced by reliable transport

Affinity-id: 0 , 0

WLC AP bit: Clear

Locator Local State Pri/Wgt Scope

192.168.0.101

yes

```
0/0 IPv4 none
```

<-- RLOC of Fabric Edge with the Access Point where the endpoint is connected

After the Border's query to the Control Plane (local or remote), the LISP resolution establishes a Map-Cache entry for the endpoint's MAC address.

```
<#root>
BorderCP-1#
show lisp instance-id 8232 ethernet map-cache 4822.54dc.6a15
LISP MAC Mapping Cache for LISP 0 EID-table Vlan
31
 (IID
8232
), 1 entries
4822.54dc.6a15/48
, uptime: 4d07h, expires: 16:33:09,
via map-reply
complete
, local-to-site
 Sources: map-reply
 State: complete, last modified: 4d07h, map-source: 192.168.0.206
 Idle, Packets out: 46(0 bytes), counters are not accurate (~ 00:13:12 ago)
 Encapsulating dynamic-EID traffic
                 Uptime
                           State Pri/Wgt
                                              Encap-IID
 Locator
 192.168.0.101
 4d07h
           up
                   10/10
<snip>
```

With the RLOC resolved, the DHCP Offer is encapsulated in unicast and sent directly to Edge-1 at 192.168.0.101, with VNI 8240.

<#root>

BorderCP-1#

show mac address-table address aaaa.dddd.bbbb

```
Mac Address Table
```

_____ Type Ports Vlan Mac Address -----

31

4822.54dc.6a15

CP_LEARN

L2LI0

BorderCP-1#

show platform software fed switch active matm macTable vlan 141 mac aaaa.dddd.bbbb

VLAN

Type Seq# EC_Bi Flags machandle MAC riHandle diHandle *a_time *e_time ports

siHandle

Con

4822.54dc.6a15 31

0x1000001 0 0 64 0x718eb52c48e8 0x718eb52c8b68 0x718eb44c6c18 0x0 0

RLOC 192.168.0.101

adj_id 1044 No

BorderCP-1#

show ip route 192.168.0.101

Routing entry for 192.168.0.101/32 Known via "

isis

", distance 115, metric 20, type level-2 Redistributing via isis, bgp 65001T Advertised by bgp 65001 level-2 route-map FABRIC_RLOC Last update from 192.168.98.3 on TenGigabitEthernet1/0/42, 1w3d ago Routing Descriptor Blocks: * 192.168.98.3, from 192.168.0.101, 1w3d ago,

via TenGigabitEthernet1/0/42

Route metric is 20, traffic share count is 1

With the same methodology as in previous sections, capture traffic both ingress from the DHCP Relay and

to the RLOC egress interface to observe the VXLAN encapsulation in unicast to the Edge RLOC.

DHCP Offer and ACK - Unicast - Edge

The Edge receives the unicast DHCP Offer/ACK from the Border, de-encapsulates the traffic and consult its MAC address table to determine the correct egress port. Unlike broadcast Offer/ACKs, the Edge node will then forward the packet only to the specific Access-Tunnel where the endpoint is connected, rather than flood it to all ports.

Link Layer Address

state Time left

The MAC address table identifies port AccessTunnel2 as our virtual port associated to AP1.

<#root> Edge-1#show mac address-table address 4822.54dc.6a15 Mac Address Table Mac Address Type Ports Vlan ----------1031 4822.54dc.6a15 CP LEARN Ac2 Edge-1#show interfaces accessTunnel 2 description Interface Status Protocol Description Ac2 up uρ Radio MAC: dc8c.37ce.58a0, IP: 172.16.1.7 Edge-1#show device-tracking database address 172.16.1.7 | be Network

Network Layer Address

DH4

Interface vlan prlvl age

172.16.1.7

dc8c.3756.99bc

Te1/0/12

1021 0024 6s REACHABLE 241 s try 0(86353 s)

Edge-1#show cdp neighbors tenGigabitEthernet 1/0/12 | be Device

Device ID Local Intrfce Holdtme Capability Platform Port ID

AP1 Ten 1/0/12

119 R T AIR-AP480 Gig 0

The DHCP Offer and ACK process remains consistent. Without DHCP Snooping enabled, no entriess are created in the DHCP Snooping table. Consequently, the Device-Tracking entry for the DHCP-enabled endpoint are generated by gleaned ARP packets, not DHCP. It is also expected that commands like "show platform dhcpsnooping client stats" will display no data, as DHCP snooping is disabled.

<#root>

Edge-1#show device-tracking database interface te1/0/2 | be Network

Network Layer Address
Interface vlan prlvl age state Time left

ARP

172.16.141.1

aaaa.dddd.bbbb

Te1/0/2

1041

0005 45s REACHABLE 207 s try 0

Edge-1#show ip dhcp snooping binding vlan 1041

MacAddress IpAddress Lease(sec) Type VLAN Interface

Total number of bindings: 0

It is crucial to note that the SD-Access fabric does not influence the use of the Unicast or Broadcast flag, as this is solely an endpoint behavior. While this functionality might be overridden by the DHCP Relay or the DHCP Server itself, both mechanisms are essential for seamless DHCP operation in an L2 Only environment: L2 Flooding with Underlay Multicast for Broadcast Offers/ACKs, and proper Endpoint

registration in the Control Plane for Unicast Offer/ACKs.

DHCP Transaction - Wireless Verification

From the WLC, the DHCP transaction is monitored through RA-Traces.

```
<#root>
WLC#debug wireless mac 48:22:54:DC:6A:15 to-file bootflash:client6a15
    RA tracing start event,
       conditioned on MAC address: 48:22:54:dc:6a:15
       Trace condition will be automatically stopped in 1800 seconds.
       Execute 'no debug wireless mac 48:22:54:dc:6a:15' to manually stop RA tracing on this condition.
WLC#no debug wireless mac 48:22:54:dc:6a:15
    RA tracing stop event,
       conditioned on MAC address: 48:22:54:dc:6a:15
WLC#more flash:client6a15 | i DHCP
2025/08/11 06:13:48.600929726 {wncd_x_R0-0}{1}: [sisf-packet] [15981]: (info): RX: DHCPv4 from interfac
SISF_DHCPDISCOVER
, giaddr: 0.0.0.0, yiaddr: 0.0.0.0, CMAC: 4822.54dc.6a15
2025/08/11 06:13:50.606037404 {wncd_x_R0-0}{1}: [sisf-packet] [15981]: (info): RX: DHCPv4 from interfac
SISF_DHCPOFFER
, giaddr: 172.16.131.254, yiaddr: 172.16.131.4, CMAC: 4822.54dc.6a15
2025/08/11 06:13:50.609855406 {wncd_x_R0-0}{1}: [sisf-packet] [15981]: (info): RX: DHCPv4 from interfac
SISF_DHCPREQUEST
, giaddr: 0.0.0.0, yiaddr: 0.0.0.0, CMAC: 4822.54dc.6a15
2025/08/11 06:13:50.613054692 {wncd_x_R0-0}{1}: [sisf-packet] [15981]: (info): RX: DHCPv4 from interfac
SISF_DHCPACK
, giaddr: 172.16.131.254, yiaddr: 172.16.131.4, CMAC: 4822.54dc.6a15
At the end of the transaction, the endpoint is added to the Device-Tracking database on the Wireless LAN
Controller.
<#root>
WLC#show wireless device-tracking database mac 4822.54dc.6a15
```

ZONE-ID/VRF-NAME

4822.54dc.6a15

VLAN IF-HDL

ΙP

MAC

```
1
      0x90000006
```

```
172.16.131.4
```

0x00000000

fe80::b070:b7e1:cc52:69ed 0x8000001

The entire DHCP transaction is debugged on the Access Point itself.

```
<#root>
AP1#debug client 48:22:54:DC:6A:15
AP1#term mon
AP1#
Aug 11 05:37:47 AP1 kernel: [*08/11/2025 05:37:47.3530] [1754890667:353058] [AP1] [48:22:54:dc:6a:15] <
[U:W]
```

DHCP_DISCOVER

```
: TransId 0x76281006
Aug 11 05:37:47 AP1 kernel: [*08/11/2025 05:37:47.3531] chatter: dhcp_req_local_sw_nonat: 1754890667.35
Aug 11 05:37:47 AP1 kernel: [*08/11/2025 05:37:47.3533] chatter: dhcp_from_inet: 1754890667.353287600:
Aug 11 05:37:47 AP1 kernel: [*08/11/2025 05:37:47.3533] chatter: dhcp_reply_nonat: 1754890667.353287600
Aug 11 05:37:49 AP1 kernel: [*08/11/2025 05:37:49.3587] chatter: dhcp_from_inet: 1754890669.358709760:
Aug 11 05:37:49 AP1 kernel: [*08/11/2025 05:37:49.3588] chatter: dhcp_reply_nonat: 1754890669.358709760
Aug 11 05:37:49 AP1 kernel: [*08/11/2025 05:37:49.3589] [1754890669:358910] [AP1] [48:22:54:dc:6a:15] <
[D:W]
```

DHCP_OFFER

```
: TransId 0x76281006 tag:534
Aug 11 05:37:49 AP1 kernel: [*08/11/2025 05:37:49.3671] [1754890669:367110] [AP1] [48:22:54:dc:6a:15] <
[U:W] DHCP_REQUEST
 : TransId 0x76281006
Aug 11 05:37:49 AP1 kernel: [*08/11/2025 05:37:49.3671] chatter: dhcp_req_local_sw_nonat: 1754890669.36
```

Aug 11 05:37:49 AP1 kernel: [*08/11/2025 05:37:49.3709] [1754890669:370945] [AP1] [48:22:54:dc:6a:15] <

[D:W]

```
DHCP_ACK
 : TransId 0x76281006 tag:536
Aug 11 05:37:49 AP1 kernel: [*08/11/2025 05:37:49.3733] [1754890669:373312] [AP1] [48:22:54:dc:6a:15] <
[D:A] DHCP_OFFER
```

Tx Success

: TransId 0x76281006 [

```
] tag:534
Aug 11 05:37:49 AP1 kernel: [*08/11/2025 05:37:49.3983] [1754890669:398318] [AP1] [48:22:54:dc:6a:15] <
[D:A]

DHCP_ACK
: TransId 0x76281006 [</pre>
```

Tx Success

-] tag:53
- * U:W = Uplink Packet from Client to Wireless Driver
- * D:W = Downlink Packet from Client to Click Module
- * D:A = Downlink Packet from Client sent over the air