
White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. © 2025  Cisco and/or its affiliates. All rights reserved. 

Labeling Framework for 
Telco Cloud Infrastructure



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

Contents

1	 Introduction .....................................................................................................................................................3

2	 Telco Cloud infrastructure lifecycle management .........................................................................................3

	 2.1  Role of labels in Telco Cloud .....................................................................................................................4

3	 Labeling structure............................................................................................................................................5

	 3.1  Label Definitions for Telco Cloud Infrastructure Resources........................................................................5

	 3.2  Applying Labels to Different Infrastructure Layers.....................................................................................9

	 3.3  External Label Store ...............................................................................................................................21

4	 Putting Labels to work...................................................................................................................................23

	 4.1  Micro-segmentation Policies using Labels...............................................................................................23

5	 Leveraging Label-based framework with GenAI..........................................................................................30

	 5.1  Label Data................................................................................................................................................30

	 5.2  Relationships and Graph .........................................................................................................................31

	 5.3  Complete RAG Framework......................................................................................................................33

6	 Conclusion......................................................................................................................................................34



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

1	 Introduction 

As organizations increasingly adopt Telco Cloud infrastructure to meet performance, compliance, and data 
sovereignty requirements, the need for scalable and automated infrastructure lifecycle management becomes 
critical. In such environments, managing a vast and dynamic set of resources ranging from virtual machines and 
containers to storage volumes and network components demands a robust and consistent metadata strategy and, 
in this context, labels play a pivotal role.

Labels as key:value pairs assigned to a resource offer a lightweight yet powerful method for organizing, classifying, 
and automating resource management. Labels can drive automation, governance, and visibility across the cloud 
environment. When applied with careful consideration, labels become a foundational mechanism to manage Day 1 
and Day 2 operations, such as provisioning and deployment, monitoring, scaling, patching, and decommissioning. 
Moreover, labels are increasingly being leveraged to strengthen security postures. By integrating label metadata 
into security policies, organizations can enforce access controls, isolate workloads, and audit activities with greater 
precision and context-awareness.

This paper explores the definition of a Label Schema and how they can be applied to different domains of a Telco 
Cloud infrastructure, and also examines a micro-segmentation use case. 

2	 Telco Cloud infrastructure lifecycle management 

Telco Cloud infrastructure lifecycle management refers to the end-to-end process of planning, deploying, 
operating, maintaining, and eventually decommissioning resources within a Telco Cloud environment. This includes 
the full spectrum of infrastructure components such as compute, storage, network, orchestration layers, and 
supporting services whether virtualized, containerized, or bare metal.

Lifecycle management typically spans the following stages:

•	 Day 0 – Architecture design and capacity planning

•	 Day 1 – Deployment, provisioning, and initial configuration

•	 Day 2 – Ongoing operations including monitoring, scaling, policy enforcement, and compliance management, 
patching and incident response

•	 Day N – Decommissioning and cleanup

From a design perspective, lifecycle management necessitates modularity, consistency, and automation-readiness. 
Cloud architects must ensure that infrastructure is designed not just for initial deployment, but for long-term agility 
and maintainability. This means selecting platforms and tools that support declarative infrastructure-as-code, 
flexible resource labeling, and seamless integration with orchestration and policy engines.



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

Labels play a crucial role here by acting as metadata for:

•	 Automation workflows 

•	 Access control and segmentation 

•	 Cost tracking and optimization 

•	 Compliance auditing 

2.1  Role of labels in Telco Cloud 

In a Telco Cloud environment, where scalability, multi-tenancy, and operational control are paramount, labels 
provide a flexible and powerful mechanism to manage complexity. As simple key value pair metadata attached to 
resources, labels can encode context, ownership, lifecycle state, workload characteristics, and compliance intent—
without altering the underlying infrastructure.

Labels serve as the connective tissue between infrastructure state and a, enabling smarter, more context-aware 
operations across automation, inventory management, and security enforcement.

2.1.1  Labels for automation

Labels empower automation platforms and configuration management tools (e.g., Ansible, Terraform) to 
dynamically target resources based on criteria rather than static identifiers. Some of the use cases of labels for 
automation include:

•	 Self-Service Enablement: Developers can deploy workloads with predefined label schemas that plug directly 
into operational automation pipelines.

•	 Lifecycle Awareness: Labels like Environment=Dev or Vendor=X help automate teardown of stale or temporary 
resources.

•	 Dynamic Targeting: Tasks such as patching, scaling, or backups can be scoped using labels like 
Environment=production, Function=frontend, or Release=9.5.

2.1.2  Labels for inventory and visibility

Traditional inventory models struggle to keep up with the elasticity and abstraction layers of cloud. Labels make it 
possible to build dynamic, real-time inventories based on business and operational context. Some of the use cases 
of labels for inventory and visibility include: 

•	 Custom Grouping: Resources can be grouped logically by project, team, application, or service, independent of 
their physical or virtual topology.

•	 Search and Filtering: Administrators can quickly locate resources based on combinations of labels (e.g., 
Function=UPF and Environment=staging).

•	 Cost Attribution: Usage data can be tied back to labeled entities, enabling chargeback or showback models 
within internal cost centers.



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

2.1.3  Labels for security and policy enforcement

In Telco Cloud, where internal segmentation and multi-tenancy are common, labels can be used to inform and 
enforce fine-grained security policies. Some of the use cases of labels for security and policy enforcement include: 

•	 Policy as Code: Security engines (e.g., Cilium, Calico) can consume labels to define context-aware access and 
network policies.

•	 Least Privilege Enforcement: Workloads labeled with sensitivity levels (e.g., Function=PCF) can be automatically 
placed in hardened zones or governed with stricter Role-Based Access Control (RBAC).

•	 Incident Response and Forensics: Labels provide forensic context to audit trails—knowing which application, 
team, or function a compromised resource belonged to accelerates investigation.

3	 Labeling structure

A well-defined labeling schema plays a foundational role in managing Telco Cloud infrastructure from instantiation, 
inventory, lifecycle management, and its day-to-day operations. Labels that are structured as key:value pairs 
can serve as metadata tags that provide critical contextual information about networking and infrastructure 
components. When applied consistently, labels enable intelligent automation, fine-grained inventory tracking, 
routing decisions, and robust policy enforcement across Day 1 (deployment/provisioning) and Day 2 (operations/
maintenance).

In a Telco Cloud, resources can span multiple infrastructure domains such as Compute, Networking, Applications, 
and Security and can exist in a particular Region, within a single location or multiple locations, in a specific pod or 
environments, vendors, and service roles. As such the Telco Cloud can be represented with concrete resource 
as well as logical resources. Without a standardized approach to properly identifying these resources, it becomes 
difficult to discover, group, or manage at scale. A labeling schema introduces governance by defining consistent 
way of identification and classification using well defined keys, expected value formats, and usage rules. Using 
key:value values can be formula-based where a “decoder ring” will be required, or a structured-based approach 
might offer a more simplified way of identification for humans. Applying the same set of labels across all domains 
provides a simple way for deployment, avoiding the need to tailor tags for each cloud component.

3.1  Label Definitions for Telco Cloud Infrastructure Resources

Before developing a labeling schema, the corresponding architecture and design of the Telco Cloud must be taken 
into consideration. At a high level the Regions need to be well-defined, and Point of Presence (PoP) locations must 
be mapped to their respective regions. The workload types, their placement, and respective requirements should 
be documented and finally, but very importantly, a Naming Convention must be finalized. 



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

Table 1 show a standardized schema for labels designed to be applied across all Telco Cloud infrastructure. 

Table 1.	 Label Schema for Telco Cloud Infrastructure

Category Key Description Accepted Pair value Value Example

Network Region Geographic location [a-z][A-Z] [-] only North East, South 
East, Central, 
Midwest, Northwest, 
Southwest

PoP Physical location [a-z][A-Z] [-] only NLV, ATL, RDU, BOS, 
CTL, LAX

NetworkType Network Purpose [a-z][A-Z] only DataCenter, Core, 
Management, IT, 
Mobility, RAN

InterfaceType Type of 3GPP or 
functional interface

[a-z][A-Z][0–99] Network-OAM, 
Compute-OAM, 
RAN-OAM, 
5G-OAM, RAN-F1C 

NLRI Network Layer 
Reachability 
Information

IPv4, IPv6, Dual Stack

N-Vendor Network Vendor [a-z][A-Z] only CS, JN, AR

SeqNumber Appearance in 
Physical location

[0-99] 01, 02, 03

Environment Environment type [a-z][A-Z] only Dev, Lab, Staging, 
Prod

N-ClusterID Cluster (where 
applicable)

[0–99] 01, 02, 03

N-PodID Pod (where 
applicable)

[0–99] 01, 02, 03



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

Category Key Description Accepted Pair value Value Example

Compute C-Name Compute Hostname [a-z][A-Z][0–99] NE-BOS-01-
DL-CP-001-01

C-Vendor Compute Vendor [a-z][A-Z] CS, DL, HP, NV

C-VirtualizationType Virtualization type [A-Z][0–99] BM, VM, CN, K8

C-OS Compute Operating 
System

[0–99][a-z][A-Z] [-] 
only

UB, RH, WN

C-Port Compute MLOM/NIC 
Port

[0–99][/] 1/1, 1/2, 2/1, 2/2

C-Release Operating System 
version

[0–9][a-z][A-Z] [-] [.] 
only

24.01,9.5

Application A-Technology Application domain [a-z][A-Z] only Network, RAN, 
Packet Core, IMS

A-Vendor Application Vendor [a-z][A-Z] only CS, NK, OR

A-Virtualization Application 
Virtualization type

PNF, VNF, CNF PNF, VNF, CNF

A-Function Network Function [a-z][A-Z] only AMF, SMF, UPF

A-Sub-function Sub-Network 
Function

[a-z][A-Z] only MG, OAM, LB

A-Release Application version [0–9][a-z][A-Z] [-] [.] 
only

24.01

A-Owner Domain owner [a-z][A-Z] only PackeSHtCore

A-Generation Architecture release [0–99] [.] only Gen 1, Gen 2 etc.

A-Automation Automation type used [a-z][A-Z] [-] only NSO, Ansible, 
Terraform 



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

3.1.1  Why a Label Schema Matters

Defining and enforcing a structured labeling schema brings multiple benefits to infrastructure design, deployment, 
and operations:

•	 Operational Consistency 
A predefined schema ensures that all resources are labeled in a consistent way, regardless of domain, building 
block, or automation pipeline.

•	 Automated Workflows 
Automation tools (like Ansible, Terraform, or in-house orchestrators) can leverage labels to decipher the intent, 
make the right decision on what and where a certain component should be provisioned/deployed. 

•	 Routing decisions 
Tracking subnets and IP addresses across a large network will no longer be needed. Using labels provides the 
ability to filter/influence traffic which eliminates the need to update routing policies.

•	 Security and Compliance 
Security policies often rely on labels for scope definition (e.g., “allow traffic from Environment=Prod and 
Region=North East). A schema ensures accuracy in enforcement boundaries.

•	 Resource Discovery and Querying 
Labels enhance inventory management by enabling filtered searches (e.g., “list all NetworkType=Core 
devices in Region=Midwest”). This simplifies operations, audits, and troubleshooting.

•	 Lifecycle Management 
Identification and scheduling upgrades can be significantly simplified by using labels.

•	 Governance and Auditing 
Schemas ensure traceability and make it easy to validate compliance with organizational standards. During 
audits, labels can be queried to demonstrate policy enforcement and resource ownership.



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

3.2  Applying Labels to Different Infrastructure Layers

In this example, the Telco Cloud Infrastructure Stack is built using Cisco® Application Centric Infrastructure (Cisco 
ACI®) along with Cisco IOS®-XR routers and Kubernetes Cluster as shown in Figure 1.

Cisco ACI Fabric

Compute Compute Compute Compute

Kubernetes Cluster

Compute Compute Compute

Figure 1.	 An example of Telco Cloud Infrastructure Stack

Cisco ACI fabric includes Cisco Nexus® 9000 Series Switches with the Application Policy Infrastructure Controller 
(APIC) to run in the leaf/spine ACI fabric mode. Cisco IOS-XR Routers provide connectivity to the ACI fabric with 
external networks. 

A Kubernetes Cluster is deployed on computes that can either be BareMetal hosts or Virtual machines. The key 
components of the cluster are: 

Master Node (Control Plane):

•	 Manages the cluster’s state and lifecycle

Worker Nodes:

•	 Execute workloads (containers) and maintain application health



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

3.2.1  ACI Labeling structure

Tenant

Application
profile

EndPoint
security group

Bridge domain

EndPoint group

VRF Contract

Subject

Filter Ourside
network

Figure 2.	 ACI Policy Model for a Tenant

A tenant in Cisco ACI Fabric is a logical container for application policies that enable an administrator to exercise 
role-based access control. A tenant represents a unit of isolation from a policy perspective, which can be isolated 
from one another or can share resources. A high-level representation of ACI policy model for a tenant is shown in 
Figure 2.

The primary elements that the tenant contains are filters, contracts, outside networks, bridge domains, and Virtual 
Routing and Forwarding (VRF) instances, Application profiles, Endpoint Groups (EPGs), and Endpoint Security 
Groups. Figure 2 also shows the relationships between the elements of the tenant. The Application Profile contains 
Endpoint Groups and Endpoint Security Groups. The VRF is associated with bridge domains, and Endpoint groups 
are associated with bridge domains. And finally the Endpoint Security groups contain Endpoint Security groups and 
are associated with the VRF.

3.2.1.1  Annotations and Policy Tags in ACI 

ACI has native support for labeling or annotating objects shown in Figure 2. Key-Value pairs of metadata can 
be added to an object as annotations. Note that the Cisco Application Policy Infrastructure Controller (APIC) that 
manages the ACI Fabric merely stores the annotations with other object data, and they can be queried using 
Representational State Transfer (REST API). Annotations are provided for the user’s custom purposes, which 
provides the flexibility to define a common labeling mechanism that can be reused across domains. 

Additionally, ACI offers another option to add labels to certain objects in the form of policy tags. Such tags are 
again user-defined key value pairs, but they are meant for use by ACI features and can be queried using REST API. 
For example, a policy tag can be used to group endpoints, subnets, and VMs together as one Endpoint Security 
Group (ESG) using ESG tag selectors. 

Using Table 1 as an example and a baseline, Table 2 can be used as a reference where certain labels are 
“required” for specific ACI resources and where they might not be applicable. This ensures a consistent labeling 
structure across all domains of infrastructure.



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

Table 2.	 Mapping Labels to ACI Resources

Label Applicability for ACI Resources

Category Label Key Tenant VRF Bridge 
Domain

EPG/ESG Contract

Network Region

PoP

NetworkType

InterfaceType

NLRI

N-Vendor

SeqNumber

Environment

N-ClusterID

N-PodID N/A

Compute C-Name N/A N/A

C-Vendor N/A N/A

C-VirtualizationType N/A N/A

C-OS N/A N/A

C-Port N/A N/A

C-Release N/A N/A

Application A-Technology

A-Vendor

A-Virtualization N/A N/A

A-Function

A-Sub-function

A-Release N/A N/A

A-Owner N/A N/A

A-Generation N/A N/A

A-Automation N/A N/A



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

3.2.2  K8 Labeling structure 

Kubernetes organizes its infrastructure using building blocks that represent the state of applications and the 
resources they require as shown in Figure 3.

Namespace

Deployment

Worker Nodes

Service

Figure 3.	 Kubernetes Resource Model Overview

Pod

•	 Pods are the smallest unit in Kubernetes and represent a single instance of a process in a cluster. A pod can 
contain one or more containers which share a Network namespace (IP address and ports) and a Storage volume.

Service

•	 Serves as an abstraction layer that defines a logical set of Pods which provides an IP address and DNS name.

•	 Services can be exposed using the following:

	- ClusterIP: Exposes service on a cluster-internal IP

	- NodePort: Exposes service on each node’s IP at a given port

	- LoadBalancer: Typically integrates with cloud provider load balancers

	- ExternalName: Maps the service to an external DNS name



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

Deployment

•	 Manages the lifecycle of stateless applications.

•	 Defines the desired number of Pod replicas and handles:

	- Scaling 

	- Rolling updates 

	- Rollback 

3.2.2.1  Labels in Kubernetes

Labels in Kubernetes are key:value pairs metadata that can be associated to objects such as Pods and 
namespaces, worker nodes etc. Labels can be attached to objects at the time of creation and modified at any time. 

Labels can be used in a similar manner as discussed above using the same proposed structure proposed in Table 
1. Additional labels should be considered to address application-specific infrastructure requirements (i.e hardware 
requirements, virtualization requirements, redundancy, diversity requirements etc.). Table 4 provides an example of 
labels to be considered. 

Using Table 1 as an example and a baseline, Table 3 can be used a reference where certain labels are “required” 
for specific resources and features and where they might not be applicable. This ensures a consistent labeling 
structure across all domain infrastructure.

Table 3.	 Mapping Labels to Kubernetes Resources 

Label Applicability for Kubernetes Resources

Category Label Key Worker Node Namespace Deployment Service

Network Region

POP

NetworkType

InterfaceType

NLRI

N-Vendor

SeqNumber

Environment

N-ClusterID

N-PodID N/A



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

Label Applicability for Kubernetes Resources

Category Label Key Worker Node Namespace Deployment Service

Compute C-Name N/A

C-Vendor N/A

C-VirtualizationType N/A

C-OS N/A

C-Port N/A

C-Release N/A

Application A-Technology

A-Vendor

A-Virtualization N/A

A-Function

A-Sub-function

A-Release N/A

A-Owner N/A

A-Generation N/A

A-Automation N/A

Along with the standardized label schema that is applicable to all the infrastructure domains in Telco Cloud, it is 
also possible to create additional domain-specific Label schemas. An example of this is provided in Table 4 where 
additional labels are defined only for the Kubernetes domain.



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

Table 4.	 Kubernetes-specific labeling example

Additional Labels for Kubernetes Resources

Category Label Key Suggested value K8 Cluster Worker Node Pod Namespace

Common 
Name

Common 
Name

OAM | MG | LB

Hardware DPDK Yes | No N/A

SRIOV Yes | No N/A

GPU Yes | No N/A

Storage IDE | SSD | NFS N/A

NUMA 0 | 1 N/A N/A

Interface None | Bond | 
LACP

N/A N/A N/A

Redundancy Replica <Number of 
replicas>

N/A N/A N/A

Hardware Yes | No N/A N/A

Hugepage Yes | No N/A N/A

Virtualization CPU Pinning Yes | No N/A N/A

Memory Request | Limit | 
Reserved | Quota | 
NUMA

N/A N/A

A few examples of how Kubernetes labels can be used in conjunction with automation to meet application-specific 
requirements are given below. 

•	 Example 1: Deploy a Kubernetes Pod (MG) that does not coexists with its redundant Pod on the same 
Worker Node 

	- NodeSelector in conjunction with Node Label.

•	 Example 2: Deploy a Kubernetes Pod (MG) on a worker node that supports Data Plane Development Kit (DPDK) 
and Single Root I/O Virtualization (SR-IOV).

	- NodeSelector in conjunction with Node Label.



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

3.2.3  Linux Labeling structure

The Linux operation system is no different than any other resource in the Data Center domain. Most Linux 
distributions require an application to support labeling a filesystem, directory, or file. An example package is “attr” 
which provides extended attributes in the form of key:value pair value metadata for system objects and users 
objects as well. Table 5 can be used as a reference where certain labels are “required” for specific Linux resources 
and features and where they might not be applicable.

Table 5.	 Mapping Labels to Linux Resources 

Label Applicability for Compute Resources

Category Label Key Linux OS

Network Region

POP

NetworkType N/A

InterfaceType N/A

NLRI

N-Vendor

SeqNumber

Environment

N-ClusterID N/A

N-PodID

Compute C-Name

C-Vendor

C-VirtualizationType

C-OS

C-Port

C-Release



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

Label Applicability for Compute Resources

Category Label Key Linux OS

Application A-Technology

A-Vendor

A-Virtualization

A-Function

A-Sub-function

A-Release

A-Owner

A-Generation

A-Automation

Using Table 5 as a guide, administrators have the ability to create and associate labels as follows in each of the 
Linux servers. 

Assigned a key:value pair POP:NLV to viminfo file;

	 $attr -s POP -V NLV .viminfo
	 Output 
	 Attribute “POP” set to a 3 byte value for .viminfo:
	 NLV

Get key:value pair from a specific file;

	 $getfattr -d .viminfo
				   Output 
				  file: .viminfo
				  user.POP=”NLV”

Search (find) a files associated with a key:value pair;

	 $find -type f -exec getfattr --name user.MSO -m NLV {} \; 2>/dev/null 
	 Output 
	 file: .viminfo
	 user.POP=”NLV”

In some deployments, a specific OS release and patch are required to support an application need. In other cases 
there may be confusion about whether an OS release combination is what is officially certified and whether it is 
necessary to add labels. Automation can determine whether this OS should be considered for upgrade/patch or 
not during the Lifecycle management evaluation.



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

3.2.4  Labeling in Networking infrastructure

Labeling as it’s known in networking typically consists of comments added in configuration lines, descriptions 
added to Access Control Lists (ACLs), Prefix-lists, route policies etc. Developing a standardized way of adding 
comments and descriptions provides a great tool in operational efficiency and inventory. While these “labels” 
are very useful in self-documenting the network, they provide limited usability when it comes to automation or 
networking simplification in general. 

One of the challenges in networking is the ongoing need to change and update. The dynamic nature of 
applications and strict security requirements demand that we move fast and in a secure manner. One of the 
common approaches to simplify routing and to “secure the environment” is by identifying and classifying traffic 
upon ingress into the network, and reacting to the classification as needed from a security prospective or simply to 
“traffic-engineer.” 

Using Boarder Gateway Protocol as an example of how the above can be achieved, specific labels/tags can be 
added to routes as they ingress the network using BGP communities that are transitive to all BGP peers. Table 6 is 
an example of how BGP communities can be used as a Labeling mechanism to identify where the routes are being 
learned, the region that originated the routes the Network is serving, and the interface type. 

Table 6.	 Encoding Labels as BGP Communities 

Encoding Labels as BGP communities

Label Description Representation using BGP Communities

Peer Type Type of BGP peering (ISP, Cloud, SIP, 
IPX etc.)

<LocalASN>:<PeerASN> 

Example:

<Partner-1> :<PeerASN>

<Upstream-1> :<PeerASN>

<Cloud-1>:<PeerASN>

PoP Physical location <LocalASN>:<RPPP> 

Where R is Region Number

           PPP is PoP Number

Example:

Region 1/PoP 1:1001

Region 2/PoP 40: 2040

Region 3/PoP 101: 3101

https://www.google.com/search?rlz=1C1GCEA_enUS974US974&cs=0&sca_esv=91a29f445d077076&q=Access+Control+Lists&sa=X&ved=2ahUKEwjOu_SAj52OAxXt5MkDHVYNFZkQxccNegQIAxAB&mstk=AUtExfDcLwKa9Xh19i8xxhBUrAC4eSm626PDkDCUvJvURPSo1z4V7eU8JMwP6G1o-Uf02kDcQylb2sOhiatf2Y0bmervjz5IP8EHozEZi7c7mjX1VnCe76vx-n63qWaCUVXVBIg&csui=3


White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

Encoding Labels as BGP communities

Label Description Representation using BGP Communities

NetworkType Network Purpose <LocalASN>:<NetworkType> 

Where NetworkType is <VRF Route-Target >

Example:

DataCenter

Core

Management

 IT

Mobility

Metro

NetworkInterface Type of 3rd Generation Partnership 
Project (3GPP) or functional interface

<LocalASN>:<InterfaceType> 

Where InteraceType is <VRF Route-Target>

Example: 

Network-OAM

Compute-OAM

RAN-OAM

5G-OAM

RAN-SIGNALING

RAN-DATA

5G-SINALING

5G-DATA

5G-N2

5G-N3

5G-N4

5G-N6

5G-IMS-UNTRUSTED-ACCESS

5G-IMS-UNTRUSTED-INTERCONNECT

5G-IMS-MEDIA

At a high level, the approach is to utilize a parent/multi-child policy applied to a BGP peer for simplicity and 
flexibility.



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

To implement this, traffic must be classified. In IOS-XR, there are multiple mechanisms available including:

•	 Advertising source address of route

•	 BGP AS-path attribute

•	 BGP community attribute

•	 Destination Address in the route

Figure 4 shows a configuration example for setting BGP communities for different keys in the label schema.

Figure 4.	 Setting BGP communities for keys in the Label Schema

Subsequently some of the actions that can be taken based on the defined communities are: 

•	 Make routes originating from other PoP less preferred 

	 Route-policy <Child-1-PolicyName> 
		 if community matches-every <PoPBGPCommunitySetName> then 
	   	 set local-preference 90
		 endif
		 end-policy

•	 Advertise specific interface type to a BGP neighbor

		 Route-policy <Child-2-PolicyName> 
			  if community matches-every <InterfaceBGPCommunitySetName> then 
			   pass
			  endif
			 end-policy

•	 Advertise specific interface type to BGP neighbor and make alternate routes originating from a remote PoP less 
preferred 

		 Route-policy <Parent-PolicyName>
			   apply <Child-2-PolicyName>
			   apply <Child-1-PolicyName>
		 end-policy

Using the above approach eliminates the need to add/remove networks from a prefix-list/prefix-sets as traffic 
is classified/updated, and there are limitless combinations and examples that can be derived from using BGP 
communities to simplify the network.



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

3.3  External Label Store 

In the previous sections we examined how Labels can be created and stored in domain controllers of Telco Cloud 
infrastructure or in individual elements like compute nodes or encode the labels in a protocol like Border Gateway 
Protocol (BGP). To augment or optimize these options, an External label store can be added to the solution to a 
central location where additional labels or in fact all labels in an environment can be stored, managed, and queried. 

Most Enterprises and Service Providers leverage IP Address Management (IPAM) or a Configuration Management 
Database (CMDB) as an External Label store, since IP addresses and IP subnets are labeled for tracking, 
identification, and consumption purposes. If IPAM or CMDB are not available, any non-SQL database can store 
these key:value pairs and can be retrieved with a simple query or script. One such example is MongoDB where 
a database is created with the name “Labels,” and Collections are created matching key values with specific 
Documents matching key:value pairs as shown in Figure 5. 

D
at

ab
as

e
C

ol
le

tio
n(

s)
D

oc
um

en
t(s

)

Region

NorthEast
Data

Center

Compute
OAM

Network
OAM

SouthEast

Midwest

Northwest

Southwest

MHT

IAD

NYC

Core

MGMT

Mobility

RAN RAN

RAN-F1C

5G-OAM

RAN OAM Dual stack

IPv4 CS

Lab

Staging

Prod

Dev01 01

02 02

03 03

04 04

05

06

01

02

03

04

05

06

JN

AR

NK

MV

OR

IPv6

IT

BOS

Central

PoP Network type Interface type NLRI

Labels

MongoDB

N-Vendor SeqNumber Environment N-ClusterID N-PodID

Figure 5.	 MongoDB Model example

The above figure depicts labels assigned to an APIC. To find an IP address for a specific APIC in a particular Data 
Center, a query is constructed using given information starting with Region (Norh East), PoP (BOS), Network Type 
(Network-OAM), NLRI (IPv6), Vendor (CS), and Environment (Prod). The result of the query will return all APICs 
deployed matching desired criteria, based on the design, the desired APIC can be identified, a subsequent query 
in IPAM will get the IP address.



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

Figure 6 shows a simple python script that queries a specific database and returns the list of Documents in a 
specific collection in the database.

Figure 6.	 Python Script to query Mongo Database

The output of the query is shown below. 

Key:Value pairs in ‘A-Function’

------------------------------

{‘ _ id’: ObjectId(‘6813c6d07ac2904a89a87de8’), ‘A-Function’: ‘UPF’}

{‘ _ id’: ObjectId(‘6813c6d57ac2904a89a87de9’), ‘A-Function’: ‘AMF’}

{‘ _ id’: ObjectId(‘6813c6da7ac2904a89a87dea’), ‘A-Function’: ‘SMF’}

{‘ _ id’: ObjectId(‘6813c6e57ac2904a89a87deb’), ‘A-Function’: ‘DU’}

{‘ _ id’: ObjectId(‘6813c6ec7ac2904a89a87dec’), ‘A-Function’: ‘CU’}



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

4	 Putting Labels to work

Table 7 summarizes how labels can help solve some of the challenges that are seen in a Telco Cloud environment

Table 7.	 High-level summary of challenges solved by using Labels

Challenge How Labels Solve It

Ephemeral Workloads 
(e.g., containers)

Labels follow the workload identity, not the IP, making dynamic 
environments secure.

Policy Sprawl and Complexity Labels allow reusable policies, reducing rule duplication.

Multi-Tenant Environments Labeling by tenant, namespace, or environment enables precise policy 
boundaries.

Inconsistent Enforcement Unified label schema ensures consistent policy enforcement across 
Software-Defined Network (SDN), Kubernetes, and Layer 7.

Visibility and Troubleshooting Labels improve observability by enabling policy tracing based on 
application identity.

Scalability Limits of IP-Based Rules Labels abstract away the need for maintaining massive IP lists or ACLs.

Let us take the use case of micro-segmentation and examine how labels can play a role in controlling security 
policy across different domains of Telco Cloud infrastructure. 

4.1  Micro-segmentation Policies using Labels

The primary goal of micro-segmentation is to reduce the attack surface by minimizing the possibility of lateral 
movement in the event of a security breach. SDN technologies enable a new approach, by allowing degrees of 
flexibility and automation, making micro-segmentation a distinct possibility.

Labels are a fundamental enabler for scalable, intent-driven micro-segmentation because they abstract security 
controls away from static constructs (like IP addresses or VLANs) and anchor them to dynamic, meaningful 
identities (like app, environment, or tier). Without Labels, the challenges that come up are:

•	 Static IP-based firewall rules, IP tables, Contracts, and Container Networking Interface (CNI) policies that break 
with every pod restart.

•	 Manual updates to security groups or ACLs across domains.
•	 Poor alignment between application teams and security teams.
•	 Limited intent-to-policy automation mapping.

4.1.1  Seamless Cross-Layer Integration

Labels provide a common language across:
•	 Kubernetes (pod selectors, namespaces)
•	 SDN/Fabric (e.g., Cisco ACI EPGs, contracts)
•	 Identity and Access Management (IAM) systems (identity-to-label mapping for zero trust)

This enables multi-layered micro-segmentation that is consistent and manageable.



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

4.1.2  Identity-Based Policy Enforcement

Instead of writing policies based on ephemeral IPs or manual groupings, labels provide the ability to write rules like:

“Allow A-Function=UPF in Environment=prod to talk to A-Function =backend in Environment =prod.”

This makes policies portable, declarative, and aligned with application intent, not infrastructure wiring.

4.1.3  Dynamic Policy Binding

When a new pod, VM, or endpoint is instantiated with matching labels, the corresponding security policies are 
automatically applied—eliminating the need for manual rule updates.

Example: A new pod with A-Function = UPF automatically receives backend-specific policies via Kubernetes 
Network Policy or Cisco ACI EPG contract mapping.

4.1.4  Illustration with a security intent and its Enforcement

The intent is to create a security policy for two applications that are deployed in a specified region and PoP. The 
policy will define how the applications communicate with each other. When the Security Admin declares the intent, 
specific requirements such as Layer 4 protocol, Layer 4 port-numbers, and the consumer-provider relationship 
between the two applications are captured. Figure 7 shows a high-level diagram of where the applications are 
deployed and the intent of the Security Admin. 

Region

UPF

SMF

AMF

CU

Software defined network fabric

Compute, Storage and
Network Devices

Kubernetes Cluster (UPF)

Kubernetes Cluster (SMF)

Kubernetes Cluster (AMF)

Kubernetes Cluster (CU)

Pod

PoP

Provides
UDP Port 8805

Consumes

Figure 7.	 High-Level Intent for Micro-segmentation Policy



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

With this high-level information, the automation engine needs to derive information about the infrastructure 
resources that need to be modified or created. Note that in this document, the micro-segmentation design and its 
implementation are not covered. 

As depicted in Figure 8, a lookup in the External Label store would yield information about the APIC Controller that 
is managing the policies in the ACI Pod and the Kubernetes Cluster where the application is deployed. This will 
further enable querying the APIC and Kubernetes controller to retrieve the labels that are managed in that domain. 

Labels

Region

N-PodID

Pop

N-Vendor

Application function

Application vendor

Pod, Pod01

PoP, BOS

External label store

First level lookup

Resource type and identifier Key value pairs

Region, North West

PoP, BOS

Pod, Pod01

Network vendor, Cisco

SDN Controller, Cluster 01

K8s Cluster, k8s_Cluster1

Region=North East

Region=North East
PoP=BOS

Region=North East
PoP=BOS
N-Vendor=CS

Region=North East
PoP=BOS
N-Vendor=CS
N-ClusterID=01

Region=North East
PoP=BOS
N-Vendor=CS
N-ClusterID=01
N-PodID=01

Region=North East
PoP=BOS
N-Vendor=CS
N-ClusterID=01
N-PodID=01
K8-CommonName=Cluster1

Figure 8.	 Label lookup in External Label store

As depicted in Figure 9 a query to fetch the labels in the corresponding APIC Controller will provide information on 
the Endpoint Groups that represent the applications in the ACI Pod. 



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

Labels

Region

N-Vendor

Pop

Pod

Application function

Application vendor

Inbuilt label stores in Cisco ACI

Second level lookup

Key value pairs

EPG, EXT_EPG_AppA

EPG, EXT_EPG_AppB

Region=North East
PoP=BOS
N-ClusterID=01
N-PodID=01
A-Function=UPF
A-Vendor=CS

Region=North East
PoP=BOS
N-ClusterID=01
N-PodID=01
A-Function=SMF
A-Vendor=CS

ACI Resource type
and identifier

Figure 9.	 Label lookup in the Cisco APIC SDN Controller

Similarly, as depicted in Figure 10, the Namespace and deployments represent the applications in the Kubernetes 
cluster and can be obtained using the label information.

Labels

Region

N-Vendor

Pop

Pod

Application function

Application vendor

Inbuilt label stores in kubernetes cluster

Second level lookup

Kubernetes resource type
and identifier

Key value pairs

Namespace, NS_AppA

Deployment,
Deployment_AppA

Deployment,
Deployment_AppB

Region=North East
PoP=BOS
N-PodID=01
K8-CommonName=Cluster1

Region=North East
PoP=BOS
Pod=01
K8-CommonName=Cluster1
A-Function=UPF
A-Vendor=CS

Region=North East
PoP=BOS
N-PodID=01
K8-CommonName=Cluster1
A-Function=SMF
A-Vendor=CS

Figure 10.	Label lookup in the Kubernetes Cluster



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

4.1.4.1  Creating ACI contracts

The Endpoint Groups (EPGs) for the corresponding applications are already defined and annotated in the APIC 
Controller as shown in Figure 11, but it should be noted that not all the annotations are shown for brevity. The 
annotations can be queried using an API call to fetch the underlying resource information about the EPGs, such as 
the distinguished name of that resource or ACI object, the type of the resource, and the ACI Tenant Name. 

Figure 11.	 Labels associated with ACI Endpoint Groups 

ACI Contract
EXT_EPG_UPF

External Endpoint Group (EPG)

Consumer

EXT_EPG_SMF

External Endpoint Group (EPG)

Provider

Subject

Filter
C

C

Tenant

VRF

Figure 12.	 Intended ACI Policy



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

4.1.4.2  Creating Kubernetes Network Policy 

The labels for the corresponding applications are already defined and tagged in the Kubernetes Deployment 
policies as shown in Figure 13, but it should be noted that not all the labels are shown for brevity. 

Figure 13.	Labels associated with Kubernetes Deployment

Figure 14 and Figure 15 shows the intended Kubernetes network Policy between the applications.

Kubernetes namespaces

Network
Policy

SMF-Deployment

Container
(Application)

pod1

Container
(Application)

pod2

Container
(Application)

podn

UPF-Deployment

Container
(Application)

pod1

Container
(Application)

pod2

Container
(Application)

podn

Figure 14.	 Intended Kubernetes Network Policy



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

Figure 15.	Code for Intended Kubernetes Network Policy



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

5	 Leveraging Label-based framework with GenAI

A well-designed labeling schema encodes structured metadata for resources like compute, network, and storage. 
This metadata includes attributes such as:

•	 Region, Data Center.

•	 Function, Environment, Release.

•	 Node Role, Network Tier, Security Domain.

In essence, Labels that are created for different resources in the Telco Cloud infrastructure serve as a semantic 
overlay that Large Language Models (LLMs) and agents can use to understand and reason about infrastructure. A 
few of the use cases where Label data can be used in conjunction with GenAI and LLMs are listed in Table 8.

Table 8.	 GenAI use cases using Label Data 

Use Case Description

Security Automation Auto-generate network policies between tiers based on label-defined zones

Inventory Management Generate reports of infra grouped by labels like release, region, or owner

Deployment Planning AI agents decide where to place workloads based on label-defined affinities

Root Cause Analysis Graph RAG explores connected nodes and infra tiers to isolate fault zones

5.1  Label Data

As noted earlier, some of the domains of Telco Cloud infrastructure support adding labels to resources natively 
while others don’t. Further within that domain, adding labels may not be supported for all resources or objects. As 
a result, an external label store is leveraged to supplement the inbuilt label stores and is shown in Figure 16.

Concrete resourcesLogical resources

Compute

Network

Cisco ACI

Kubernetes

Region

PoP

Pod

Cisco ACI

Kubernetes

Inbuilt label stores External label stores

Figure 16.	Augmenting Inbuilt label stores with External Label Store



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

5.2  Relationships and Graph 

Having a relationship map between the different resources of the Telco Cloud infrastructure and the associated 
label data for each of the resources can serve as a powerful combination to realize different use cases. If the 
relationship can be captured in a graph, it can be used to augment interactions with an LLM as part of a Retrieval 
Augmented Generation (RAG) framework, enabling enriched and context-aware responses.

It is interesting to note that the graph itself could be built by interacting with an LLM. To do that we need to be able 
to select metadata from different label stores and provide an ontology that captures the structure of relationships. 
The goal will be to dynamically discover the relationship between the relevant resources. Figure 17 shows a high-
level approach for building this knowledge graph. 

Label store

Inbuilt label
stores

External
label store

Graph builder
agent

Data, Ontology, Few shot prompting

Knowledge
graph

LLM

Schema/Ontology

Figure 17.	 Knowledge Graph creation using Ontology, Label Store, and LLM 

5.2.1  Ontology Structure 

An ontology is a data model that represents knowledge by defining:

1.	Entities (also called Classes or Concepts) – the “things” in your domain

2.	Properties (Attributes) – the characteristics or data associated with each entity

3.	Relationships (also called Object Properties or Links) – the associations between entities

A sample ontology structure is provided below to represent the idea. 

5.2.1.1  Entities

•	 Region: Represents the geographical location of data centers

•	 PoP: Represents the different locations where the data centers are deployed 

•	 ACI Pod: Represents a modular unit that includes the networking equipment necessary to host applications



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

•	 APIC Controller: Represents the SDN Controller responsible for managing a bunch of Pods in a region

•	 ACI EPG: Represents Endpoint Groups in ACI 

•	 K8s Cluster: Represents that Kubernetes Cluster

•	 K8s Namespace: Represents Kubernetes namespaces

•	 K8s Pod: Represents individual pods in Kubernetes

5.2.1.2  Properties

Properties are nothing but the label metadata that has already been captured in the label stores. 

5.2.1.3  Relationships

•	 DEPLOYED_IN

	- POP deployed in REGION

	- APIC Controller deployed in REGION

	- Pod deployed in POP

	- Kubernetes Cluster deployed in Pod

•	 CONTAINS

	- Pod contains Leaf Switches, Border Leaf switches, Spines, Compute, etc.

	- APIC contains ACI Tenants 

	- ACI Tenant contains ACI EPGs, VRF, and Bridge Domains 

	- Kubernetes cluster contains namespaces 

	- Kubernetes namespaces contain Kubernetes pods, deployments, services, etc. 

•	 ASSOCIATED_WITH 

	- ACI Bridge domain is associated to an ACI VRF

	- ACI EPG is associated to an ACI bridge domain



White paper  Cisco confidential

© 2025  Cisco and/or its affiliates. All rights reserved. 

5.3  Complete RAG Framework

Additional data and information about the Telco Cloud Infrastructure such as architecture documents, design 
documents, as-built documentation, configuration snippets and templates, test plans, deployment best practices, 
security policies etc. could be vectorized and stored in a Vector Database. The Vector DB along with the 
Knowledge graph can work together to augment the context that is provided to the LLM. Figure 18 shows such an 
overall RAG Framework.

Prompt + Context

Response

Label stores Graph builder Knowledge
graph Vector DB

Grap querying

Retriever

Information
querying

Prompt LLM

Figure 18.	Options for integrating Label Store in RAG framework



White paper  Cisco confidential

© 2025 Cisco and/or its affiliates. All rights reserved. Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list 
of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a 
partnership relationship between Cisco and any other company. (1110R)	 C11-5274604-00   07/25

6	 Conclusion

In a Telco Cloud infrastructure, labels can act as a foundational mechanism for scalable and automated lifecycle 
management. They provide a flexible and powerful way to organize, classify, and automate resource management 
through key:value pair metadata. A well-defined labeling schema ensures operational consistency, enables 
automated workflows and routing decisions, enhances security and compliance, and simplifies resource discovery, 
lifecycle management, governance, and auditing. Extending a unified labeling schema across all domains of a 
public cloud infrastructure (e.g., compute, storage, networking, security, etc.) is critical for realizing the full benefits 
of cloud adoption.

The strategic application of labels is key for achieving scalable and automated Telco Cloud infrastructure lifecycle 
management. By providing a consistent and structured metadata framework, labels empower organizations to 
streamline operations, enhance security, and improve resource visibility across diverse infrastructure layers. The 
integration of external label stores along with native labelling capabilities in the Telco Cloud infrastructure domains 
and by the leveraging of use of network protocols to encode labels in networking updates, further extend the 
benefits of this approach. 

As organizations look toward the future, the convergence of label-driven infrastructure management with GenAI 
and LLMs promises to unlock new levels of automation, intelligence, and context-aware decision-making, 
ultimately transforming how Telco Clouds are designed, operated, and secured. Embracing a well-defined labeling 
schema is a foundational requirement for realizing the full potential of Telco Cloud environments. Extending the 
label-based infrastructure management framework from Telco Cloud to hybrid and public clouds is both practical 
and strategic. By leveraging cloud-native tagging systems and ensuring consistent labels between on-premises 
and public cloud resources, organizations can achieve unified governance, automation, and cost management 
across their entire infrastructure.


