How to use FCS and CRC Troubleshooting
Scripts for ACI

Contents

Introduction

Prerequisites To run the Script Manually
Prerequisites to run the Script from Container
Steps to execute the scripts

Introduction

ACI follows Cut-Through Switching which means the Packet is already forwarded before the CRC can be computed.
These packets are typically stomped and forwarded out as output errors. Because ACI does not drop these packets, the
same packet traverses the packet and the stomp CRC counters are incremented on the path. This does not mean all the
interfaces that see the CRC are faulty. Therefore, proper triage is needed to isolate the problematic Port/SFP/Fiber. The
triage process in now automated through Python scripts resulting in easier troubleshooting and avoiding manual tasks.
The scope of this document is to explain how to use the automation scripts are to be used (see attached).

Prerequisites To run the Script Manually

The client machine where the script will be execute from, needs to meet following requirements
a. Python3 should be installed
b. Network access to ACI Domain
c. ACI_CRC_requirements.txt (attached) to be installed. This file is located here.
Download the file (ACI_CRC_requirements.txt) to client machine

Open Terminal and run the command- pip3 install -r ACI_CRC_requirements.txt

ABCD-M-G24X:downloads abcd$ pip3 install -r ACI_CRC_requirements.txt

Collecting becrypt==3.2.0 (from -r ACI_CRC_requirements.txt (line 1))

Downloading
https://files.pythonhosted.org/packages/bf/6a/0afble04aebd4c3ceaec630a87a55fbfbbd94dea4eaf01e53d3
6743c85f02/becrypt-3.2.0-cp36-abi3-macosx 10 9 x86 64.whl

Collecting cffi==1.14.6 (from -r ACI_CRC_requirements.txt (line 2))

Downloading
https://files.pythonhosted.org/packages/ca/el/015e2ae23230d9de8597e9ad8c0b81d5ac181£08f2e6e75774
b7£5301677/c£f£fi-1.14.6-cp38-cp38-macosx _10_9 x86_64.whl (176kB)

|| 184kB 1.4MB/s

gnip

Successfully installed DateTime-4.3 Pillow-8.3.2 bcrypt-3.2.0 cffi-1.14.6 cryptography-3.4.8
cycler-0.10.0 kiwisolver-1.3.2
matplotlib-3.4.3 numpy-1.21.2 pandas-1.3.2 paramiko-2.7.2 pyparsing-2.4.7 python-dateutil-2.8.2

https://github.com/CiscoDevNet/ACI-CRC-FCS-Checker
https://files.pythonhosted.org/packages/bf/6a/0afb1e04aebd4c3ceae630a87a55fbfbbd94dea4eaf01e53d36743c85f02/bcrypt-3.2.0-cp36-abi3-macosx_10_9_x86_64.whl
https://files.pythonhosted.org/packages/bf/6a/0afb1e04aebd4c3ceae630a87a55fbfbbd94dea4eaf01e53d36743c85f02/bcrypt-3.2.0-cp36-abi3-macosx_10_9_x86_64.whl

pytz-2021.1 six-1.16.0
stdiomask-0.0.5 tabulate-0.8.9 termcolor-1.1.0 zope.interface-5.4.0

Prerequisites to run the Script from Container

A container is prepared with the above Python Packages pre-installed.

docker 1 ogin docker.io docker pull aci-stonper docker run -d --name <sonmenane> -p <soneport>: 80
aci -stonper (on your browser http://ContainerlP:soneport) docker ps docker exec -it <Container
I D from previ ous conmand> / bi n/ bash root @df 99d5dbbad: /# cd / hone/ scri pts/

r oot @df 99d5dbbad: / home/ scripts# |s ACI _CRC Parser.py ACI _CRC Poller. py

Steps to execute the scripts

Please note, there are total two python scripts (AClI_CRC_Poller.py and ACI_CRC_Parser.py). These scripts are
available to be downloaded from Cisco DevNet Code Exchange using the below URL.

https://developer.cisco.com/codeexchange/qgithub/repo/CiscoDevNet/ACI-CRC-FCS-Checker

Download both of them on machine/computer, where you want to execute that scripts from.

In this document script-1 refers to ACI_CRC_Poller.py and script-2 refers to ACl_CRC_Parser.py.

1. ACI_CRC_Poller.py will collect CRC and FCS error data in files every five minutes for maximum upto seven days of
duration.

Run script-1 (ACI_CRC_Poller.py) from Terminal. Please input the OOB IP address for one of the APICs in given cluster

and it's credentials.

ABCD-M-G24X:downloads abcd$ python3 ACI_CRC_Poller.py
Enter the IP address or DNS Name of APIC: 10.197.204.184

Enter the username: admin

Enter the password: **xrrrreex
Trying to connect to APIC
Connection established to the APIC

2. Script-1 asks for the localtion/path on local machine/computer, where it will store the records. Please enter a valid
path, else the script would not run.

Please enter the folder where files have to be stored

VALID folder format:

EXAMPLE:

Windows-> C:\Users\Admin\Desktop\ACI\
MAC -> /User/admin/Desktop/ACI/

PLEASE NOTE that data collection and script execution might get impacted if folder format is not as below

Enter the absolute path of the folder where the files have to be stored:/Users/abcd/Downloads/FCS_Checker/
<LK

3. The script will now ask for end time of execution.

Please enter the time in format yyyy-mm-dd hh:mm (per local timezone of fabric), minimum 5
minutes and maximum upto 7 days.

https://developer.cisco.com/codeexchange/github/repo/CiscoDevNet/ACI-CRC-FCS-Checker

At this time, script-1 starts collecting FCS/CRC errors from the fabric every five minutes (until the
endtime specified earlier by the user) and saves data to files at the path specified in earlier input.

Enter the End Time until which the script runs(in the format of yyyy-mm-dd hh:mm, current time:2021-09-27 11:27.... maximum upto 2021-10-04
11:27): 2021-09-27 11:32 <<<<<

The script is executingcccoceeene
The script is executingcccoceeene
ABCD-M-G24X:downloads abcd$

4. Upon succesful execution of the first script, it will store raw data files in the location, specified by
user in step-2.

Verify the same as shown in below example.

ABCD-M-G24X:FCS_Checker kbosu$ pwd
/Users/abcd/Downloads/FCS_Checker

Is -l
total 16
-rw-r--r--@ 1 kbosu staff 1419 Sep 27 11:28 CRC_FCS_20210927_1128.txt

-rw-r--r--@ 1 kbosu staff 1419 Sep 27 11:33 CRC_FCS_20210927_1133.txt
ABCD-M-G24X:FCS_Checker abcd$

5. Now it's time to execute the second script (ACI_CRC_Parser.py) .
Script-2 is going to use those files created by script-1 and work further.
Please enter the OOB IP address for one of the APICs in given cluster and it's credentials.

Also, enter the same file location, that you entered in step-2 while executing the first script.

ABCD-M-G24X:downloads abcd$ python3 ACI_CRC_Parser.py

Enter the IP address or DNS Name of APIC: 10.197.204.184

Enter the username: admin

Enter the password; ***xxxxkix
Trying to connect to APIC
Connection established to the APIC

Please enter the folder where files are stored
Please make sure we have at least two files exists in the directory where you have saved data

Enter the absolute path of the folder where the files are stored:/Users/abcd/Downloads/FCS_Checker/

You have CRC and FCS for the below date range
1.2021-09-27

Fetching first and last file of the same date 20210927
CRC_FCS_20210927_1128.txt
CRC_FCS_20210927_1133.txt

The script is executing.....

The script execution has completed

6. Script-2 is going to print the data in a tabular format as shown in below example.

Primarily, it is going to list the node interfaces with non-zero CRC and FCS errors, along with the
difference in their CRC/FCS counters, during the time interval specified by user. Using LLDP, the
script is also going to determine the neighbor device hooked with given interfaces and most
importantly, it is going to indicate which node/interface is the source of errors from fabric
standpoint and which node interfaces are just seeing CRCs due to Stomp.

From FCS troubleshooting perspective, the one highlighted in "Red" and marked as "Local" is
where further troubleshooting should be focused on.

This is likely the interface(s), where bad/corrupted packets are entering into the fabric from and
causing the CRCs to be flooded in fabric.

+ + + + + + + + + +
+ +
| POD_ID | NODE_ID| NODE_NAME | NODE_ROLE | INTERFACE | 20210927 1128 | 20210927_1133 | 20210927 1128 |
20210927 1133 | NEIGHBOR | ERROR SOURCE |
+ + + + + +-----CRC-+----+----=CRC Diff---4----FCSmmer--- SO oY 0] S—
+ +

| 1 | 302 |bgl-aciO6-t2-leaf2| leaf | ethl/44 | 5002806823759 | 127841888 |5002806823759| 127841888 | No
LLDP /CDP neighbours found please check physically where this interface connects | Local |

| 1 | 101 | bgl-aciO6-spinel | spine | ethl/1 | 2981200154 | 132103050 | 0 | 0 |
System:bgl-aciO6-t1-leafl.cisco.com,Interface:Eth1/49 | Stomp |
| 1 | 101 | bgl-aciO6-spinel | spine | ethl/2 | 968286 | 0 | 0 | 0 [
| Historic |
| 1 | 201 |bgl-aciO6-tl-leafl| leaf | ethl/1 | 12 [0 | 0 | 0 [
| Historic |

| 1 | 201 |bgl-aciO6-tl-leafl| leaf | ethl/51 | 4999243774529 | 0 | 0 | 0 |

| Historic |
| 1 | 201 |bgl-aciO6-tl-leafl| leaf | ethl1/52 | 5002807353809 | 127841212 | 0 | 0 |
System:bgl-aci06-t2-leaf2.cisco.com,Interface:Eth1/49 | Stomp |
| 1 | 202 |bgl-aciO6-tl-leaf2| leaf | ethl/51 | 968286 | 0 | 0 | 0 |

| Historic |
| 1 | 301 |bgl-aciO6-t2-leafl| leaf | ethl/44 | 4999245287405 | 0 | 4999245287405 | 0 |
| Historic |

| 1 | 301 |bgl-aciO6-t2-leafl| leaf | ethl/49 | 4999823953891 | 0 | 0 | 0 |

| Historic |
| 1 | 302 |bgl-aciO6-t2-leaf2 | leaf | ethl/49 | 4999243774529 | 0 | 0 | 0 |

| Historic |
+ + + + + + + + + +

+ +

7. Additionally, the script is going to provide following options to the users to sort and view
granular data, what was collected by script-1 and 2.

User may choose an option between number 1-3 as an input. See the example below.

1.Sort the data further
2.View the granular data of an interface
3.Exit

Input the number:

In below example, we are going for option 2 which helps us to view granular data for any given
interface.

The script will prompt user to enter the respective POD number , Node ID and interface ID from
the table printed above (step 6).

Here in this example, we are using 1-302-eth1/44, where POD ID is 1, Node ID is 302 and
Interface ID eth1/44. This is the interface

where local FCS was reported by the script, as shown in step-6.

Input the number:2

Enter an interface for which you need granular data(POD_ID-NODE_ID-INTERFACE Example:1-101-eth1/5): 1-302-eth1/44

You have CRC and FCS data in the below date range
1.2021-09-27

Enter the date for which you need granular data(any number from the above list range(1-1)):
In our example, we collected the data only for few minutes of a day, hence we see just one option
for dated 27th Sep.

Thus, our input will be "1".

Enter the date for which you need granular data(any number from the above list range(1-1)): 1

[—— + + +
|Time | CRC | FCS |
[—— + + +
| 11:28 | 5002806823759 | 5002806823759 |
| 11:33 | 5002934665647 | 5002934665647 |
[—— + + +

Do you want to continue viewing the granular data(0/1), 1-yes, 0-no:0

Please select any number below to sort the data further or to view granular data of an interface

1.Sort the data further
2.View the granular data of an interface
3.Exit

Input the number:3
ABCD-M-G24X:downloads abcd$

	How to use FCS and CRC Troubleshooting Scripts for ACI
	Contents
	Introduction
	Prerequisites To run the Script Manually
	Prerequisites to run the Script from Container
	Steps to execute the scripts

