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An age-old slogan has a new meaning in the AI era

The slogan “the network is the computer” was coined 
by John Gage of Sun Microsystems in 1984—more than 
four decades ago. It has achieved new meaning in 
the era of AI infrastructure and is, very rightfully, used 
frequently by AI networking silicon and system vendors.  

Graphics Processing Units (GPUs) represent the 
most significant capital investment in modern AI 
infrastructure. A single NVIDIA Blackwell chip ranges 
from $30,000 to $40,000—nearly triple the $12,000 cost 
of a flagship Intel® Xeon® CPU. This premium extends 
to the cloud, where annual Blackwell rentals reach 
approximately $22,000 per chip. Because of these 
staggering costs, infrastructure efficiency has become 
a top priority for data center operators.

AI workloads rely on collective operations that execute 
across hundreds of thousands of GPUs in a cluster. 
By leveraging a high-performance fabric of Network 
Interface Cards (NICs) and switches, the network 
interconnects these individual chips to form a unified 
collective GPU computer.

Because AI traffic is uniquely synchronized and bursty, 
the network resides on the critical path of performance. 
Network issues cause collective operations to stall, 
wasting valuable GPU cycles. Consequently, the 
performance and efficiency of the collective GPU 
computer depend entirely on the network’s ability to 
minimize Collective Completion Time (CCT) and reduce 
GPU stall time.

CCT is the duration required for a collective 
communication operation to finish across distributed 
nodes. As a measure of the speed of data 
synchronization between GPUs, CCT serves as the 
critical metric for benchmarking AI infrastructure 
performance.

In the modern AI era, the pressing need to manage 
rising Total Cost of Ownership (TCO) serves as a 
contemporary reinterpretation of John Gage’s famous 
slogan “The network is the computer.”

Key takeaways

As AI clusters scale toward million-GPU capacities, the network is the critical path for performance. The Cisco 
Silicon One G300 102.4T switch, with Intelligent Collective Networking, eliminates GPU stalls to transform 
infrastructure TCO. 

Key benchmarks include:

•	 Accelerated Training: Delivers an 82% reduction in 
Job Completion Time (JCT) over standard Ethernet 
and a 28% speedup over random packet spraying.

•	 Near-Ideal Performance: Achieves Collective 
Completion Times (CCT) within 2% to 4% of the 
theoretical ideal, even during link failures.

•	 Hardware Resilience: Features up to 2.5X 
increased burst absorption and fault detection that 
is 100,000x faster than traditional methods.

•	 Maximizing ROI: Improved network efficiency 
allows for reclaiming up to 28% of cluster capacity 
by minimizing GPU idle time, ensuring expensive 
resources focus on computation rather than waiting 
for data.
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Figure 1.	 Advent of the gigawatt collective GPU computer and ballooning AI infrastructure costs

The Cisco Silicon One™ G300 102.4T switch is engineered to meet the scaling demands and structural shifts 
of modern AI infrastructure driven by rapid model innovation. By leveraging the new Intelligent Collective 
Networking—which features intelligent, advanced load balancing—the G300 significantly lowers CCT, achieving 
near-optimal performance across various scaling scenarios. These CCT benchmarks serve as a vital metric for 
evaluating TCO impact.

Addressing the rising complexity of AI models and infrastructure design

The fundamental goal of AI networking is to maximize 
the utility of expensive GPU resources by minimizing 
the duration of collective operations and preventing 
GPU stalls. While the industry has introduced various 
proprietary and standard-based (Ultra Ethernet 
Consortium [UEC]) techniques for load balancing and 
congestion management, traditional network-centric 
approaches—such as static Equal-Cost Multipath 
(ECMP) and packet spraying—are no longer sufficient. 
Despite incremental improvements, these legacy 

methods fail to reach the performance thresholds 
required to transform the Total Cost of Ownership 
(TCO), largely because AI workloads are evolving 
faster than traditional networking constructs can adapt. 
This paper explores the features of the Cisco Silicon 
One G300 device in detail after first examining why AI 
infrastructure is changing so rapidly.
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A few of the reasons for the rapid evolution of the AI 
infrastructure are outlined below.

Power and cooling constraints in individual 
data centers

Power and cooling constraints have forced GPU 
clusters to distribute across sites, creating a hybrid 
of local scale-out and long-distance scale-across 
traffic. Managing this requires 102.4T switching for 
local density in scale-out networks and deep-buffered 
silicon to handle the high latency and long round-trip 
times of long-haul links in scale-across traffic. Because 
these environments demand different load-balancing 
strategies—dynamic for local and static for long haul—
modern networking silicon must be “traffic aware” to 
support both scenarios within a single architecture.

Efficient 500K to 1M+ GPU scale 

The rise of agentic workflows requires infrastructure that 
supports larger GPU clusters with minimal communication 
overhead to ensure the real-time responsiveness the 
autonomous agents demand. To achieve this, operators 
are moving toward two-tier topologies using high-
radix links (100 Gbps to 400 Gbps). While standard 
51.2T architectures are typically limited to 8,192 
GPUs, multiplanar designs—networks constructed by 
interconnecting multiple switching planes to increase 
overall capacity—leveraging 512-radix, 51.2T switches 
can scale to 512,000 GPUs. Although this multiplanar 
approach improves scale and reliability, it significantly 
increases infrastructure costs due to several factors:

•	 Multiple independent network planes require 
separate switches and interconnections, multiplying 
hardware costs.

•	 Managing complex, large-scale AI clusters with 
multiple planes adds operational overhead.

•	 High-performance demands for low latency and 
high bandwidth necessitate expensive, advanced 
switches and architectures.

•	 Redundancy for high availability duplicates 
infrastructure, increasing costs.

•	 Scaling beyond single networks involves more 
devices and links through interconnected planes, 
further raising expenses. 

Furthermore, the adoption of the Multi-Path Reliable 
Connection (MRC) protocol highlights that current 
load-balancing solutions are insufficient to prevent 
GPU stalls and optimize utilization at this massive 
scale. This situation necessitates advanced dynamic 
load balancing and congestion management strategies 
specifically designed to handle the complexity of 
multiplanar designs.

Demand for significantly better inference 
token economics

Modern AI inference architecture often disaggregates 
the prefill and decode phases across specialized GPUs. 
However, since the server NICs must simultaneously 
support both GPU classes and their distinct processing 
phases, network traffic has shifted from homogeneous 
flows to a highly complex mixed pattern. To address 
these evolving requirements, NVIDIA introduced the 
Rubin CPX GPU. Consequently, the Vera-Rubin VR200 
NVL144 rack designs have been updated to include 
the VR200 NVL CPX variant, creating significant 
pressure to shift toward complex, high-performance, 
and scalable network architectures that emphasize 
optimized inter-GPU communication, advanced load 
balancing, and robust network fabrics with resilient 
traffic distribution.

To support the architectural transitions and massive 
scale previously described, modern load-balancing 
and congestion management strategies must be 
engineered to address the following critical scenarios:

•	 Dynamic load balancing: Implementation of 
advanced packet spraying techniques to optimize 
traffic distribution.

•	 Resilient traffic distribution: Intelligent packet 
spraying during link failures to mitigate traffic 
imbalances and prevent “blackholing.”

•	 Mixed-mode traffic management: Seamlessly 
handling the coexistence of ECMP subflows and 
packet spraying during link failure events.



White paper  Cisco public

© 2026  Cisco and/or its affiliates. All rights reserved. 

Intelligent Collective Networking: advanced load balancing optimized for 
collective operations

While several 102.4-Tbps switching solutions are 
available, the Cisco Silicon One G300 distinguishes itself 
by delivering Intelligent Collective Networking for 
performance and reliability at massive scale and future-
ready silicon built to evolve with AI cluster requirements 
for an industry-leading scale-out architecture tailored to 
the rigorous demands of modern AI infrastructure. 

Intelligent Collective Networking consists of a 
comprehensive suite of intelligent load-balancing, 
congestion management, and telemetry tools. By 
reducing CCT to near-ideal levels, this technology 
significantly enhances infrastructure TCO, providing a 
decisive advantage for high-performance AI workloads.

Moving beyond traditional static methods (ECMP) and 
standard dynamic load balancing (packet spraying), 
Intelligent Collective Networking represents a 
fundamental architectural shift. Engineered with an “AI-
first” mindset, it prioritizes the optimization of collective 
operations rather than incremental improvements to 
legacy flow distribution. Key technical advantages 
include:

•	 Superior burst absorption: The Cisco Silicon One 
G300 features a fully shared memory architecture 
that provides up to 2.5X increased burst absorption 
than alternative solutions, providing the necessary 
capacity for extended-reach lossless flow control. 
This significantly increased buffer depth enhances 
the network’s ability to absorb massive GPU traffic 
bursts and provides superior resilience against in-
cast events. 

•	 Accelerated fabric-level fault detection: Hardware-
accelerated, proactive dissemination of reachability 
and congestion signals enables microsecond-fast 
fault isolation, resulting in network fault detection that 
is 100,000 times faster than traditional mechanisms. 
The Silicon One G300 intelligently combines local 
and remote information to drive real-time decisions 
for resilient distribution of network traffic.

•	 Topology-aware load balancing: A framework 
optimized for collective operations integrates local 
congestion and reachability data with a global fabric-
level state. This allows for intelligent, fabric-wide, 
congestion-aware routing decisions directly at the 
switch ingress ports.

Cisco Silicon One G300
102.4-Tbps switching with

Intelligent Collective Networking for the
 gigawatt GPU computer era
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Figure 2.	 G300 Intelligent Collective Networking —unique, fabric-aware load balancing and congestion management
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The integration of these core innovations empowers the Cisco Silicon One G300 with unique, differentiated 
capabilities specifically architected to address the evolving structural shifts and massive scaling requirements of 
modern AI infrastructure:

Glossary

•	 Intelligent Collective Networking - Local Congestion Awareness (LCA)
•	 Intelligent Collective Networking - Fabric-Level Congestion Awareness (FLCA)
•	 Intelligent Collective Networking - Topology Awareness (TA)

CCT benchmarking 

To evaluate these Intelligent Collective Networking 
capabilities, we conducted simulation micro-
benchmarks on the G300 platform under varying 
topology, failure, and traffic-mix conditions across two 
large-scale, two-tier Clos fabrics consisting of 8,192 
and 16,384 GPUs. Our results demonstrate a significant 
reduction in CCT when comparing traditional static and 
dynamic load-balancing techniques against the G300’s 
innovative routing capabilities, even as AI infrastructure 
scales in size and complexity.

Methodology

Collective operations: We used Ring-all-Reduce 
Collective (RARC) and All-To-All Collective (ATAC) with 
16 ranks per collective. 

•	 Each rank transmits and receives a total of 134.4 MB 
for the RARC operation and 128 MB for ATAC.

•	 To avoid unrealistic synchronization between 
collectives and within collectives in the simulation, 
we introduced random start time jitter between 
collectives in the range of 0 to 4 microseconds. 

•	 We also introduced random start time jitter between 
flows within a collective in the range of 0 to 2 
microseconds. 

•	 In mixed-mode experiments, 12.5% of the traffic 
was statically load balanced and 87.5% used packet 
spray. Static and dynamic collectives used different 
Traffic Classes (TCs) mapped to different Output 
Queues (OQs) with 1:1 Weighted Fair Queuing (WFQ) 
scheduling.

Workloads: Workloads were represented through 
RARC and ATAC collective primitives. We allowed 
mixed load-balancing modes: dynamically load-
balanced traffic eligible for packet spray and statically 
load-balanced traffic forwarded without spraying to 
preserve ordering constraints. The two traffic types 
were separated by TC and mapped to distinct OQs, 
with an explicit scheduling policy between OQs (e.g., 
1:1 WFQ).

AI cluster configurations: Endpoints were modeled 
as NIC-attached GPU servers connected to leaf 
switches. We focused on a two-tier leaf–spine (Clos) 
topology, which may serve as a subfabric within larger 
deployments. The ingress leaf was assumed to be the 
primary decision point for path selection. Fabric-level 
congestion was represented as aggregated path-level 
signals rather than per-flow state.  

•	 8,192 GPUs, each with a 400-Gbps NIC link. The 
8,192-GPU cluster was connected using 64 G300 
leaf switches and 32 G300 spine switches; two 800-
Gbps links were used per leaf switch–spine switch 
pair.

•	 16,384 GPUs, each with a 400-Gbps NIC link. Each 
server had four GPUs and four NICs in total. There 
was a total of 16 servers or 64 GPUs per rack and 
256 racks. The 16,384 GPU cluster was connected 
using 128 G300 leaf switches and 64 G300 spine 
switches; a single 800-Gbps link was used per leaf 
switch–spine switch pair.
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Figure 3.	 Example of a simulated 8,192 GPU cluster configuration used in the benchmarking scenarios

Failure and propagation delay models: In AI clusters, 
link failures and flaps are not just occasional nuisances; 
they are statistical certainties. As infrastructure scales 
from hundreds of GPUs to clusters of 50,000 or 
100,000+, the sheer number of physical components 
makes “perfect” uptime impossible, and the Mean Time 
Between Failures (MTBF) for the cluster as a whole 
becomes very short. 

We modeled local and remote leaf–spine link failures, 
including scenarios with no failures, two failures, 
and larger failure counts of overall 16 link failures. 
Baseline cable lengths were short (1 m), and additional 
scenarios extended to longer cables (e.g., 250 m 
leaf–spine, 50 m leaf–NIC) to study sensitivity to cable 
propagation delay.

Benchmarking metrics

The goal of the benchmarking data presented in 
this paper is to show improvements in collectives 
completion time, or CCT. The CCT measurements 

achieved using G300 Intelligent Collective Networking 
features are:

•	 Tail CCT [microseconds]: Maximum CCT across all 
collectives

•	 Ideal CCT [microseconds]: Theoretical minimum 
CCT with perfect fabric utilization, load balancing 
and no link failures

•	 Overhead vs. Ideal: (Tail CCT – Ideal CCT) / Ideal 
CCT

Benchmarking scenarios and results

The scenarios covered below address the scale 
and structural changes modern AI infrastructure is 
undergoing. They are presented as six increasingly 
complex experiments or benchmarking scenarios 
that apply the capabilities of Intelligent Collective 
Networking: 

•	 Local congestion awareness or LCA 
•	 Fabric-level congestion awareness or FLCA
•	 Topology awareness or TA
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Packet spray vs. Static ECMP

Scenario 1: Simulated cluster size: 8,192 GPUs | Collective: 512 RARC (16 ranks per collective) | Ideal CCT: 2767.2 
microseconds.
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Figure 4.	 Scenario 1: Packet spray vs. Static ECMP 

Scenario 1 simply established that static load balancing using ECMP is not a viable load-balancing option. Packet 
spray-based dynamic load-balancing methods were therefore compared in all subsequent experiments. With 
Cluster Optimized Routing Intelligent Collective Networking Local Congestion-Aware (LCA) load balancing, 46 
microseconds of CCT savings and 43% lower CCT were achieved; the deviation from the ideal CCT was only 2%.
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Random packet spray vs. Intelligent Collective Networking

Scenario 2: Simulated cluster size: 8,192 GPUs | Collective: 512 RARC (16 ranks per collective) | Ideal CCT: 2767.2 
microseconds | Two concurrent link failures

Packet spray vs Intelligent Collective Networking with 
Two Concurrent Link Failures
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Figure 5.	 Scenario 2: Packet spray vs. Intelligent Collective Networking with two concurrent link failures 

As depicted in the figure above, enabling topology awareness and comparing the results with the local and random 
packet spray methods provided near-ideal CCT results (within 2.27% for local congestion awareness or 3.98% for 
random).
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Random packet spray vs. Intelligent Collective Networking (mixed traffic)

Scenario 3: Simulated cluster size: 8,192 GPUs | Collective: 512 RARC (16 ranks per collective) | Ideal CCT: 2784 
microseconds | Mixed traffic: 12.5% static and 87.5% packet spray 

Mixed traffic: Packet spray vs Intelligent Collective Networking
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Figure 6.	 Scenario 3: Mixed traffic: Packet spray vs. Intelligent Collective Networking

In an 8,192 × 400-Gbps topology with a 12.5% static ECMP and 87.5% packet spray traffic mix, fabric-level 
congestion management achieved near-ideal behavior for sprayed traffic and provided substantial improvements 
over both random spraying and local congestion-aware packet spraying (within 2.86% of ideal CCT).
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Random packet spray vs. Intelligent Collective Networking (mixed traffic) with link failures

Scenario 4: Simulated cluster size: 8,192 GPUs | Collective: 512 RARC (16 ranks per collective) | Ideal CCT: 2784 
microseconds | Mixed traffic: 12.5% static and 87.5% packet spray | Two concurrent link failures

Mixed traffic: Packet spray vs Intelligent 
Collective Networking with link failures                           
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Figure 7.	 Scenario 4: Mixed traffic—Packet spray vs. Intelligent Collective Networking with two concurrent link failures

In an 8,192 × 400-Gbps topology with a 12.5% static ECMP and 87.5% packet spray traffic mix, in the presence 
of two link failures, the topology-aware fabric-level congestion management achieved near-ideal behavior for 
sprayed traffic (within 3.18% of ideal CCT).
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Random packet spray vs. Intelligent Collective Networking (mixed traffic), realistic deployment with two 
link failures

Scenario 5: Simulated cluster size: 8,192 GPUs | Collective: 512 RARC (16 ranks per collective) | Ideal CCT: 2858.5 
microseconds | Mixed traffic: 12.5% static and 87.5% packet spray | Two 250 m links per leaf-spine pair | 50 m 
links between NICs and leaf switches | Two concurrent link failures

Mixed traffic: Packet spray vs. Intelligent Collective Networking
with realistic deployment scenario and two concurrent link failures                                          
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Figure 8.	 Scenario 5: Mixed traffic—Packet spray vs. Intelligent Collective Networking with realistic deployment scenario and two concurrent 
link failures 

As depicted above, in an 8,192 × 400-Gbps realistic deployment scenario (two 250 m links per leaf–spine pair 
and 50 m links between NICs and leaf switches) topology with a 12.5% static ECMP and 87.5% packet spray 
traffic mix, in the presence of two link failures, the topology-aware fabric-level congestion management achieved 
near-ideal behavior for sprayed traffic (within 3.66% of ideal CCT).
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Random packet spray vs. Intelligent Collective Networking (mixed traffic), realistic deployment with 16 
link failures

Scenario 6: Simulated cluster size: 16,384 GPUs | Collective: 512 RARC (16 ranks per collective) | Ideal CCT: 
2858.5 microseconds | Mixed traffic: 12.5% static and 87.5% packet spray | Two 250 m links per leaf-spine pair | 
50 m links between NICs and leaf switches| 16 concurrent link failures

Mixed traffic: Packet spray vs. Intelligent Collective Networking
with realistic deployment scenario and 16 concurrent link failures                               
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Figure 9.	 Scenario 6: Mixed traffic—Packet spray vs. Intelligent Collective Networking with realistic deployment scenario and 16 concurrent 
link failures 

With 16 link failures in an 8,192 × 400-Gbps realistic deployment scenario (two 250 m links per leaf–spine pair and 
50 m links between NICs and leaf switches) topology with a 12.5% static ECMP and 87.5% packet spray traffic mix, 
the topology-aware fabric-level congestion management achieved near-ideal behavior for sprayed traffic (within 
4.54% of ideal CCT).
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Predictive modeling of JCT improvements in 
distributed training

While the packet-level simulations demonstrate 
significant reductions in CCT using the advanced 
features of the Cisco Silicon One G300, quantifying 
the value for AI practitioners requires translating these 
network gains into end-to-end Job Completion Time 
(JCT). This section presents an analytical framework 
linking fabric performance to application speedup, 
instantiated using empirical profiles from a Llama 3.1-
8B training workload.

Methodology and analytical model

To bridge the gap between network simulation and 
application performance, we modeled the total JCT 
as the aggregate of N training iterations. We focused 
on a ZeRO-2 based Fully Sharded Data Parallel (FSDP) 
configuration.

To capture the impact of network performance on 
training time, we defined the duration of a single 
iteration (TIteration) as follows:

Where:

•	 i: Index of specific collective communication 
operation operations

•	 ϕ_i: Overlap efficiency potential specific to collective 
communication i  [0 = no overlap, min (TCompute,T_
{Comm,i})= perfect overlap].

•	 α_i (alpha): Network improvement factor derived 
from G300 simulations.

In this specific study, we focused on a regime where 
communication is predominantly exposed (ϕ_i: ≈ 0), 
i.e the observed overlap is close to zero, allowing for 
direct observation of fabric improvements.

The baseline workload profile for Llama 3.1-8B was 
empirically measured as follows:

•	 Compute time (TCompute): 496.82 ms
•	 Communication time (TComm): 458.79 ms
•	 Overhead (TOverhead): 61.86 ms
•	 Training steps (N): 5,376
•	 Baseline JCT = 91.16 minutes

Using this profile, we calculated the predicted JCT by applying congestion overhead factors derived from packet 
simulations under both healthy network conditions and degraded states involving two concurrent fabric link 
failures. The technical derivation for the ECMP (without failure) case is presented below:
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Predicted job completion time 

Normal traffic conditions | Cluster size: 8,192 GPUs | Collective: 512 RARC (16 ranks per collective)
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Measures Near Ideal JCT Even Under Failure Conditions
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Figure 10.	Homogeneous traffic comparison 

As illustrated in the figure above, in a normal traffic 
scenario, Standard Ethernet (ECMP) struggled 
significantly, resulting in a JCT of 255.37 minutes in 
a healthy network and degrading further to 499.67 
minutes with two link failures. ECMP failure CCT is 
derived by extrapolating the packet spray (random) 
failure case using the ratio of packet spray (random) 
and ECMP under a nonfailure case.

In contrast, the G300’s Intelligent Collective Networking 
with fabric-aware packet spray dramatically stabilized 
performance. It maintained a JCT of approximately 92.1 
minutes regardless of network health (92.14 min without 
failure, 92.18 min with two link failures). This represents 
an improvement of over 64% in healthy conditions 
and 82% in failure conditions compared to Standard 
Ethernet.
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Mixed traffic conditions | Cluster size: 8,192 GPUs | Collective: 512 RARC (16 ranks per collective)

G300 Mixed Traffic Routing Comparison - LLM Training
Fabric Level Congestion Aware Measures Near Ideal JCT
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Figure 11.	 Mixed traffic routing comparison

In mixed traffic scenarios, we compared random packet 
spray against the G300’s advanced congestion-aware 
mechanisms.

The figure above demonstrates that random packet 
spray experienced notable overhead in this environment, 
resulting in a JCT of 110.85 minutes. When subjected to 
two link failures, JCT degraded further to 128.54 minutes.

The G300’s fabric-level Congestion-Aware (CA) packet 
spray effectively mitigates this contention. It reduced JCT to 
92.90 minutes in healthy conditions. Crucially, even with two 
link failures, the G300 maintained a JCT of 92.49 minutes, 
delivering a 28% speedup over the degraded baseline.

This analysis confirms that fabric-level innovations 
translate directly to tangible Return On Investment (ROI) 
for AI/ML clusters. The G300’s Intelligent Collective 
Networking provides predictable performance 

consistency, maintaining optimal JCTs even during 
fabric link failures where standard schemes experience 
significant spikes.

Note: The JCT predictions presented in this section 
are empirically derived based on observations during 
profiling of a specific training regime (Llama 3.1-8B 
using ZeRO-2 FSDP). While these results highlight 
significant potential gains, actual performance in 
production environments may vary depending on model 
architecture, parallelism strategies, and cluster scale. 
The primary objective of this case study is to validate 
the analytical methodology and demonstrate how 
fabric-level performance metrics can be translated into 
application-level impact.
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Observations and key takeaways 

CCT benchmark results

•	 The experiment comparing packet spray and static 
ECMP demonstrated that static ECMP-based load 
balancing is not an effective approach. Dynamic, 
packet spray-based techniques—powered by cluster 
optimized local congestion-aware load balancing—
achieved a reduction in CCT of 46 microseconds, 
representing a 43% decrease, and deviated from the 
ideal CCT by only 2%.

•	 In more complex scenarios, the comparison between 
random packet spray and Intelligent Collective 
Networking (across mixed traffic, link failures, and 
realistic deployments) showed that advanced packet 
spraying and resilient traffic distribution—enabled 
by fabric-level congestion-aware and topology-aware 
load balancing—can deliver up to 2389 microseconds 
of CCT savings and reduce CCT by as much as 87%, 
with only a 4% deviation from the ideal CCT.

•	 Intelligent Collective Networking consistently 
demonstrated near-ideal CCT and effectively 
managed mixed-mode traffic (simultaneous ECMP 
subflows and packet spraying) in both the presence 
and absence of link failures. 

•	 Topology-aware and fabric-level load balancing, 
combined with efficient congestion management, 
enhance network utilization and minimize micro-
congestion. Lowering the CCT reduces the overall 
synchronization and data exchange time among 
GPUs during AI training or fine-tuning, which in turn 
accelerates job completion time, as supported by 
predictive modeling and summarized below.

Predicted JCT findings

•	 Massive efficiency gains over Standard Ethernet: 
The G300 effectively eliminates the performance 
bottlenecks of traditional ECMP. In healthy networks, 
it delivers a 64% reduction in JCT. In failure 
scenarios, this advantage widens to a 78% reduction, 
proving that Standard Ethernet is nonviable for large-
scale AI clusters.

•	 Superior resilience vs. modern load balancing: Even 
when compared to advanced random packet spray 
schemes, the G300 demonstrates superior stability. 
In complex failure scenarios (Scenarios 3 and 4), the 
G300 delivers a 17% to 28% speedup. This helps 
ensure that training timelines remain predictable and 
consistent, regardless of network degradation.

•	 Maximizing GPU utilization and ROI: By minimizing 
network-induced idle time, the G300 significantly 
boosts GPU utilization, helping ensure that expensive 
compute resources are spent on training rather than 
waiting for data. These efficiency gains reclaim up 
to 28% of cluster capacity compared to packet spray 
and more than 70% compared to ECMP-based load 
balancing, lowering the TCO and accelerating model 
time to market.
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Figure 13.	G300 102.4T switching with Intelligent Collective Networking changes the GPU utilization dynamics 
in gigawatt-scale data centers

Summary

As data centers grow to gigawatt scale and deploy 
over a million GPUs, new challenges involving power, 
cooling, and efficient scaling require advanced solutions 
in network design and operation. The performance of 
GPU collective operations directly influences the rising 
costs of building and running these massive facilities. 
Existing network load-balancing methods, such as static 
ECMP and random packet spray, are no longer sufficient 
to meet the need for near-ideal collective completion 
time, which is critical for efficient AI workloads at scale. 
The Cisco Silicon One G300, a 102.4-Tbps switch, 
addresses these issues with a unique approach that 
optimizes for collective GPU operations rather than just 
traditional packet distribution. Its Intelligent Collective 
Networking feature incorporates intelligent local, fabric-
wide, and topology-aware congestion management, 

supported by the industry’s largest packet buffers for 
absorbing GPU traffic bursts and microsecond-fast fault 
detection for immediate response to network issues.

Benchmarking demonstrated that static ECMP falls 
short in large-scale AI environments. While dynamic 
random packet spray techniques perform better, a local, 
fabric-wide, topology awareness of congestion and 
link failures delivers far superior network efficiency. 
The G300’s advanced routing and buffering capabilities 
consistently achieved near-ideal CCT and reduced 
JCT, even with mixed traffic patterns and link failures. 
These gains translate directly into lower TCO and faster 
AI model training and deployment, making the G300 a 
pivotal technology for the next generation of massive, 
power-constrained data center buildouts.
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