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Summary
The web scale network as we know it is undergoing 
a massive transformation to deal with the rise of 
Artificial Intelligence (AI) and Machine Learning (ML). 
The tools that we’ve used in the past no longer suffice 
for the new challenge. As an industry, we must evolve 
our thinking and build a scalable and sustainable 
network for AI/ML. Ethernet fabrics and telemetry 
assisted-Ethernet enable fully open standards, broad 
availability, and favorable cost-bandwidth dynamics. 
Fully scheduled fabrics provide ultimate non-blocking 
performance, but have a narrower ecosystem. 

Cisco Silicon One is uniquely positioned to help web 
scale providers meet this challenge and allows our 
customers to choose via software between Ethernet 
and fully scheduled fabrics. 

Front end and back end networks
When we typically think of web scale networks, we 
tend to focus on what is called the front end network. 
This network is designed to connect generic x86 or 
ARM servers to one another and to the outside world. 
The network is typically built with Top-of-Rack (TOR) 
switches and multiple servers co-located in a rack. The 

TORs are interconnected in a CLOS topology to the 
spine switches. Also hanging off the spine switches 
are the Data Center Interconnect (DCI) routers that 
connect the data center to the outside world, as shown 
in purple in Figure 1.

Ethernet is used to connect everything together in the 
front end network. As an open standard backed by a 
massive investment, the rate of innovation and the cost 
per gigabit of Ethernet is unmatched in the industry. 
Many technologies have competed against Ethernet, 
like SONET and ATM, but they are challenged to keep 
up with the relentless pace of bandwidth that doubles 
every 18-24 months. 

The network that we have tended to gloss over as 
an industry is the back end network, shown in yellow 
in Figure 1. This network is designed to connect 
specialized endpoints to one another. Historically 
this network has been used for High Performance 
Compute (HPC) and storage applications. However, 
with the explosion of AI/ML workloads, web scalers are 
forced to build-out massive new networks to meet the 
demands of their customers. 

The increase in AI/ML workloads is forcing a move 
away from the legacy, proprietary interconnects that 
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Figure 1.	 The difference between front end and back end networks

were common in storage networks. As Ethernet has 
flourished, these proprietary protocols have suffered 
from limited investment, resulting in much higher 
costs per gigabit. While higher costs are never a 
good thing for operators, the rapid expansion of AI/
ML workloads has helped force change, as the costs 
of legacy protocols have shifted from “suboptimal” to 
“intolerable.”

We’ve seen this play out before. The back end 
network was previously used to connect servers to 
storage clusters. As the storage bandwidth needs 
increased, the industry invented RDMA over Converged 
Ethernet (RoCE) and these workloads moved from the 
proprietary back end network to an Ethernet front end 
network.

The solutions that we’ve employed in the past for HPC are not good enough for the new challenges of AI/ML.

https://en.wikipedia.org/wiki/RDMA_over_Converged_Ethernet
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How is AI/ML Different from Traditional 
Data Center Traffic?

To help understand why AI/ML networks are different 
than traditional data centers we need to understand 
how AI/ML works.

AI/ML clusters are generally built out of many 
specialized nodes, often Graphical Processing Units 
(GPUs), which are interconnected with a network. The 
algorithms that run on these GPUs are computationally 
intensive and perform these calculations across huge 
datasets, which are often larger than the memory 
available on a single GPU. The job is split across 
multiple GPUs to distribute the load, and the cluster 

performs an iterative set of calculations on the dataset. 
Each GPU performs a smaller portion of the calculation 
and sends the results to all its peers in a transmission 
process known as the All-to-All collective. 

The total data transmitted by a GPU is called the 
collective size. This data is equally divided between 
all of the GPU’s peers. If a GPU was part of a 256 
GPU cluster with a collective size of 1,024MB, it 
would transmit 1,024MB / 255 = 4MB to each other 
GPU. These 4MB transfers are the flow size and are 
multiplexed together on the network interface. 

After transmission, a barrier operation occurs, which in 
essence stalls all of the GPUs waiting for all of the data to 
be received. This general process is shown in Figure 2.

Process Notify

Synchronize

Send results of computation
Several methods, we’ll focus just on one
All-to-All Collective (Everyone sends to everyone)

Wait for everyone to complete
Creates synchronization between GPUs

Computation stalls waiting for the slowest path
Job Completion Time (JCT) is based on the worst-case tail latency

Execute instructions on GPU
High bandwidth compute can saturate
network links

Figure 2.	 Synchronization effect in the All-to-All collective causes GPUs to stall

This barrier operation makes the whole process 
extremely sensitive to the performance of the network. 
If even one slow path exists in the network, all of the 
GPUs will stall waiting for that one transmission to 
complete. This is known as the tail-latency of the job. 

The time it takes from the beginning of transmission to 
all GPUs receiving their results is the Job Completion 
Time (JCT). The JCT is used as a critical measure of AI 
performance.

https://en.wikipedia.org/wiki/All-to-all_(parallel_pattern)
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Conversely: AI/ML is made up of far fewer and much 
higher-bandwidth flows that are synchronized with 
the barrier operation. As you can see in Figure 3, this 
causes the cumulative load on the network to rise and 
fall sharply. Varying latency and congestion through 
the network will cause some GPUs receive their data 
sooner and then stall, waiting for the last GPU to finish. 
Here, one suboptimal path selection stalls the entire 
AI/ML job across multiple GPUs. Said more simply, 
network performance is absolutely critical.

Cumulative Traffic

Individual Flows

AI (AII-to-all Collective) Traffic Pattern

Barrier Operation
Job Complete

GPUs Stalled
Waiting for other GPUs to complete

(Due to network congestion
from poor load balancing)

Traditional DC Traffic Pattern

Cumulative Traffic

Individual Flows

Many asynchronous small BW flows
Chaotic pattern averages out

to consistent load

Few synchronous high BW flows
Synchronization magnifies long tail 

latency and bad load balancing decisions

Figure 3.	 Traditional DC traffic vs. All-to-all collective

There are many more algorithms that run on these 
GPUs but for brevity we will focus only on this one. 
Now that we understand the basics of the All-to-
All collective, let’s look at how this is different from 
traditional datacenter traffic.

In the front end network there are many applications 
running on servers, where each one needs to send 
data to many other servers. There is a wide diversity 
of applications, each with its own unique traffic 
patterns and timing. This results in a chaotic pattern of 
asynchronous small bandwidth flows that on average 
create a relatively consistent load across the network. 

One suboptimal path selection will stall the entire AI/ML job.

Said more simply: the network performance is absolutely critical.
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How is AI/ML Different from HPC?

HPC was designed to run a single job on a large, 
disaggregated computer. One example that comes to 
mind is using HPC to calculate weather patterns due 
to global warming. All the nodes of the computer work 
together on a single large job.

Web scale AI/ML clusters are totally different.

Tools for HPC don’t scale to AI/ML 
applications.

These clusters are designed to run many concurrent 
and independent jobs over the same network. As more 
jobs execute independently, the job-to-job interference 
increases. As network congestion increases, tail 
latency increases. This is a normal but unfortunate 
event in traditional networking, but in AI/ML networks 
the synchronization component makes the impact of 
such tail latency dramatically greater. 

One way to conceptualize this is to think back to the 
days of single threaded, single core CPUs. These 
machines ran a single job very well, but to run many 

jobs, the underlying CPU architecture needed to evolve 
to support multiple threads and multiple cores—all 
running efficiently over the same hardware. In the same 
way, legacy HPC networks perform well with a single 
job, but struggle with multiple jobs. Said more simply, 
tools for HPC don’t scale to AI/ML applications.

The rising importance of the network

The network has always been an important part of 
data centers, but in practice, the applications running 
on CPUs tend to be the bottleneck, hiding some of the 
inefficiencies of the network.

In fact, this limitation of instructions per second or 
instructions per watt has led to deploying smarter 
Ethernet Network Interface Cards (NICs) to offload 
functionality from general-purpose compute 
environments. In effect, the front end network is often 
compute-bound rather than network-bound. In HPC 
environments, the GPUs provide significantly more 
performance than generic servers, so HPC is both 
compute- and network-bound. The synchronous 
nature of AI/ML algorithms magnifies the effects of tail 
latency. Consequently, as shown in Figure 4, AI/ML is 
mostly network-bound.

Traditional DC
(Front End Network)

Compute Bound Mostly compute bound Synchronization stalls compute 
Mostly Network Bound

HPC
(Back End Network)

AI/ML
(Back End Network)

Process Notify

Synchronize

Figure 4.	 The limiting factor for network types
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Load balancing options overview

Because AI/ML is network-bound, it is important to 
understand the options for steering traffic through 
the network. We consider three different options that 
provide good, better, and best performance. 

•	 Good Performance: Ethernet using stateless flow 
placement with Equal Cost Multi-Path (ECMP) 
hashing.

•	 Better Performance: Telemetry assisted Ethernet 
uses stateful processing to move flows to less 
congested links.

•	 Best Performance: Fully scheduled fabric sprays 
packets across all available links and re-orders the 
packets within a flow at the egress of the network.

For more details on each of these options, please see 
Figure 5 below.

Ethernet

Ethernet with Telemetry

Fully Scheduled

Good – Stateless Flow Placement (ECMP)
• Hash based selection
• To avoid polarization hazards

• Effective load balancing database (WCMP) maybe helpful
• Effectiveness depends on traffic load characteristics*

• Telemetry based selection
• Effectiveness depends on traffic load characteristics*

• Combination of end to end scheduled with packet spraying
• Traffic load characteristics independent performance

*- Flow bandwidth, number of flows, duration of flows, gaps in flow, traffic spread/locality, hash functions

• Flexible field selection
• Multiple Hash functions

Better – Stateful flow/flowlet placement

Best – Fully Scheduled fabric with Spray and Re-order

Figure 5.	 Load Balancing Options

Let’s look at these three options in more detail.
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Load balancing – ethernet with ecmp

To understand how ECMP works and how it causes 
network congestion, let’s look at a simple example.

Consider the network topology shown in Figure 6, 
where there are three flows: blue, green and purple. 
Each flow arrives to a non-oversubscribed network 

on a dedicated input port and leaves on a dedicated 
output port. This is considered a non-blocking, or 
admissible traffic pattern. Each flow should be able 
to pass through the network at full rate without 
interference. If congestion occurs, it stems from bad 
network steering decisions, not the traffic pattern itself.
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Figure 6.	 Non-blocking traffic pattern

Figure 7.	 ECMP load balancing basics

In Figure 7 we will trace these flows through a CLOS 
network made up of multiple ingress leafs, spines, and 
egress leafs, and show how the network can cause 
congestion even when the traffic pattern is admissible. 

It is drawn in what is referred to as an unfolded CLOS: 
the input leaf switch is shown on the left and the 
egress leaf switch on the right.
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The blue flow is from ingress leaf (1) to output port (a) 
on egress leaf (7). As a packet arrives at ingress leaf (1), 
the packet data is parsed to extract the relevant fields 
for forwarding the packet. The destination of the packet 
(Dest IP) is looked up to identify which ports could be 
used to reach egress leaf (7). There are three eligible 
paths: the packet could be sent to spine (4, 5, or 6).

In almost all cases, the order of packets within a flow 
must be maintained as they flow through a network. 
Out-of-order delivery of TCP packets can cause data 
to be retransmitted, increasing network load and 
latency. Most other applications are similarly sensitive 
to packet ordering.

To guarantee in-order delivery, packets of the same 
flow must flow through the same path in the network. 
ECMP accomplishes this by hashing fields of a packet 
to define the flow and select a constant output port for 
all packets of the same flow. 

Because the hash is deterministic, each packet can be 
hashed independently and packets from the same flow 
will follow the same path through the network. This 
enables an ECMP switch to be completely stateless, 
significantly simplifying the switch. 

In this example, the result of the hash points to spine 
(4). Once the packet is received by the spine, the same 
functions are performed, but this time there is only a 
single path to reach egress leaf (7). As the packets 
arrive of egress leaf (7), the destination of the packet is 
looked up again and the packet is routed to the directly 
connected port (a).

Looking at the green flow destined to port (b), the 
same methodology is applied, however in this example 
the hash done on ingress leaf (2) results in the packet 
being sent to spine (5), and eventually to egress leaf (7) 
and output port (b).

As of now, the network is performing perfectly, and 
we can deliver both the blue and green flow through 
the network without congestion. But if we picture a 

network where thousands or even millions of flows 
are being hashed through the network, it’s not hard to 
imagine that in some conditions the result of the ECMP 
hash will steer packets towards congestion, causing 
the network to drop packets or generate Priority Flow 
Control (PFC) backpressure.

Looking at the right side of Figure 7 we can see 
that when the new purple flow is added it causes 
congestion, impacting both the green and the purple 
flows. To understand why this happens, let’s look 
through the progression of the flow step by step. When 
the packet arrives on ingress leaf (3), it performs ECMP 
which results in sending the packet to spine (5). When 
the packets arrive on spine (5) the green and purple 
flow both need to go out the link connected to leaf (7) 
creating a 2:1 oversubscription. 

If the hash result from ingress leaf (3) selected the link 
towards spine (6), no congestion would have been 
seen. This is why the performance of an ECMP-hashed 
Ethernet fabric is dependent on the specific traffic 
characteristics flowing through the network. 

In this simple example the congestion arises between 
the spine and the egress leaf, but it is of course 
possible for congestion to occur from the ingress leaf 
to the spine.

Throwing balls into bins is used frequently to explain 
the relationship of flows (balls), ports (bins) and 
oversubscription (the bin is full, the ball drops). Imagine 
you have two bins, and each bin can hold one ball. If 
you toss the two balls towards the bins, one of four 
things can happen, as shown in Figure 8. Two out of 
the four possibilities have one ball per bin. The other 
two outcomes overflow the bin.

Converting this example back into networking it means 
that we have two ports (buckets), with two flows (balls), 
where each flow is the full BW of the port (the size 
of the ball is the size of the bucket). We have a 50% 
probability to drop 50% of the traffic.

https://en.wikipedia.org/wiki/Out-of-order_delivery
https://en.wikipedia.org/wiki/Balls_into_bins_problem
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Figure 8.	 Buckets and balls representing ECMP Hashing (full BW, large Flows)

Figure 9.	 Buckets and balls representing ECMP Hashing (network overspeed, small flows)

Let’s look at an example of smaller flows. Assume 
that we still have two ports (buckets), with two smaller 
flows (small balls), where each flow is ½ the BW of the 

port — the results are quite different. Using ECMP hash 
to select the port we can see that in all cases we don’t 
drop any traffic.
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Going into more complex examples is beyond the 
scope of this paper, but as we work through the 
examples the following important relationships appear:

•	 The more overspeed you have in the network, the 
less likely you are to drop packets.

•	 The smaller the flows, the less likely you are to drop 
packets.

•	 The larger the flows, the more likely you are to drop 
packets.

•	 The more flows you have (for the same bandwidth, 
i.e. smaller flows), the less likely you are to drop 
packets.

•	 The closer the flow size is to the port speed, the 
more likely you are to drop packets.

•	 If the flow size is bigger than the port speed, you will 
always drop packets.

Unfortunately, with AI/ML networks, the bandwidth 
demands are high in general, and the traffic is made up 
of high bandwidth flows. This combination makes the 
probability of ECMP-driven drops more likely here than 
in traditional front-end data center networks. 

Load balancing – telemetry-assisted 
ethernet 

Using telemetry to improve network performance is 
about making smarter load balancing decisions. If 
we could notify the host or the switches when there 
is congestion downstream, we could update the 
forwarding tables to avoid the congestion. To do this 
successfully, we must store the state communicating 
that a particular flow should traverse a different link. 

To understand how this works we will continue the 
example from Figure 7 above and show how telemetry 
can be used to rebalance the flows as shown in Figure 
10.

When the purple flow destined to port (c) is sent to 
spine (5), the output port becomes 2:1 oversubscribed. 
Instead of just dropping packets, spine (5) could export 
information to ingress leaf (3), or the host originating 
the purple flow, to notify it of congestion. In this 
example we assume the telemetry is sent to ingress 
leaf (3). Based on this information it creates a new 
mapping for the purple flow. When ECMP is done on 
the purple flow the results are overwritten to point the 
to spine (6). Now the blue, green, and purple flows can 
all reach their output ports without any congestion. 

This optimization requires the switches or hosts to 
store state information that identifies specific mappings 
for flows, which increases the implementation 
complexity. It should also be obvious that as the 
number of flows the switch needs to track, more state 
(silicon area) is required to store the state.

It’s also easy to understand that as each switch moves 
flows from one link to another, we have a possibility of 
creating a new point of congestion in the network. As 
the scale of the network increases, it becomes harder 
to converge on an uncongested state in a time- and 
space-efficient manner.

Working in our favor, however, is the property that AI/
ML networks typically have long lasting flows rather 
than short ones. This reduction in churn makes it easier 
to converge on a stable state before the flows in the 
network change again.
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Figure 10.	Telemetry assisted Ethernet

Fully Scheduled Fabric 

Fully scheduled fabric is a term used to describe 
several capabilities which, when combined, provide 
the ideal non-blocking performance under all traffic 
scenarios. To oversimplify the goal, a fully scheduled 
fabric attempts to stitch together multiple switches 
arranged in a CLOS topology and have it mimic the 
behavior of a single perfect output queued switch. 

To accomplish, this several technologies are used:

•	 Ingress Virtual Output Queues (VOQs) store packets 
destined to an output port and Traffic Class (TC) on 
the ingress leaf. There can be multiple ingress VOQs 
which store packets destined to an output port and 
traffic class.

•	 When there are packets enqueued for a destination, 
the ingress VOQ sends a request to the scheduler. 
The scheduler is responsible for arbitrating between 
all the VOQs. It divides up the available bandwidth 
between the requestors to enforce the Quality of 
Service (QoS) policy. The scheduler then sends a 
grant to the VOQ. 

•	 This ensures that when a port or traffic class is 
oversubscribed, the packets stay in the ingress VOQ, 
and only packets that can be transmitted out the 
network will be sent from the ingress leaf, through 
the spine to the egress leaf.

•	 When a packet is eligible to send from the ingress 
leaf, there is no hashing used to select a link. The 
packets are sprayed across all available links 
regardless of which flow the packet is associated 
with. If the sum of the bandwidth from the ingress 
leaf to the spine is equal to or greater than the 
bandwidth into the ingress leaf, there will never be 
sustained congestion. 

•	 When packets are received at the egress leaf, 
the packets within a flow must be re-ordered to 
compensate for the variable delay across multiple 
paths in the network.

There are obviously many complexities that must be 
solved for an ingress VOQ, fully scheduled, spray 
and re-order fabric to be successful. But when 
implemented correctly, the effects on performance are 
dramatic. 

https://en.wikipedia.org/wiki/Clos_network
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As shown in Figure 11, as the packets move from the 
ingress leaf to the spine they are sprayed across all 
available links. Instead of a flow following one path to 
the egress leaf, flows take all paths to the egress leaf, 
thereby ensuring full utilization regardless of the specifics 
of the flow. Using the ball example again, the spraying 
effect breaks the balls into very small pieces, so you can 
always fit them across all the buckets every time.

Although outside the scope of this paper, there are 
several other benefits of this architecture.

1.	Only packets which can transmit out the egress 
leafs ports will pass through the spine. This means 

that power is only consumed for “goodput” packets, 
saving significant power. The only place packets will 
be dropped is at the ingress leaf. 

2.	This architecture protects against incast events 
impacting victim flows. In a traditional Ethernet 
network, oversubscribed ports can consume all 
the bandwidth to the egress leaf, impacting traffic 
destined to uncongested ports. With the scheduled 
ingress VOQ architecture there are no victim flows. 

Simply said, a fully scheduled fabric enables the 
ultimate performance.
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Modeling performance

Although it is easy to understand the theory behind 
why network performance is so important to AI/ML, it 
may be more impactful to specifically study the effects 
of various architectural choices. Here, we modeled a 
small example AI/ML cluster consisting of:

•	 256 GPUs, each with a 200G connection to the 
network.

•	 8 TORs, with each TOR connected to 32 GPUs within 
a rack.

•	 Four spine switches connected to the TORs in a leaf/
spine CLOS topology.

•	 This results in a non-oversubscribed network where 
each TOR has 6.4Tbps of bandwidth towards the 
GPUs and 6.4Tbps of bandwidth towards the spines.

In our study, we ran an All-to-All Collective pattern with 
a collective size of 32MB, distributed evenly between 
all its peers in an interleaved round-robin pattern. All 
GPUs within a job send to all other GPUs within the job 
and begin transmitting simultaneously. 

We then measure the Job Completion Time (JCT) to 
understand how the network performed. It is important 
to remember that the All-to-All traffic pattern is an 
admissible or non-oversubscribed pattern, meaning 
that if the network can deliver the packets correctly 
there should never be oversubscription. Therefore, any 
oversubscription that is seen is solely a result of the 
network flow distribution characteristics. 

We studied two different traffic distribution methods. 

1.	Ethernet with ECMP hashing. 

2.	A fully scheduled fabric.

We then compared them to the perfect/theoretical 
ideal of raw bit transmission rate at 200G. This 
excludes propagation delays through the fiber as well 
as processing delays within the switch. It is impossible 
to achieve this in an actual network, but it does provide 
a useful baseline value for comparison purposes. 

We then run several tests against this topology 
to study:

1.	How Ethernet and fully scheduled fabrics behave as 
we add more independent jobs to the network.

2.	How Ethernet performance improves as we increase 
the network speedup.

Effect of increasing number of 
simultaneous jobs

The first study we did was to analyze how the system 
performs as we increased the number of jobs. We 
began by running 256 GPUs with one job across all 256 
machines up to 16 jobs each with 16 GPUs. To ensure 
that we are not adversely affecting the results we kept 
the transfer size the same at 32MB.
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# Jobs on Cluster Collective Size # Machines per Job # Peers Flow Size

1 32MB 256 255 32/255 = 0.125MB

2 32MB 128 127 32/127 = 0.251MB

4 32MB 64 63 32/63 = 0.507MB

8 32MB 32 31 32/31 = 1.03MB

16 32MB 16 15 32/15 = 2.13MB

As shown in Figure 12, we found that both ECMP 
and fully scheduled fabric performed quite well with 
a single job running on the cluster. ECMP took 1.24x 
longer than the ideal, while a fully scheduled fabric took 
1.09x longer than ideal. In comparative terms, the fully 
scheduled fabric finished 1.13x quicker than standard 
Ethernet. 

As we increased the number of jobs the difference 
between ECMP and fully scheduled fabric began to 
increase dramatically. 

With 16 jobs ECMP is 2.11x longer than ideal, while 
fully scheduled fabric remains impressively consistent 
with the changing patterns and is 1.11x longer than 

the ideal. This difference results in a fully scheduled 
fabric enabling a 1.9x quicker Job Completion Time 
than ECMP. Importantly, the performance of a fully 
scheduled fabric remains largely unaffected by the 
number of jobs running on the GPUs.

The performance of a fully 
scheduled fabric remains 

largely unaffected by the number 
of jobs running on the GPUs.
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Fully scheduled fabric provides exceptional performance, providing lower job completion time

Impact on JCT of Increasing Number of Jobs

Increasing # Jobs
Decreasing # Peers

Increasing Flow Size
Increasing Job to Job interference
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Figure 12.	How increasing the number of jobs impacts JCT

As discussed before, it is possible to improve the performance of ECMP by using telemetry to improve load 
balancing decisions, however it will never reach the performance of a fully scheduled fabric. 

Adding Network Speedup to Improve ECMP Performance

We then studied how much speedup is necessary to improve the performance of Ethernet ECMP with 16 jobs. 
We decreased the number of active GPUs under each TOR symmetrically, which has the effect of increasing the 
speedup across the TOR.

# Jobs on Cluster Collective Size # Machines per Job Flow Size Active GPUs Speedup

16 32MB 16 2.13MB 256 1x

12 32MB 16 2.13MB 192 1.33x

8 32MB 16 2.13MB 128 2x

What we found is that we needed to have a network speedup of 2x to bring ECMP performance approximately in-
line with a fully scheduled fabric with a network speedup of 1x.
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1x Speedup
256 GPUs

Increasing Speedup 
Decreasing # Active GPUs

Significant improvement,
but even with 2:1 speed-up
JCT still 19% higher than ideal

1.33x Speedup
192 GPUs

2x Speedup
128 GPUs
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Figure 13.	How much speedup do we need to add to Ethernet to make it perform like a fully scheduled fabric

Figure 14.	Fully scheduled fabric enables 2x more compute for the same network

The implication of this is significant. Looking at Figure 
13, we can see that a fully scheduled fabric with 1x 
speedup achieves a JCT of 1.11x above ideal, while 
Ethernet with a 2x network speedup only achieves 

a JCT of 1.19x. Put another way, the fully scheduled 
fabric enables over 2x the number of GPUs for the 
same raw bandwidth as an Ethernet fabric.
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We then looked closer at the results to understand 
why this was true. We focused on the 1.33x speedup 
with 192 active GPUs example. We monitored the 
TORs to see how often they send 802.1Qbb Priority 
Flow Control (PFC) XOFF messages to the GPUs. This 
gives us a view of how often the network is blocking 
the GPUs from transmitting because of network level 
congestion. 

In Figure 15 we see a histogram shows the amount of 
time the GPUs receive XOFF from the network. 

In blue we see:

•	 Six out of 192 GPUs (3%) never received flow 
control, meaning they were able to transmit 
unhindered for the entire period of the test.

•	 Nine out of 192 GPUs (5%) are flow controlled for 
1.25mSec. 

Unfortunately, because the GPUs wait for all jobs to 
complete, it means that 95% of the GPUs are stalled 
waiting for the data from 5% GPUs. The critical path 
here is again the tail latency. In this experiment, we 
have 5% of the links blocking (wasting!) 95% of the 
available GPU cycles. 

In Figure 15 that with the fully scheduled fabric (in 
green) no GPUs ever see XOFF. The fully scheduled 
fabric is a 100% non-blocking network for the GPUs: 
there is never a point where the network slows down 
the GPUs.

Fully Scheduled fabric is a 100% 
non-blocking network

0 0 0 0 0 0 0

100%
Non-Blocking

35
30
25
20
15
10
5
0

250
200
150
100
50
0

6

30

21

30 28

16 18

0

192

0 0

13 13
8 9

How much time are the GPUs seeing
Flow control? (Histogram)

How much time are the GPUs seeing
flow control? (Histogram)

50
0u

Se
c

Range of XOFF Time 1.62

9/192

1.01

Range of XOFF Time

6/192
3% GPUs never

Received an XOFF

5% GPUs were XOFF
1.25mSec during the test

1.33x SpeedupBecause of synchronization
5% of the GPUs being slow stall the other 95%

H
ow

 m
an

y 
G

PU
s 

ar
e 

XO
FF

 p
er

 ti
m

e 
ra

ng
e

H
ow

 m
an

y 
G

PU
s 

ar
e 

XO
FF

 p
er

 ti
m

e 
ra

ng
e

0u
Se

c

1.
25

m
Se

c

Fully scheduled fabric provides fully non-blocking performance and ideal JCT

EC
M

P

Fu
lly

 s
ch

ed
ul

ed Scheduled fabric never
slowed down the GPUs

O
nS

ec

Figure 15.	Comparing the amount of flow control from Ethernet ECMP (blue) to scheduled fabric (green) Flow Control
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Comparing interface options

There are obviously many possible choices to build an AI/ML network from, and each of them have their own benefits.

Pace of BW Increase
How quickly does the technology evolve?

Port Bandwidth
What is the maximum port speed?

Vendor implementation 
dependent

InfiniBand Ethernet Telemetry assisted Ethernet
ECMP for load balancing Use Telemetry to improve load balancing

Fully Scheduled
Spray and Re-Order

System Radix
How many ports per system?

Vendor implementation 
dependent

Single Job Performance
How does the network perform with 1 job?

Use telemetry to improve
load balancing decisions

Multi-Job Performance
How does the network perform with many jobs?

Driven by load balancing characteristics

Multiple vendors
build Spray and
re-order fabrics

Multi-Vendor Support
How many vendors support the technology

Support for customer-built AI Machines
Can the technology support other GPU types?

Network Cost
How much does the network cost for a certain size?

Vendor implementation 
dependent

Figure 16.	 Interface Options, Pro’s and Con’s

What we see from the summary is that although there 
is strong performance and alignment to the HPC 
market with InfiniBand, the economics and multi-job 
performance are somewhat lacking. Importantly, as 
end customers build their own GPUs they likely will 
not have InfiniBand interfaces and therefore require a 
complex topology to connect into the network.

Ethernet has significant benefits in terms of the breadth 
of offering in the ecosystem and it performs quite well 
for single jobs. However, the performance constraints 
begin to magnify as you add additional jobs to the 
network. The goal of using telemetry-assisted Ethernet 
is to improve multi-job performance.

Finally on the right we see a fully scheduled fabric. 
There are multiple vendors who implement a fully 
scheduled fabric, the cost and efficiency of the 
network varies by vendor. But once deployed, the 
performance is exceptional. Unlike Ethernet these 
fabrics are not interoperable across vendors, so a 
single cluster needs to be built with a single vendor’s 
equipment. To mitigate this, different clusters could 
be built with different vendor’s equipment, thus 
maintaining multi-vendor support.



White paper  Cisco public

© 2023  Cisco and/or its affiliates. All rights reserved. 

The cisco silicon one advantage

Cisco Silicon One has a unique capability in this space. 
Cisco Silicon One devices can be programmed via 
software to take on several different personalities.

1.	Standalone Mode: All the serializer/de-serializer 
(SerDes) or ports can be configured to be Ethernet. 
For example, our P100 device can be configured to 
be a true 24x800G 19.2Tbps router.

2.	Linecard Mode: Approximately half of the SerDes/
ports can be configured to be Ethernet, and the 
other half can be a fully scheduled fabric. For 
example, our P100 device can be configured to be 

12x800G (9.6Tbps) towards Ethernet, and 96x100G 
(9.6Tbps) towards fabric.

3.	Oversubscribed Linecard Mode: More than half of 
the SerDes/ports can be configured to be Ethernet, 
and the rest can be fully scheduled fabric. For 
example, our P100 device can be configured to be 
16x800 (12.8Tbps) towards Ethernet, and 64x100G 
(6.4Tbps) towards fabric.

4.	Fabric Element Mode: All the SerDes/ports can be 
configured to be fully scheduled fabric. For example, 
our G100 can be configured to be a 256 x 100G 
fabric element.

One Architecture, One SDK, One Experience

GPUs GPUs GPUs GPUsGPUs GPUs GPUs GPUs

Ethernet Based Fabric

Standalone

Standalone

Fully standard Ethernet Fabric
Widest vendor base support

Fully Scheduled Lossless VOQ Fabric Ethernet Fabric
Best Performance, Lowest JCT, Most Power Efficient Network

Fabric Element

Line Card

Fully Scheduled, VOQ Fabric

Customer Ethernet NetworkCustomer Ethernet Network

Cisco Silicon One

Software
Configurable

Silicon One

P100
Silicon One

P100
Silicon One

P100
Silicon One

P100

Silicon One

G100
Silicon One

G100

Silicon One

P100
Silicon One

P100
Silicon One

P100
Silicon One

P100

Silicon One
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Figure 17.	 Flexibility of Cisco Silicon One

This flexibility allows you to build a CLOS network 
out of Silicon One devices and use software to select 
between Ethernet, telemetry assisted Ethernet, or fully 
scheduled fabric. This choice is not a purchase time 
decision; it is a choice that you can evolve over time as 
your needs or workloads change. 

Cisco Silicon One is the only silicon architecture that 
allows network operators this flexibility. Using other 
commercially available solution requires the selection 
between four silicon architectures: one for InfiniBand 
and one for Ethernet, which may or may not be 
telemetry assisted. A fully scheduled fabric requires 
two additional silicon designs: one for the linecard 
elements and another for the fabric elements. 
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Summary

Every network operator has different concerns and 
priorities. Often vendors have a small set of technology 
to offer and so they push their solution as the best 
solution. This reality creates bias in most analysis. 

Because Cisco Silicon One allows our customers to 
choose how to run our technology, we can take a 

fair and unbiased view of the situation and analyze 
the options and provide the pros and cons of each 
technology. This is a unique position in the industry and 
why we believed it was important to share our studies 
with network operators.

Our goal is to provide network operators with enough 
information to let them identify the right path forward 
based on their unique priorities.

One Architecture for AI/ML

Standard Ethernet
Maximize Interoperability

Telemetry Assisted Ethernet
Middle Ground

Fully Scheduled 
Maximize Performance

In summary

•	 Customers should deploy Ethernet for AI/ML 
networks when they want to enjoy the heavy 
investment, open standards, and favorable cost-
bandwidth dynamics of Ethernet. They can improve 
the performance by investing in telemetry and 
minimizing network load by careful placement of AI 
jobs on the infrastructure.

•	 Customer should deploy fully scheduled fabrics 
for AI/ML networks when they want to enjoy the 
full non-blocking performance of an ingress Virtual 
Output Queue (VOQ), fully scheduled, spray and 

re-order fabric resulting in an impressive 1.9x better 
job completion time. Or customers who want to save 
cost and power by removing network elements and 
still achieving the same performance as Ethernet 
with 2x more compute for the same network.

To learn more

•	 Watch the OCP Global Summit, October 2022 
presentation.

•	 Watch the Cisco Knowledge Network (CKN) Webinar 
or download the slides.

•	 Learn more about Cisco Silicon One.

Figure 18.	Cisco Silicon One; Evolve your network

https://www.youtube.com/watch?v=MV491nrm0fs&t=89s
https://engage2demand.cisco.com/LP=31691
https://www.cisco.com/c/dam/m/digital/elq-cmcglobal/witb/CKN/1201_CROSSARCH.pdf
https://www.cisco.com/c/en/us/solutions/silicon-one.html

