
White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved. © 2023 Cisco and/or its affiliates. All rights reserved.

Evolve your AI/ML Network
with Cisco Silicon One

Contents

Summary	 2

Front end and back end networks	 2

How is AI/ML Different from Traditional Data Center Traffic?	 4

How is AI/ML Different from HPC?	 6

The rising importance of the network	 6

Load balancing options overview	 7

Load balancing – ethernet with ecmp	 8

Load balancing – telemetry-assisted ethernet 	 11

Fully Scheduled Fabric 	 12

Modeling performance	 14

Adding Network Speedup to Improve ECMP Performance	 16

Comparing interface options	 19

The cisco silicon one advantage	 20

Summary	 21

In summary	 21

To learn more	 21

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved. © 2023 Cisco and/or its affiliates. All rights reserved.

Summary
The web scale network as we know it is undergoing
a massive transformation to deal with the rise of
Artificial Intelligence (AI) and Machine Learning (ML).
The tools that we’ve used in the past no longer suffice
for the new challenge. As an industry, we must evolve
our thinking and build a scalable and sustainable
network for AI/ML. Ethernet fabrics and telemetry
assisted-Ethernet enable fully open standards, broad
availability, and favorable cost-bandwidth dynamics.
Fully scheduled fabrics provide ultimate non-blocking
performance, but have a narrower ecosystem.

Cisco Silicon One is uniquely positioned to help web
scale providers meet this challenge and allows our
customers to choose via software between Ethernet
and fully scheduled fabrics.

Front end and back end networks
When we typically think of web scale networks, we
tend to focus on what is called the front end network.
This network is designed to connect generic x86 or
ARM servers to one another and to the outside world.
The network is typically built with Top-of-Rack (TOR)
switches and multiple servers co-located in a rack. The

TORs are interconnected in a CLOS topology to the
spine switches. Also hanging off the spine switches
are the Data Center Interconnect (DCI) routers that
connect the data center to the outside world, as shown
in purple in Figure 1.

Ethernet is used to connect everything together in the
front end network. As an open standard backed by a
massive investment, the rate of innovation and the cost
per gigabit of Ethernet is unmatched in the industry.
Many technologies have competed against Ethernet,
like SONET and ATM, but they are challenged to keep
up with the relentless pace of bandwidth that doubles
every 18-24 months.

The network that we have tended to gloss over as
an industry is the back end network, shown in yellow
in Figure 1. This network is designed to connect
specialized endpoints to one another. Historically
this network has been used for High Performance
Compute (HPC) and storage applications. However,
with the explosion of AI/ML workloads, web scalers are
forced to build-out massive new networks to meet the
demands of their customers.

The increase in AI/ML workloads is forcing a move
away from the legacy, proprietary interconnects that

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved.

Rack Rack Rack Rack

DCI
(Frontend)

Spine
(Frontend)

Spine
(Frontend)

TOR
(Frontend)

TOR
(Frontend)

TOR
(Frontend)

TOR
(Frontend)

HPC

HPC

HPC

HPC

Server

Server

Server

Server

TOR
(Backend)

TOR
(Backend)

Spine
(Backend)

Spine
(Backend)

History of Proprietary -> Open
Storage migrated to Ethernet
network with invention of RDMA
over Converged Ethernet (RoCE)

Network topology drawn for simplicity over accuracy

Fr
on

te
nd

 N
et

w
or

k
Ba

ck
en

d
N

et
w

or
k

Connecting Servers
(x86, ARM, etc…)

Connecting Servers to Internet

Migration to the Cloud

Y/Y GPU and Network Increase
Massive new build-Outs

Proprietary** (Limited Investment)

Ethernet (Massive Investment)

HPC and Storage

Explosion of AI/MI

Step function increase in bandwidth

Network’s Purpose

Front End Network Back End Network

Connecting Specialized End-Points
 (GPUs, Storage*, etc…)

No connection to the internet

Network Bandwidth Drivers

Meeting the Bandwidth Needs

Interconnect

Y/Y CPU and Network Increase
Scale-out within a generation

Ethernet (Massive Investment)

*- Many networks use RDMA over Ethernet to move storage to the frontend network
**- Some networks use InfiniBand

AI/ML needs a different solution then HPC

WAN

Figure 1.	 The difference between front end and back end networks

were common in storage networks. As Ethernet has
flourished, these proprietary protocols have suffered
from limited investment, resulting in much higher
costs per gigabit. While higher costs are never a
good thing for operators, the rapid expansion of AI/
ML workloads has helped force change, as the costs
of legacy protocols have shifted from “suboptimal” to
“intolerable.”

We’ve seen this play out before. The back end
network was previously used to connect servers to
storage clusters. As the storage bandwidth needs
increased, the industry invented RDMA over Converged
Ethernet (RoCE) and these workloads moved from the
proprietary back end network to an Ethernet front end
network.

The solutions that we’ve employed in the past for HPC are not good enough for the new challenges of AI/ML.

https://en.wikipedia.org/wiki/RDMA_over_Converged_Ethernet

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved.

How is AI/ML Different from Traditional
Data Center Traffic?

To help understand why AI/ML networks are different
than traditional data centers we need to understand
how AI/ML works.

AI/ML clusters are generally built out of many
specialized nodes, often Graphical Processing Units
(GPUs), which are interconnected with a network. The
algorithms that run on these GPUs are computationally
intensive and perform these calculations across huge
datasets, which are often larger than the memory
available on a single GPU. The job is split across
multiple GPUs to distribute the load, and the cluster

performs an iterative set of calculations on the dataset.
Each GPU performs a smaller portion of the calculation
and sends the results to all its peers in a transmission
process known as the All-to-All collective.

The total data transmitted by a GPU is called the
collective size. This data is equally divided between
all of the GPU’s peers. If a GPU was part of a 256
GPU cluster with a collective size of 1,024MB, it
would transmit 1,024MB / 255 = 4MB to each other
GPU. These 4MB transfers are the flow size and are
multiplexed together on the network interface.

After transmission, a barrier operation occurs, which in
essence stalls all of the GPUs waiting for all of the data to
be received. This general process is shown in Figure 2.

Process Notify

Synchronize

Send results of computation
Several methods, we’ll focus just on one
All-to-All Collective (Everyone sends to everyone)

Wait for everyone to complete
Creates synchronization between GPUs

Computation stalls waiting for the slowest path
Job Completion Time (JCT) is based on the worst-case tail latency

Execute instructions on GPU
High bandwidth compute can saturate
network links

Figure 2.	 Synchronization effect in the All-to-All collective causes GPUs to stall

This barrier operation makes the whole process
extremely sensitive to the performance of the network.
If even one slow path exists in the network, all of the
GPUs will stall waiting for that one transmission to
complete. This is known as the tail-latency of the job.

The time it takes from the beginning of transmission to
all GPUs receiving their results is the Job Completion
Time (JCT). The JCT is used as a critical measure of AI
performance.

https://en.wikipedia.org/wiki/All-to-all_(parallel_pattern)

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved.

Conversely: AI/ML is made up of far fewer and much
higher-bandwidth flows that are synchronized with
the barrier operation. As you can see in Figure 3, this
causes the cumulative load on the network to rise and
fall sharply. Varying latency and congestion through
the network will cause some GPUs receive their data
sooner and then stall, waiting for the last GPU to finish.
Here, one suboptimal path selection stalls the entire
AI/ML job across multiple GPUs. Said more simply,
network performance is absolutely critical.

Cumulative Traffic

Individual Flows

AI (AII-to-all Collective) Traffic Pattern

Barrier Operation
Job Complete

GPUs Stalled
Waiting for other GPUs to complete

(Due to network congestion
from poor load balancing)

Traditional DC Traffic Pattern

Cumulative Traffic

Individual Flows

Many asynchronous small BW flows
Chaotic pattern averages out

to consistent load

Few synchronous high BW flows
Synchronization magnifies long tail

latency and bad load balancing decisions

Figure 3.	 Traditional DC traffic vs. All-to-all collective

There are many more algorithms that run on these
GPUs but for brevity we will focus only on this one.
Now that we understand the basics of the All-to-
All collective, let’s look at how this is different from
traditional datacenter traffic.

In the front end network there are many applications
running on servers, where each one needs to send
data to many other servers. There is a wide diversity
of applications, each with its own unique traffic
patterns and timing. This results in a chaotic pattern of
asynchronous small bandwidth flows that on average
create a relatively consistent load across the network.

One suboptimal path selection will stall the entire AI/ML job.

Said more simply: the network performance is absolutely critical.

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved.

How is AI/ML Different from HPC?

HPC was designed to run a single job on a large,
disaggregated computer. One example that comes to
mind is using HPC to calculate weather patterns due
to global warming. All the nodes of the computer work
together on a single large job.

Web scale AI/ML clusters are totally different.

Tools for HPC don’t scale to AI/ML
applications.

These clusters are designed to run many concurrent
and independent jobs over the same network. As more
jobs execute independently, the job-to-job interference
increases. As network congestion increases, tail
latency increases. This is a normal but unfortunate
event in traditional networking, but in AI/ML networks
the synchronization component makes the impact of
such tail latency dramatically greater.

One way to conceptualize this is to think back to the
days of single threaded, single core CPUs. These
machines ran a single job very well, but to run many

jobs, the underlying CPU architecture needed to evolve
to support multiple threads and multiple cores—all
running efficiently over the same hardware. In the same
way, legacy HPC networks perform well with a single
job, but struggle with multiple jobs. Said more simply,
tools for HPC don’t scale to AI/ML applications.

The rising importance of the network

The network has always been an important part of
data centers, but in practice, the applications running
on CPUs tend to be the bottleneck, hiding some of the
inefficiencies of the network.

In fact, this limitation of instructions per second or
instructions per watt has led to deploying smarter
Ethernet Network Interface Cards (NICs) to offload
functionality from general-purpose compute
environments. In effect, the front end network is often
compute-bound rather than network-bound. In HPC
environments, the GPUs provide significantly more
performance than generic servers, so HPC is both
compute- and network-bound. The synchronous
nature of AI/ML algorithms magnifies the effects of tail
latency. Consequently, as shown in Figure 4, AI/ML is
mostly network-bound.

Traditional DC
(Front End Network)

Compute Bound Mostly compute bound Synchronization stalls compute
Mostly Network Bound

HPC
(Back End Network)

AI/ML
(Back End Network)

Process Notify

Synchronize

Figure 4.	 The limiting factor for network types

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved.

Load balancing options overview

Because AI/ML is network-bound, it is important to
understand the options for steering traffic through
the network. We consider three different options that
provide good, better, and best performance.

•	 Good Performance: Ethernet using stateless flow
placement with Equal Cost Multi-Path (ECMP)
hashing.

•	 Better Performance: Telemetry assisted Ethernet
uses stateful processing to move flows to less
congested links.

•	 Best Performance: Fully scheduled fabric sprays
packets across all available links and re-orders the
packets within a flow at the egress of the network.

For more details on each of these options, please see
Figure 5 below.

Ethernet

Ethernet with Telemetry

Fully Scheduled

Good – Stateless Flow Placement (ECMP)
• Hash based selection
• To avoid polarization hazards

• Effective load balancing database (WCMP) maybe helpful
• Effectiveness depends on traffic load characteristics*

• Telemetry based selection
• Effectiveness depends on traffic load characteristics*

• Combination of end to end scheduled with packet spraying
• Traffic load characteristics independent performance

*- Flow bandwidth, number of flows, duration of flows, gaps in flow, traffic spread/locality, hash functions

• Flexible field selection
• Multiple Hash functions

Better – Stateful flow/flowlet placement

Best – Fully Scheduled fabric with Spray and Re-order

Figure 5.	 Load Balancing Options

Let’s look at these three options in more detail.

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved.

Load balancing – ethernet with ecmp

To understand how ECMP works and how it causes
network congestion, let’s look at a simple example.

Consider the network topology shown in Figure 6,
where there are three flows: blue, green and purple.
Each flow arrives to a non-oversubscribed network

on a dedicated input port and leaves on a dedicated
output port. This is considered a non-blocking, or
admissible traffic pattern. Each flow should be able
to pass through the network at full rate without
interference. If congestion occurs, it stems from bad
network steering decisions, not the traffic pattern itself.

1

2

3

4

5

6

7

8

9

to a

to b

to c

Ingress Leaf

a
b
c

d
e
f

g
h
i

Egress LeafSpine

100%

100%

100%

Figure 6.	 Non-blocking traffic pattern

Figure 7.	 ECMP load balancing basics

In Figure 7 we will trace these flows through a CLOS
network made up of multiple ingress leafs, spines, and
egress leafs, and show how the network can cause
congestion even when the traffic pattern is admissible.

It is drawn in what is referred to as an unfolded CLOS:
the input leaf switch is shown on the left and the
egress leaf switch on the right.

5

Uncongested Links Congested Links

Congestion on Spine 5 to Egress Leaf 7 link
means traffic to port b and port c are impacted

to a

Ingress Leaf Spine Egress Leaf

100%

100%

1

2

3

4

5

6

7

8

9

a

b

c

d

e

f

g

h

i

100%

100% 100%

10
0%

Hash

Hash

Ingress Leaf Spine Egress Leaf

100%

50%

50%1

2

3

4

6

7

8

9

a

b

c

d

e

f

g

h

i

10
0%

Hash

Hash

Hash

50
%

50
%

to b

to a

to b

to c

100%

100% 100%

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved.

The blue flow is from ingress leaf (1) to output port (a)
on egress leaf (7). As a packet arrives at ingress leaf (1),
the packet data is parsed to extract the relevant fields
for forwarding the packet. The destination of the packet
(Dest IP) is looked up to identify which ports could be
used to reach egress leaf (7). There are three eligible
paths: the packet could be sent to spine (4, 5, or 6).

In almost all cases, the order of packets within a flow
must be maintained as they flow through a network.
Out-of-order delivery of TCP packets can cause data
to be retransmitted, increasing network load and
latency. Most other applications are similarly sensitive
to packet ordering.

To guarantee in-order delivery, packets of the same
flow must flow through the same path in the network.
ECMP accomplishes this by hashing fields of a packet
to define the flow and select a constant output port for
all packets of the same flow.

Because the hash is deterministic, each packet can be
hashed independently and packets from the same flow
will follow the same path through the network. This
enables an ECMP switch to be completely stateless,
significantly simplifying the switch.

In this example, the result of the hash points to spine
(4). Once the packet is received by the spine, the same
functions are performed, but this time there is only a
single path to reach egress leaf (7). As the packets
arrive of egress leaf (7), the destination of the packet is
looked up again and the packet is routed to the directly
connected port (a).

Looking at the green flow destined to port (b), the
same methodology is applied, however in this example
the hash done on ingress leaf (2) results in the packet
being sent to spine (5), and eventually to egress leaf (7)
and output port (b).

As of now, the network is performing perfectly, and
we can deliver both the blue and green flow through
the network without congestion. But if we picture a

network where thousands or even millions of flows
are being hashed through the network, it’s not hard to
imagine that in some conditions the result of the ECMP
hash will steer packets towards congestion, causing
the network to drop packets or generate Priority Flow
Control (PFC) backpressure.

Looking at the right side of Figure 7 we can see
that when the new purple flow is added it causes
congestion, impacting both the green and the purple
flows. To understand why this happens, let’s look
through the progression of the flow step by step. When
the packet arrives on ingress leaf (3), it performs ECMP
which results in sending the packet to spine (5). When
the packets arrive on spine (5) the green and purple
flow both need to go out the link connected to leaf (7)
creating a 2:1 oversubscription.

If the hash result from ingress leaf (3) selected the link
towards spine (6), no congestion would have been
seen. This is why the performance of an ECMP-hashed
Ethernet fabric is dependent on the specific traffic
characteristics flowing through the network.

In this simple example the congestion arises between
the spine and the egress leaf, but it is of course
possible for congestion to occur from the ingress leaf
to the spine.

Throwing balls into bins is used frequently to explain
the relationship of flows (balls), ports (bins) and
oversubscription (the bin is full, the ball drops). Imagine
you have two bins, and each bin can hold one ball. If
you toss the two balls towards the bins, one of four
things can happen, as shown in Figure 8. Two out of
the four possibilities have one ball per bin. The other
two outcomes overflow the bin.

Converting this example back into networking it means
that we have two ports (buckets), with two flows (balls),
where each flow is the full BW of the port (the size
of the ball is the size of the bucket). We have a 50%
probability to drop 50% of the traffic.

https://en.wikipedia.org/wiki/Out-of-order_delivery
https://en.wikipedia.org/wiki/Balls_into_bins_problem

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved.

B B

Balls don’t fit in the buckets and drop

A

B1

B

B2

Both buckets are full

Possibility 1

A

B2

B

B1

Both buckets are full

Possibility 2

A

B1 B2

B1 is full, ball B drops
 B2 is empty

Possibility 3

A

B2B1

B2 is full, ball B drops
B1 is empty

Possibility 4

Figure 8.	 Buckets and balls representing ECMP Hashing (full BW, large Flows)

Figure 9.	 Buckets and balls representing ECMP Hashing (network overspeed, small flows)

Let’s look at an example of smaller flows. Assume
that we still have two ports (buckets), with two smaller
flows (small balls), where each flow is ½ the BW of the

port — the results are quite different. Using ECMP hash
to select the port we can see that in all cases we don’t
drop any traffic.

Possibility 1

Both buckets are ½ full

A

B1

B

B2

Possibility 2

Both buckets are ½ full

A

B1

B

B2

Possibility 3

B1 is full, B2 is empty

B1 B2

A B

Possibility 4

B2 is full, B1 is empty

B2B1

A B

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved.

Going into more complex examples is beyond the
scope of this paper, but as we work through the
examples the following important relationships appear:

•	 The more overspeed you have in the network, the
less likely you are to drop packets.

•	 The smaller the flows, the less likely you are to drop
packets.

•	 The larger the flows, the more likely you are to drop
packets.

•	 The more flows you have (for the same bandwidth,
i.e. smaller flows), the less likely you are to drop
packets.

•	 The closer the flow size is to the port speed, the
more likely you are to drop packets.

•	 If the flow size is bigger than the port speed, you will
always drop packets.

Unfortunately, with AI/ML networks, the bandwidth
demands are high in general, and the traffic is made up
of high bandwidth flows. This combination makes the
probability of ECMP-driven drops more likely here than
in traditional front-end data center networks.

Load balancing – telemetry-assisted
ethernet

Using telemetry to improve network performance is
about making smarter load balancing decisions. If
we could notify the host or the switches when there
is congestion downstream, we could update the
forwarding tables to avoid the congestion. To do this
successfully, we must store the state communicating
that a particular flow should traverse a different link.

To understand how this works we will continue the
example from Figure 7 above and show how telemetry
can be used to rebalance the flows as shown in Figure
10.

When the purple flow destined to port (c) is sent to
spine (5), the output port becomes 2:1 oversubscribed.
Instead of just dropping packets, spine (5) could export
information to ingress leaf (3), or the host originating
the purple flow, to notify it of congestion. In this
example we assume the telemetry is sent to ingress
leaf (3). Based on this information it creates a new
mapping for the purple flow. When ECMP is done on
the purple flow the results are overwritten to point the
to spine (6). Now the blue, green, and purple flows can
all reach their output ports without any congestion.

This optimization requires the switches or hosts to
store state information that identifies specific mappings
for flows, which increases the implementation
complexity. It should also be obvious that as the
number of flows the switch needs to track, more state
(silicon area) is required to store the state.

It’s also easy to understand that as each switch moves
flows from one link to another, we have a possibility of
creating a new point of congestion in the network. As
the scale of the network increases, it becomes harder
to converge on an uncongested state in a time- and
space-efficient manner.

Working in our favor, however, is the property that AI/
ML networks typically have long lasting flows rather
than short ones. This reduction in churn makes it easier
to converge on a stable state before the flows in the
network change again.

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved.

Send Telemetry to tell ingress Leaf (or Host) to move flow

Congested Links

to a

Ingress Leaf Spine Egress Leaf

100%

50%

50%1

2

3

4

5

6

7

8

9

a

b

c

d

e

f

g

h

i

100% 100%
Hash

Hash

Hash

50
%

50
%

Uncongested Links

to a

Ingress Leaf

To C flow moved based on telemetry from spine (5)

Spine Egress Leaf

100%

100%

100%1

2

3

4

5

6

7

8

9

d

e

f

g

h

i

100%

100%

100% 100%

10
0%

10
0%

Hash

Hash

to c

Moved with
Telemetry

to b

a

b

c

to c

to b
100%

10
0%

Figure 10.	Telemetry assisted Ethernet

Fully Scheduled Fabric

Fully scheduled fabric is a term used to describe
several capabilities which, when combined, provide
the ideal non-blocking performance under all traffic
scenarios. To oversimplify the goal, a fully scheduled
fabric attempts to stitch together multiple switches
arranged in a CLOS topology and have it mimic the
behavior of a single perfect output queued switch.

To accomplish, this several technologies are used:

•	 Ingress Virtual Output Queues (VOQs) store packets
destined to an output port and Traffic Class (TC) on
the ingress leaf. There can be multiple ingress VOQs
which store packets destined to an output port and
traffic class.

•	 When there are packets enqueued for a destination,
the ingress VOQ sends a request to the scheduler.
The scheduler is responsible for arbitrating between
all the VOQs. It divides up the available bandwidth
between the requestors to enforce the Quality of
Service (QoS) policy. The scheduler then sends a
grant to the VOQ.

•	 This ensures that when a port or traffic class is
oversubscribed, the packets stay in the ingress VOQ,
and only packets that can be transmitted out the
network will be sent from the ingress leaf, through
the spine to the egress leaf.

•	 When a packet is eligible to send from the ingress
leaf, there is no hashing used to select a link. The
packets are sprayed across all available links
regardless of which flow the packet is associated
with. If the sum of the bandwidth from the ingress
leaf to the spine is equal to or greater than the
bandwidth into the ingress leaf, there will never be
sustained congestion.

•	 When packets are received at the egress leaf,
the packets within a flow must be re-ordered to
compensate for the variable delay across multiple
paths in the network.

There are obviously many complexities that must be
solved for an ingress VOQ, fully scheduled, spray
and re-order fabric to be successful. But when
implemented correctly, the effects on performance are
dramatic.

https://en.wikipedia.org/wiki/Clos_network

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved.

As shown in Figure 11, as the packets move from the
ingress leaf to the spine they are sprayed across all
available links. Instead of a flow following one path to
the egress leaf, flows take all paths to the egress leaf,
thereby ensuring full utilization regardless of the specifics
of the flow. Using the ball example again, the spraying
effect breaks the balls into very small pieces, so you can
always fit them across all the buckets every time.

Although outside the scope of this paper, there are
several other benefits of this architecture.

1.	Only packets which can transmit out the egress
leafs ports will pass through the spine. This means

that power is only consumed for “goodput” packets,
saving significant power. The only place packets will
be dropped is at the ingress leaf.

2.	This architecture protects against incast events
impacting victim flows. In a traditional Ethernet
network, oversubscribed ports can consume all
the bandwidth to the egress leaf, impacting traffic
destined to uncongested ports. With the scheduled
ingress VOQ architecture there are no victim flows.

Simply said, a fully scheduled fabric enables the
ultimate performance.

Uncongested Links of
a Scheduled Fabric

2

3

5

6

8

9

to a

to b

Ingress Leaf Spine

33% 33% 33%

33
%

 3
3%

 3
3%

33
%

 3
3%

 3
3%

Egress Leaf

7

to c

d

e

f

g

h

i

41

Spary

Spary

Spary

33%

33%

33%

100%

100%

100%

a

b

c

Figure 11.	 Fully Scheduled fabric

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved.

Modeling performance

Although it is easy to understand the theory behind
why network performance is so important to AI/ML, it
may be more impactful to specifically study the effects
of various architectural choices. Here, we modeled a
small example AI/ML cluster consisting of:

•	 256 GPUs, each with a 200G connection to the
network.

•	 8 TORs, with each TOR connected to 32 GPUs within
a rack.

•	 Four spine switches connected to the TORs in a leaf/
spine CLOS topology.

•	 This results in a non-oversubscribed network where
each TOR has 6.4Tbps of bandwidth towards the
GPUs and 6.4Tbps of bandwidth towards the spines.

In our study, we ran an All-to-All Collective pattern with
a collective size of 32MB, distributed evenly between
all its peers in an interleaved round-robin pattern. All
GPUs within a job send to all other GPUs within the job
and begin transmitting simultaneously.

We then measure the Job Completion Time (JCT) to
understand how the network performed. It is important
to remember that the All-to-All traffic pattern is an
admissible or non-oversubscribed pattern, meaning
that if the network can deliver the packets correctly
there should never be oversubscription. Therefore, any
oversubscription that is seen is solely a result of the
network flow distribution characteristics.

We studied two different traffic distribution methods.

1.	Ethernet with ECMP hashing.

2.	A fully scheduled fabric.

We then compared them to the perfect/theoretical
ideal of raw bit transmission rate at 200G. This
excludes propagation delays through the fiber as well
as processing delays within the switch. It is impossible
to achieve this in an actual network, but it does provide
a useful baseline value for comparison purposes.

We then run several tests against this topology
to study:

1.	How Ethernet and fully scheduled fabrics behave as
we add more independent jobs to the network.

2.	How Ethernet performance improves as we increase
the network speedup.

Effect of increasing number of
simultaneous jobs

The first study we did was to analyze how the system
performs as we increased the number of jobs. We
began by running 256 GPUs with one job across all 256
machines up to 16 jobs each with 16 GPUs. To ensure
that we are not adversely affecting the results we kept
the transfer size the same at 32MB.

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved.

Jobs on Cluster Collective Size # Machines per Job # Peers Flow Size

1 32MB 256 255 32/255 = 0.125MB

2 32MB 128 127 32/127 = 0.251MB

4 32MB 64 63 32/63 = 0.507MB

8 32MB 32 31 32/31 = 1.03MB

16 32MB 16 15 32/15 = 2.13MB

As shown in Figure 12, we found that both ECMP
and fully scheduled fabric performed quite well with
a single job running on the cluster. ECMP took 1.24x
longer than the ideal, while a fully scheduled fabric took
1.09x longer than ideal. In comparative terms, the fully
scheduled fabric finished 1.13x quicker than standard
Ethernet.

As we increased the number of jobs the difference
between ECMP and fully scheduled fabric began to
increase dramatically.

With 16 jobs ECMP is 2.11x longer than ideal, while
fully scheduled fabric remains impressively consistent
with the changing patterns and is 1.11x longer than

the ideal. This difference results in a fully scheduled
fabric enabling a 1.9x quicker Job Completion Time
than ECMP. Importantly, the performance of a fully
scheduled fabric remains largely unaffected by the
number of jobs running on the GPUs.

The performance of a fully
scheduled fabric remains

largely unaffected by the number
of jobs running on the GPUs.

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved.

Fully scheduled fabric provides exceptional performance, providing lower job completion time

Impact on JCT of Increasing Number of Jobs

Increasing # Jobs
Decreasing # Peers

Increasing Flow Size
Increasing Job to Job interference

N
or

m
al

iz
ed

 J
C

T
to

 Id
ea

l

EC
M

P

Fu
lly

 s
ch

ed
ul

ed

EC
M

P

Fu
lly

 s
ch

ed
ul

ed

EC
M

P

Fu
lly

 s
ch

ed
ul

ed

EC
M

P

Fu
lly

 s
ch

ed
ul

ed

EC
M

P

Fu
lly

 s
ch

ed
ul

ed

1.24

1 Job
(Like HPC)

16 Jobs
(AI)

2 Jobs 4 Jobs 8 Jobs

1.09
1.27

1.42

1.86

2.11

1.09 1.09 1.1 1.11

1.9x
Quicker JCT

Figure 12.	How increasing the number of jobs impacts JCT

As discussed before, it is possible to improve the performance of ECMP by using telemetry to improve load
balancing decisions, however it will never reach the performance of a fully scheduled fabric.

Adding Network Speedup to Improve ECMP Performance

We then studied how much speedup is necessary to improve the performance of Ethernet ECMP with 16 jobs.
We decreased the number of active GPUs under each TOR symmetrically, which has the effect of increasing the
speedup across the TOR.

Jobs on Cluster Collective Size # Machines per Job Flow Size Active GPUs Speedup

16 32MB 16 2.13MB 256 1x

12 32MB 16 2.13MB 192 1.33x

8 32MB 16 2.13MB 128 2x

What we found is that we needed to have a network speedup of 2x to bring ECMP performance approximately in-
line with a fully scheduled fabric with a network speedup of 1x.

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved.

1x Speedup
256 GPUs

Increasing Speedup
Decreasing # Active GPUs

Significant improvement,
but even with 2:1 speed-up
JCT still 19% higher than ideal

1.33x Speedup
192 GPUs

2x Speedup
128 GPUs

N
or

m
al

iz
ed

 J
C

T
to

 Id
ea

l

EC
M

P

Fu
lly

 s
ch

ed
ul

ed

EC
M

P

Fu
lly

 s
ch

ed
ul

ed

EC
M

P

Fu
lly

 s
ch

ed
ul

ed

2.11

1.62

1.11
1.01

1.19
1.01

Impact on JCT of Increasing Network Speedup
(Decreasing # Active GPUs)

Figure 13.	How much speedup do we need to add to Ethernet to make it perform like a fully scheduled fabric

Figure 14.	Fully scheduled fabric enables 2x more compute for the same network

The implication of this is significant. Looking at Figure
13, we can see that a fully scheduled fabric with 1x
speedup achieves a JCT of 1.11x above ideal, while
Ethernet with a 2x network speedup only achieves

a JCT of 1.19x. Put another way, the fully scheduled
fabric enables over 2x the number of GPUs for the
same raw bandwidth as an Ethernet fabric.

No Speedup

Fully Scheduled Fabric

x44 Spines

8 TORs

Random
Job Placement

256 Active GPUs

x8

32 GPUs per Rack

JCT = 1.11x

Fully scheduled fabric
6.4T
6.4T

x32

x3
2

x3
2

20
0G x32

20
0G

8x
20

0G

2x Speedup

Ethernet ECMP

x44 Spines

8 TORs

Random
Job Placement

128 Active GPUs, 128 Idle GPUs

x8

32 GPUs per Rack
16 active 16 idle

JCT = 1.19x

Ethernet
6.4T
3.2T

x32

x3
2

x3
2

20
0G x32

20
0G

8x
20

0G

Even with 2x more Servers, Fully Scheduled Fabric Performs Better

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved.

We then looked closer at the results to understand
why this was true. We focused on the 1.33x speedup
with 192 active GPUs example. We monitored the
TORs to see how often they send 802.1Qbb Priority
Flow Control (PFC) XOFF messages to the GPUs. This
gives us a view of how often the network is blocking
the GPUs from transmitting because of network level
congestion.

In Figure 15 we see a histogram shows the amount of
time the GPUs receive XOFF from the network.

In blue we see:

•	 Six out of 192 GPUs (3%) never received flow
control, meaning they were able to transmit
unhindered for the entire period of the test.

•	 Nine out of 192 GPUs (5%) are flow controlled for
1.25mSec.

Unfortunately, because the GPUs wait for all jobs to
complete, it means that 95% of the GPUs are stalled
waiting for the data from 5% GPUs. The critical path
here is again the tail latency. In this experiment, we
have 5% of the links blocking (wasting!) 95% of the
available GPU cycles.

In Figure 15 that with the fully scheduled fabric (in
green) no GPUs ever see XOFF. The fully scheduled
fabric is a 100% non-blocking network for the GPUs:
there is never a point where the network slows down
the GPUs.

Fully Scheduled fabric is a 100%
non-blocking network

0 0 0 0 0 0 0

100%
Non-Blocking

35
30
25
20
15
10
5
0

250
200
150
100
50
0

6

30

21

30 28

16 18

0

192

0 0

13 13
8 9

How much time are the GPUs seeing
Flow control? (Histogram)

How much time are the GPUs seeing
flow control? (Histogram)

50
0u

Se
c

Range of XOFF Time 1.62

9/192

1.01

Range of XOFF Time

6/192
3% GPUs never

Received an XOFF

5% GPUs were XOFF
1.25mSec during the test

1.33x SpeedupBecause of synchronization
5% of the GPUs being slow stall the other 95%

H
ow

 m
an

y
G

PU
s

ar
e

XO
FF

 p
er

 ti
m

e
ra

ng
e

H
ow

 m
an

y
G

PU
s

ar
e

XO
FF

 p
er

 ti
m

e
ra

ng
e

0u
Se

c

1.
25

m
Se

c

Fully scheduled fabric provides fully non-blocking performance and ideal JCT

EC
M

P

Fu
lly

 s
ch

ed
ul

ed Scheduled fabric never
slowed down the GPUs

O
nS

ec

Figure 15.	Comparing the amount of flow control from Ethernet ECMP (blue) to scheduled fabric (green) Flow Control

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved.

Comparing interface options

There are obviously many possible choices to build an AI/ML network from, and each of them have their own benefits.

Pace of BW Increase
How quickly does the technology evolve?

Port Bandwidth
What is the maximum port speed?

Vendor implementation
dependent

InfiniBand Ethernet Telemetry assisted Ethernet
ECMP for load balancing Use Telemetry to improve load balancing

Fully Scheduled
Spray and Re-Order

System Radix
How many ports per system?

Vendor implementation
dependent

Single Job Performance
How does the network perform with 1 job?

Use telemetry to improve
load balancing decisions

Multi-Job Performance
How does the network perform with many jobs?

Driven by load balancing characteristics

Multiple vendors
build Spray and
re-order fabrics

Multi-Vendor Support
How many vendors support the technology

Support for customer-built AI Machines
Can the technology support other GPU types?

Network Cost
How much does the network cost for a certain size?

Vendor implementation
dependent

Figure 16.	 Interface Options, Pro’s and Con’s

What we see from the summary is that although there
is strong performance and alignment to the HPC
market with InfiniBand, the economics and multi-job
performance are somewhat lacking. Importantly, as
end customers build their own GPUs they likely will
not have InfiniBand interfaces and therefore require a
complex topology to connect into the network.

Ethernet has significant benefits in terms of the breadth
of offering in the ecosystem and it performs quite well
for single jobs. However, the performance constraints
begin to magnify as you add additional jobs to the
network. The goal of using telemetry-assisted Ethernet
is to improve multi-job performance.

Finally on the right we see a fully scheduled fabric.
There are multiple vendors who implement a fully
scheduled fabric, the cost and efficiency of the
network varies by vendor. But once deployed, the
performance is exceptional. Unlike Ethernet these
fabrics are not interoperable across vendors, so a
single cluster needs to be built with a single vendor’s
equipment. To mitigate this, different clusters could
be built with different vendor’s equipment, thus
maintaining multi-vendor support.

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved.

The cisco silicon one advantage

Cisco Silicon One has a unique capability in this space.
Cisco Silicon One devices can be programmed via
software to take on several different personalities.

1.	Standalone Mode: All the serializer/de-serializer
(SerDes) or ports can be configured to be Ethernet.
For example, our P100 device can be configured to
be a true 24x800G 19.2Tbps router.

2.	Linecard Mode: Approximately half of the SerDes/
ports can be configured to be Ethernet, and the
other half can be a fully scheduled fabric. For
example, our P100 device can be configured to be

12x800G (9.6Tbps) towards Ethernet, and 96x100G
(9.6Tbps) towards fabric.

3.	Oversubscribed Linecard Mode: More than half of
the SerDes/ports can be configured to be Ethernet,
and the rest can be fully scheduled fabric. For
example, our P100 device can be configured to be
16x800 (12.8Tbps) towards Ethernet, and 64x100G
(6.4Tbps) towards fabric.

4.	Fabric Element Mode: All the SerDes/ports can be
configured to be fully scheduled fabric. For example,
our G100 can be configured to be a 256 x 100G
fabric element.

One Architecture, One SDK, One Experience

GPUs GPUs GPUs GPUsGPUs GPUs GPUs GPUs

Ethernet Based Fabric

Standalone

Standalone

Fully standard Ethernet Fabric
Widest vendor base support

Fully Scheduled Lossless VOQ Fabric Ethernet Fabric
Best Performance, Lowest JCT, Most Power Efficient Network

Fabric Element

Line Card

Fully Scheduled, VOQ Fabric

Customer Ethernet NetworkCustomer Ethernet Network

Cisco Silicon One

Software
Configurable

Silicon One

P100
Silicon One

P100
Silicon One

P100
Silicon One

P100

Silicon One

G100
Silicon One

G100

Silicon One

P100
Silicon One

P100
Silicon One

P100
Silicon One

P100

Silicon One

G100
Silicon One

G100

Figure 17.	 Flexibility of Cisco Silicon One

This flexibility allows you to build a CLOS network
out of Silicon One devices and use software to select
between Ethernet, telemetry assisted Ethernet, or fully
scheduled fabric. This choice is not a purchase time
decision; it is a choice that you can evolve over time as
your needs or workloads change.

Cisco Silicon One is the only silicon architecture that
allows network operators this flexibility. Using other
commercially available solution requires the selection
between four silicon architectures: one for InfiniBand
and one for Ethernet, which may or may not be
telemetry assisted. A fully scheduled fabric requires
two additional silicon designs: one for the linecard
elements and another for the fabric elements.

White paper Cisco public

© 2023 Cisco and/or its affiliates. All rights reserved. Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list
of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply
a partnership relationship between Cisco and any other company. (1110R)	 C11-3620938-00 06/23

Summary

Every network operator has different concerns and
priorities. Often vendors have a small set of technology
to offer and so they push their solution as the best
solution. This reality creates bias in most analysis.

Because Cisco Silicon One allows our customers to
choose how to run our technology, we can take a

fair and unbiased view of the situation and analyze
the options and provide the pros and cons of each
technology. This is a unique position in the industry and
why we believed it was important to share our studies
with network operators.

Our goal is to provide network operators with enough
information to let them identify the right path forward
based on their unique priorities.

One Architecture for AI/ML

Standard Ethernet
Maximize Interoperability

Telemetry Assisted Ethernet
Middle Ground

Fully Scheduled
Maximize Performance

In summary

•	 Customers should deploy Ethernet for AI/ML
networks when they want to enjoy the heavy
investment, open standards, and favorable cost-
bandwidth dynamics of Ethernet. They can improve
the performance by investing in telemetry and
minimizing network load by careful placement of AI
jobs on the infrastructure.

•	 Customer should deploy fully scheduled fabrics
for AI/ML networks when they want to enjoy the
full non-blocking performance of an ingress Virtual
Output Queue (VOQ), fully scheduled, spray and

re-order fabric resulting in an impressive 1.9x better
job completion time. Or customers who want to save
cost and power by removing network elements and
still achieving the same performance as Ethernet
with 2x more compute for the same network.

To learn more

•	 Watch the OCP Global Summit, October 2022
presentation.

•	 Watch the Cisco Knowledge Network (CKN) Webinar
or download the slides.

•	 Learn more about Cisco Silicon One.

Figure 18.	Cisco Silicon One; Evolve your network

https://www.youtube.com/watch?v=MV491nrm0fs&t=89s
https://engage2demand.cisco.com/LP=31691
https://www.cisco.com/c/dam/m/digital/elq-cmcglobal/witb/CKN/1201_CROSSARCH.pdf
https://www.cisco.com/c/en/us/solutions/silicon-one.html

