

© 2022 Cisco and/or its affiliates. All rights reserved. Page 1 of 56

Securing Cloud-Native
Applications - Azure

Design Guide

November 2022

Design Guide

Cisco Public

© 2022 Cisco and/or its affiliates. All rights reserved. Page 2 of 56

Contents

Abstract 3

What is Cloud Native? 3

Life of a modern application 4

Scope 6

In Scope 6

Out of Scope 6

SAFE Business Flows 6

Attack Surface 7

Secure Flows 8

Securing Cloud Native Applications 11

Cisco Secure Access by Duo (Duo Network Gateway) 11

Cisco Secure Cloud Analytics (Stealthwatch Cloud) 12

Radware Kubernetes Web Application Firewall (KWAF) 14

Cisco Secure Workload (Tetration) 15

Azure Architecture 17

Design Implementation 19

Cisco Secure Access by Duo (DNG) 19

Cisco Secure Cloud Analytics 26

Radware Kubernetes Web Application Firewall 33

Cisco Secure Workload 35

Appendix 41

Appendix A – Setting up the Azure Infrastructure and Dev environment 41

Appendix B – Installing Duo Network Gateway 47

Appendix C - Acronyms 54

Appendix D - References 55

Appendix E - Feedback 56

© 2022 Cisco and/or its affiliates. All rights reserved. Page 3 of 56

Abstract

Over the last decade, most businesses have undergone digitization at a massive scale. During this period of

time, the biggest bottleneck to a more widespread digitization was the ability to scale and lack of any standard

approach to architect an agile and decoupled application. As applications grew bigger, it became increasingly

challenging to update current features and release newer ones without breaking the existing functionalities.

There was no doubt about the merits of digitization, but the challenge was in scaling it quickly and in a cost and

resource efficient manner.

Therefore, the evolution of applications and the ecosystem for application development was the need of the

hour. This necessity was addressed to an extent by the advent of public cloud infrastructures. Public cloud

service providers solved a lot of these problems, for example, while provisioning a replacement server took

weeks in traditional environments, it took seconds in the cloud.

However, the public cloud in its nascent stage still didn’t fully solve issues like velocity of application

development, decoupling applications from underlying hardware, reducing dependencies between different

components of the application itself and efficient consumption of the hardware resources. And therefore, public

cloud services which started as Infrastructure as a Service (IaaS) model very quickly branched into other

models such as Platform as a Service (PaaS) to Container and Function as a service (CaaS and FaaS) and

Software as a Service (SaaS) models, to address a range of these issues.

With this shift, we are also observing a fundamental transformation in the way we used to secure our

applications. Traditional security posture is not sufficient to secure the modern-day applications, at the same

time it’s also unable to keep up with the velocity of application development.

In this design guide, we will explore an end-to-end architecture of a cloud native application ecosystem. We

will identify critical business flows, attack surfaces and corresponding security controls required for a given

cloud native application environment. This guide is focused on Microsoft Azure as cloud service provider. The

document will also cover detailed design implementation steps to achieve a Cisco Validated Design (CVD) for a

cloud native application in Azure.

What is Cloud Native?

An application that is architected to take advantage of the cloud capabilities to minimize the complexity in

application development and maintenance, and enabling rapid releases, essentially qualifies as a cloud native

application. As far as the cloud native architecture is concerned, it does not matter where the application is

deployed, the application could be in a public cloud, private cloud or even in a hybrid or multi cloud mode. What

matters the most is the approach to achieve a truly decoupled, agile and highly automated ecosystem by

leveraging various cloud offerings.

Cloud Native Computing Foundation (CNCF) sums it up as – “the techniques that enable loosely coupled

systems that are resilient, manageable, and observable. Combined with robust automation, they allow

engineers to make high-impact changes frequently and predictably with minimal toil. Containers, service

meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach”.

To put things in perspective, as per the annual CNCF survey, over a period of 5 years between 2016 and 2020,

containers have become the norm. Container usage in production environments has gone up from 23% in their

first survey in 2016 to 92% in 2020, this includes a 300% increase over last 3 years. Moreover, 82%

respondents are using automated CI/CD pipelines in production. On similar lines, Gartner predicts that 75% of

global organizations will run containerized applications in production by 2022, this number was a little under

30% by mid 2020.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 4 of 56

This steep upward trend in such a short time tells us a clear story that the businesses are finding real value in

cloud native technologies.

How does this change the traditional security approach?

The traditional security approach was designed for very rigid environments, where there was a clear

demarcation of what is trusted and what is not. Application components were tightly coupled with the

underlying hardware in data center making them fairly immobile. Because of this nature of traditional application

architecture and surrounding ecosystem, a traditional application security posture is also very static and applied

at fixed points in the network. This opens up the attack surface at a lot of different points making it susceptible

to not only insider threats but also external attacks. The cloud native approach has really blurred these network

boundaries. The decoupled microservices are highly dynamic and scalable in nature and are continuously

changing, making the static security policy approach a big bottleneck when it comes to keeping up with the

release velocity. On the other end of the spectrum, the microservice architecture approach has enabled

distributed deployments of same applications across a range of infrastructure spanning from on-premises to

multi-cloud environments. This has opened a whole set of other security challenges in terms enforcing

consistent security posture and threat landscape between various distributed application components.

Some of the key principles that should be followed for developing a security approach for modern day

applications are:

● Zero Trust – There is no trust boundary, every entity in the ecosystem needs to protect itself

independently. Each entity will have its unique security requirement

● Defense in depth – Security must be layered

● Dynamic - Security must adapt to the application as it changes and moves. Security enforcement must

be agnostic of how and where the application is deployed

● Velocity – A shift in focus to the applications themselves and delivering security controls that align with

the dynamic nature of applications, at the speed that the business demands

● Automation – Threat mitigation has to be automated and orchestrated to adapt to the fast-paced

application development environment

Life of a modern application

In software development lifecycle, an application goes through a series of stages to be finally available to an

end user to consume. These series of stages, once a developer triggers the commit, would typically include

building an image, testing it and eventually merging the code to the main branch. Once the changes are

merged, the new version of the application is released to the repository. The final stage is when this newly

released application is deployed and made available to the end users. This entire process has numerous

challenges. Large development teams working together parallelly on the same application components,

encounter merge conflicts and dependency issues, slowing down the overall velocity of feature release. To

complicate this further, security is just an afterthought and basically bolted on top of the deployed application

once it’s in the production environment. This security approach only tried to mitigate the damage that has likely

already been done during the application development phase.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 5 of 56

Modern day software development is undergoing a change to overcome these challenges. New commits to an

application are continuously built, tested and merged via an automated process. This phase is commonly

referred to as Continuous Integration or ‘CI’. The next phase is Continuous Delivery and Continuous Deployment

i.e., ‘CD’. This phase includes further automated testing of the built image, uploading the image to the

artifactory and then finally deploying the newly released version of application to live production environment in

an automated manner as well, greatly reducing any overhead for operations team.

Given this modern CI/CD methodology, there are obvious flaws in a traditional security approach which need to

be rectified. Security must be an intrinsic part of the development and testing process and not an afterthought.

The good news is that the automation of the development pipeline has really facilitated this ‘left shift’ in

security. The 2019 State of DevOps Report research shows that the high performance development teams

have made security a part of their development lifecycle, instead of testing for security concerns at final stage

of application delivery. This saves them a lot of manual work and resources needed for threat mitigation and

they can instead focus on delivering quality features.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 6 of 56

Scope

In Scope

This design guide covers the following components:

● Cisco Secure Access by Duo (Duo Network Gateway)

● Cisco Secure Cloud Analytics (Stealthwatch Cloud)

● Cisco Secure Workload (Tetration)

● Radware Kubernetes Web Application Firewall (KWAF)

Out of Scope

This design guide does not cover the following components or topics:

● Cisco AppDynamics

● Cisco Secure Application

SAFE Business Flows

SAFE uses the concept of business flows to simplify the identification of threats. This enables the selection of

very specific capabilities necessary to secure them.

The solution in this document addresses the following business flows for a cloud native application architecture

that we discussed in the previous sections.

● End user or customer browsing a web application. The end user is located out on the Internet and the

web application is hosted on an Azure Kubernetes Service (AKS) cluster

● Application workloads downloading updates/resources or making API calls to servers outside the Azure

cloud i.e., the Internet. Modern applications heavily rely on API frameworks and other resources available

through public networks

● Application to application or the east/west communication within the application. For example- the

frontend microservice will make HTTP/API calls to another microservice or a SQL query connection to

backend database

© 2022 Cisco and/or its affiliates. All rights reserved. Page 7 of 56

● Development team members use their client machines for accessing the source code, artifacts, CI/CD

tools or performing other management activities

Attack Surface

The secure cloud native design protects systems by applying security controls to the attack surface found in the

public cloud. The attack surface in public cloud spans the business flows used by humans, devices, and the

network. Threats include rogue identity, web vulnerabilities, infections, data exfiltration and other advanced

persistent threats allowing hackers the ability to take control of the devices and networks.

The attack surface for each of the business flows discussed in previous section are shown as below.

Keeping in mind the attack surface identified for each of these four business flows, the three use case

scenarios below elaborate further the overall threat landscape for a real-world application.

Use Case #1

A malicious actor, on the public network, exploits a Code Injection vulnerability on the web application and

gains access to the details of the underlying operating system and installed packages.

The attacker then exploits a known vulnerability in the underlying operating system or the installed

package/library to perform privilege escalation and then goes on to establish a command-and-control

channel to a malicious server running on attacker’s network by remotely executing a piece of code.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 8 of 56

The attacker then starts profiling the application environment and exfiltrates sensitive data out through the

established command-and-control channel over an outbound UDP 53 port (DNS protocol).

Use Case #2

The malicious actor uses targeted social engineering or malware/phishing attacks on software developers to

steal credentials and gain access to the source code management system.

The attacker, located in a different geography than the software developer, then pushes a piece of malicious

code in the source code repository using the stolen credentials.

The end user or the consumer downloads and installs the infected software and the attack spreads.

Use Case #3

The malicious actor steals the Azure admin credentials.

The attacker uses these stolen credentials to spin up new Azure compute resources from pre-baked Azure

templates with crypto mining malware or installs crypto mining malware to existing Azure VM instances.

The malware then makes expensive crypto mining compute operations on Azure VM instances and uses

algorithmically generated domains to access and hence, upload the relevant data to attacker’s server.

Secure Flows

Developing a defense-in-depth architecture requires identifying existing threats and applying appropriate

security capabilities at multiple layers to thwart them. Business flows and the corresponding attack surface and

threat patterns that we defined in previous two sections are mapped to their corresponding security controls as

below.

Now that we have identified the security capabilities needed to secure the four business flows, Cisco security

solutions corresponding to each security capability can be mapped as below.

Icon Threat Icon Capability Security Solutions

Attackers or malicious users accessing
restricted resources and information.

Strong Identity based
access

Cisco Secure Access by
Duo – MFA

© 2022 Cisco and/or its affiliates. All rights reserved. Page 9 of 56

Icon Threat Icon Capability Security Solutions

Attacks against poorly developed
applications and web vulnerabilities.

Web Application Firewalls
(WAF)

Radware Kubernetes
WAF

Network breach causing unauthorized
access and malformed packets
between and within application in the
cloud.

Micro-Segmentation Cisco Secure Workload

Zero-day malware attacks and other
forms of covert threats.

Threat visibility Cisco Secure Cloud
Analytics

Infections, attackers using a
compromised workload to spread the
damage.

Micro-segmentation Cisco Secure Workload

Traffic, telemetry, and data exfiltration
from successful attacks. Covert threats.

Flow Analytics Cisco Secure Cloud
Analytics

Exploiting privileged access to run shell
code.

Anomalous Behavior
Detection

Cisco Secure Cloud
Analytics

Exploiting unpatched or outdated
applications.

Vulnerability management Cisco Secure Application

Exposed services and data theft.

Reverse Proxy Duo Network Gateway

Breaches due to network and cloud
misconfigurations.

Posture Assessment Cisco Secure Cloud
Analytics

We have identified the business flows, the threat landscape and the security capabilities required to mitigate the

threats. We will now replay the same three use case scenarios that we discussed in previous section to

understand how all these security controls help us achieve a better security posture. The core principle of this

security strategy is to have layered security controls, let’s understand how it plays out in terms of each of the

previously mentioned scenarios.

Secured Use Case #1

The web application firewall would allow us to detect and block any web vulnerability exploitation like code

injection attempts in HTTP requests.

Cisco Secure Application would continuously monitor the runtime for any new or existing vulnerabilities in the

libraries or packages and hence, block the attacker from being able to exploit vulnerabilities.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 10 of 56

Further, if for some reason, the attacker alert goes unmitigated or unnoticed, the flow analytics capability will

allow us to detect the data exfiltration attempts.

Lastly, the micro-segmentation capability will prevent any east-west spread of the attack and hence stops

attacker from gaining any further insights into the dev environment.

Secured Use Case #2

Posture assessment or the health and trust check on the dev machine makes it really impossible for a

malicious actor to steal credentials and also ensures that a constant security posture is maintained on the end

user machine.

The Single-Sign-On (SSO) and Multi-Factor-Authentication (MFA) ensures that even if the first factor is

compromised, the second factor prevents any major damage or compromise.

Anomalous behavior detection capability alerts the security team if there is any anomaly in the dev machine’s

behavior, for example - if the dev machine is trying to push changes to systems that it usually never interacts

with or if changes are being pushed from different geographical locations than the usual location.

Lastly, micro-segmentation prevents any lateral movement by the attacker.

Secured Use Case #3

Posture assessment or the health and trust check on the dev machine makes it impossible for a malicious

actor to steal credentials.

The Single-Sign-On (SSO) and Multi-Factor-Authentication (MFA) ensures that even if the first factor is

compromised, the second factor prevents any further damage.

Flow analytics would detect if any algorithmically generated domain name resolution to a malicious server

happened on the application network.

To sum it all up, with all the security capabilities in place, the dev machine has a health monitor to validate its

security posture. If the dev machine is in a ‘healthy status’, defined as per the organization policy, then it’s

allowed access to privately hosted developer tools through an agentless VPN architecture using SSO and MFA

capabilities.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 11 of 56

The entire CI/CD pipeline that sits in the Hub VNet in Azure is monitored for any malicious or anomalous activity

by the Secure Cloud Analytics platform.

Once, the application is deployed to an Azure Kubernetes cluster, Radware Kubernetes WAF security features

ensures that the application in production environment is protected from any adversaries out on the public

networks trying to compromise it. Secure Workload controls the lateral movement within the app workloads and

Secure Cloud Analytics continuously monitor any anomalous behaviour within the application components.

Securing Cloud Native Applications

Cisco Secure Access by Duo (Duo Network Gateway)

With Duo Network Gateway, users can securely access the internal web applications from any device, using any

browser, from anywhere in the world, without having to install or configure remote access software on their

device. Users can also remotely SSH to configured hosts through Duo Network Gateway after installing Duo's

connectivity tool, providing server access without a VPN client. Users first authenticate to Duo Network

Gateway and approve a two-factor authentication request before they may access different protected services.

Session awareness minimizes repeated MFA prompts as users access additional services and hosts via the

gateway.

Duo Network Gateway allows granular access control per web application, set of SSH servers, and user groups.

Different policies can be enforced to make sure only trusted users and endpoints are able to access the internal

services. For example, you can require that GitLab users complete two-factor authentication at every login, but

only once every seven days when accessing Confluence. Duo checks the user, device, and network against an

application's policy before allowing access to the application.

Duo also helps you control access to your applications by restricting access when devices do not meet

particular security requirements. If the health check and trust policies are enabled, then the first-time users are

prompted to download and install the Duo Device Health application. Once the Device Health application is

installed, Duo blocks access to applications if the device is unhealthy based on the Duo policy definition and

informs the user of the reason the authentication was denied. Refer to the detailed documentation here for

more information.

https://duo.com/docs/device-health

© 2022 Cisco and/or its affiliates. All rights reserved. Page 12 of 56

The end user makes an HTTPS connection to access the application, the application FQDN points to Duo

Network gateway and hence the connection lands on Duo Network Gateway. The end machine is checked for

health and trust policies and then the DNG goes on to initiate primary authentication to SAML identity provider if

the end machine is healthy and trusted as per the organizational policies. After the primary authentication, the

secondary authentication kicks in via the Duo’s Cloud Service. Once, the Duo Network Gateway receives

authentication approval for secondary authentication, access to published internal web application is allowed

via Duo Network Gateway reverse proxy.

Cisco Secure Cloud Analytics (Stealthwatch Cloud)

Secure Cloud Analytics provides comprehensive visibility and high-precision alerts with low noise for cloud

native environments as well as traditional infrastructure across all major cloud service providers. Secure Cloud

Analytics accomplishes this by consuming a wide range of telemetry and flow logs from the cloud service

providers, and then modeling behavior to identify threat activity.

This use of modeling helps you rapidly identify early-stage and hidden indicators of compromise. Each model

consists of five key dimensions of entity behavior:

● Forecast: Predicts entity behavior based on past activities and assesses the observed behavior against

these predictions

● Group: Assesses entities for consistency in behavior by comparing them to similar entities

● Role: Determines the role of an entity based on its behavior, then detects activities inconsistent with that

role

● Rule: Detects when an entity violates organizational policies, including protocol and port use, device and

resource profile characteristics, and block listed communications

● Consistency: Recognizes when a device has critically deviated from its past behavior, in both data

transmission and access characteristics

DNS abuse, geographically unusual remote access, persistent remote-control connections, and potential

database exfiltration are examples of Secure Cloud Analytics alerts. In addition, network reports for the top IPs,

most used ports, active subnets with traffic statistics, and more are available.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 13 of 56

Some key capabilities offered by Secure Cloud Analytics are:

Visibility and Flow Analytics

The flow log telemetry is processed in Secure Cloud Analytics to provide visibility of all active entities across a

modern network, including the private network, public cloud or containerized workloads running on a

Kubernetes cluster. Through entity modeling, the solution can detect a variety of threat activities with a high

degree of accuracy.

Secure Cloud Analytics deploys into a Kubernetes cluster via Kubernetes daemonset object that automatically

deploys, expands and contracts across nodes in a cluster. The node sensors tap into both the internal

communication among pods running on the cluster, as well as the external communication. This allows for an

unprecedented level of visibility into everything that a cluster is doing, from pods communicating to the internet

to worker nodes communicating internally with the master node. We then add entity modeling which compares

new behavior to previous behavior and machine learning based anomaly detection to alert on IOC’s throughout

the environment to alert on a range of indicators for any suspicious activity across a cluster.

Secure Cloud Analytics can consume Azure VNet flow logs for end-to-end visibility across any resources within

a given Azure VNet. This is immensely powerful deployment for environments where a sensor-based approach

is not an option.

For the flow monitoring use cases in this document, we will explore the integration with AKS clusters to monitor

containerized workload flows. Along with that, we will also validate the agentless integration with Azure VNets

to monitor various resources within a given Azure VNet.

Cloud Security Posture

Secure Cloud Analytics offers event viewer to monitor cloud security posture. It allows the user to investigate

accounts and individual resources for compliance with industry best practices and custom policies. Users can

also pivot into query mode to perform more in-depth searches. SecOps teams gains instant access into all

cloud accounts and can query by specific resource, rule and more over custom timeframes to hone in on

misconfigurations or other compliance issues.

Secure Cloud Analytics ensures that the cloud resources adhere to Azure CIS benchmark standards, then

automatically alert users so they can quickly apply the changes needed to bring them back into compliance.

The integration uses an Azure IAM policy documents which allows the admin flexibility to choose Azure

resources to be monitored based on their organization policies and needs.

API Driven Monitoring

Secure Cloud Analytics begins checking your cloud resources for risky configurations and changes upon

deployment. You can also create your own watchlists to be alerted to activity of interest, and to ensure cloud

resources are adhering to your internal policy.

As telemetry is collected, Secure Cloud Analytics creates a model—a sort of simulation—of every active entity in

the monitored public cloud. Entity modeling allows the solution to detect a variety of behaviors associated with

potential threats. For example, it automatically places all of your compute instances, Kubernetes nodes, load

balancers, Storage containers and more into roles and will use cloud-native telemetry like flow logs to detect

potentially malicious or harmful activity. The resource’s behavior will be compared to the behavior of similar

entities over time. These communication patterns build a baseline for ‘normal’ behavior, and if there is traffic

that deviates from this baseline, users can receive custom alerts.

The alerts tab provides mapping to the MITRE ATT&CK framework which adds additional context to each alert.

This has information on the type of threat, what methods attackers may be using and what the best course of

https://www.cisecurity.org/benchmark/amazon_web_services/

© 2022 Cisco and/or its affiliates. All rights reserved. Page 14 of 56

action to remediate should be. There are also detections that are unique to the behavior of cloud usage such as

Geographically Unusual API Usage, that are built specifically to alert on malicious activity in the cloud.

Radware Kubernetes Web Application Firewall (KWAF)

Radware’s Kubernetes WAF is designed to fit into the Kubernetes orchestration system to provide not just the

application security with advanced automation capabilities, but also the elasticity required by today’s

DevSecOps teams. It offers its own management portal as well as integrations with common visibility and

reporting platforms such as Elastic, Prometheus, Grafana and more.

Radware KWAF can operate in both inline and out of path modes. A range of deployment options are supported

depending on the requirements of your Kubernetes environment and microservices architecture. The solution

offers seamless integrations with all the popular sidecar proxies like Nginx, Envoy and more or service mesh

deployments like Istio. In this document, we validate the inline provisioning of KWAF. We used Nginx ingress to

expose our cloud native application, however, the validated inline KWAF deployment would remain same for

any other type of ingress or side car proxies.

The solution follows a distributed architecture with security sidecars deployed at the pod level in the data plan

and a management back end running on the same Kubernetes cluster for the control plane. It consists of

following primary components.

Data Plane Policy Enforcer

The Kubernetes WAF data plane policy enforcer runs as a security sidecar in the same pod as the microservice.

It functions as a reverse proxy before the microservice and can work after either a sidecar proxy (e.g.,

Istio/Envoy) or any other ingress method outside of the pod (e.g., NGINX ingress controller). In both cases, SSL

termination is accomplished before the enforcement, by either Istio or the Kubernetes cluster’s ingress

controller, to allow the enforcer to handle the clear text traffic. This single termination of TLS traffic at the host

level eliminates the need to manage multiple certificates.

Controller

The Kubernetes WAF’s centralized control plane back-end runs in the same Kubernetes cluster as the

application. It provides centralized administration, management, reporting and forensics, via either APIs or the

management portal GUI. Since the policy is centrally stored and managed in the controller, any policy change

that is applied manually by the administrator or automatically generated by the machine learning modules will

© 2022 Cisco and/or its affiliates. All rights reserved. Page 15 of 56

be synchronized automatically across all the data path policy enforcers. Telemetry information is collected from

the policy enforcer and pushed to the controller for analytics and auto-policy processes. Logs are sent from the

enforcer to a centralized logging module in the controller to allow centralized forensics and analytics and allow

forwarding of the logs to external visibility and security information and event management (SIEM) systems.

Management Portal and APIs

The Kubernetes WAF management portal provides a GUI to monitor and manage Kubernetes WAF security. It

consists of: Dashboards which provide visualization of real-time telemetry and security events tailored for the

DevOps and SecOps users. Forensics which provide detailed security event reports with drill-down analysis,

analytics and exception handling. Every configuration and operation on the Kubernetes WAF can also be

performed without the GUI via Kubernetes compatible APIs. Security profiles are defined as Kubernetes custom

resource definitions (CRDs), and they are managed in the same way as other Kubernetes resources. This

approach allows for full management and configuration of security profiles via native Kubernetes APIs without

using the management portal.

Some of the key Kubernetes WAF security features include:

RFC Validation

Detects anomalies in the message and violations of the protocol's RFC standards.

Signatures

The signatures security module is based on a string match engine to detect attack patterns in HTTP requests.

Signature rules detect known types of attacks such as XSS, predictable resource locations, directory traversal,

etc.

Expressions

The expressions security module is based on regular expression and logical rules for detection of known types

of attacks, such as SQL and non-SQL injections.

Access Control

The access control module allows the defining of web resources and APIs that should be accessible. Requests

to non-listed resources will be blocked or logged, depending on the policy settings. Policy settings can be

defined at a full path level or file extension level or by a regular expression definition.

Data Leakage Protection

The data leakage protection module identifies sensitive information in application responses, allowing the

masking of sensitive data. Examples of sensitive data are credit card numbers, Social Security numbers, server

error messages, etc.

API Security

Both JSON and XML bodies are parsed, JSON/XML validity checks are applied, and key values are extracted

for further inspection by the other protection modules, such as signatures and expressions. This allows

detection of common API attacks such as XML bombs, manipulation of APIs and detection of embedded

attacks.

Cisco Secure Workload (Tetration)

The cloud native applications are extremely dynamic, the communication patterns between application

components constantly changes. The decoupling of application components into a microservices based

© 2022 Cisco and/or its affiliates. All rights reserved. Page 16 of 56

architecture brings in a fundamental change in traffic patterns when compared to monolith application. This

technological shift has contributed to an increased attack surface and free lateral movement within the

application infrastructure. This dynamic environment has created several challenges that organizations must

address:

● Lack of static network perimeters and the ability to enforce segmentation policies based on application

behavior

● No consistent approach to implementing segmentation using across a multi-cloud infrastructure

● Lack of a comprehensive approach to reduce the attack surface, minimize lateral movement, and detect

behavior deviations

The Cisco Secure Workload platform is designed to fully address these challenges. The platform performs

advanced analytics using an algorithmic approach and provides workload protection for a multi-cloud and

hybrid ecosystem. Key features include:

● Complete visibility into application components, communications & dependencies to enable a zero-trust

model

● Consistent enforcement of segmentation policy across a multi-cloud infrastructure to minimize lateral

movement

● Identification of software vulnerabilities and exposures to reduce attack surface

● Flexible policy configuration over GUI or API calls using serialized data from CI/CD pipelines or a regular

API client

● Process behavior baselining and identification of deviations for faster detection of any indicators of

compromise (IOCs)

© 2022 Cisco and/or its affiliates. All rights reserved. Page 17 of 56

The platform supports automated ingestion of inventory metadata from AKS cluster. When an external

Kubernetes orchestrator configured, Cisco Secure Workload connects to the cluster’s API server and tracks the

status of nodes, pods and services within the cluster. In addition to a number of labels generated by the

platform itself, Secure Workload automatically imports the labels associated every Kubernetes objects, this

metadata facilitates the creation of highly flexible inventory filters. The policy enforcement is done using these

inventory filters in a very dynamic manner instead of relying on any static boundaries. A single set of policy

enforcement agents deployed using Kubernetes daemonset objects can be used to enforce policies across any

number of applications hosted on the cluster in completely separate workspaces. The daemonset approach

also eliminates the need for any manual effort when cluster nodes scale up or down.

Azure Architecture

In this section of the document, we will go over the architecture for a cloud native application in Azure.

This architecture has three Azure VNets:

● Hub Resource Group – The Hub Resource Group hosts the resources required for developing and

managing the applications and is shared across the production or the staging environment. This could

also be shared among multiple applications (hosted in different spoke Resource Groups). The Virtual

Network in the Hub RG hosts following:

◦ Internet facing resources like the bastion hosts, Duo Network Gateway, Active Directory Federation

Service as SSO Identity provider

© 2022 Cisco and/or its affiliates. All rights reserved. Page 18 of 56

◦ Privately hosted dev tools like a source code management system. We also have the build servers,

domain controllers and other necessary infrastructure required in a development environment running

on various computes instances in Hub Subnets

● Spoke Resource Groups – The Spoke Resource Groups are used to host the applications on Kubernetes

clusters manager by Azure Kubernetes Service (AKS). The AKS nodes are distributed across three

availability zones. The two spokes in this reference architecture host the production and staging versions

respectively

The Hub VNet is connected to Spoke VNets through VNet peering links. The choice for connecting VNets

depends on multiple factors, for example, the number of spoke VNets to be connected. If the Resource Group

design is such that there are a larger number of applications, each hosted in their own Resource Group then

VPN Gateway is likely a better choice. Another contributing factor for making this decision could be bandwidth

and security compliance requirements in bigger deployments. Refer to Azure documentation here for more

details on VNet connectivity.

The CI/CD pipeline runs on a compute instance within the Hub VNet and privately connects to staging or

production AKS clusters over the peering links to continuously deploy or maintain the application running on

AKS cluster.

The microservices application used for the purpose of this document has the microservice architecture as

shown in diagram below. An NGINX ingress controller is used to expose the web application and API services

to the end user.

https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-howto-vnet-vnet-resource-manager-portal

© 2022 Cisco and/or its affiliates. All rights reserved. Page 19 of 56

Design Implementation

Design Prerequisites

● Follow the instructions in Appendix A of this document to provision the initial Azure and development

infrastructure

● Access to Duo Admin account, Cisco Secure Cloud Analytics, Cisco Secure Workload and Radware

KWAF accounts with appropriate licenses

Cisco Secure Access by Duo (DNG)

Prerequisites

● Follow the instructions in Appendix B of this document to do initial installation of Duo Network Gateway

● A public DNS domain to expose the privately hosted GitLab instance to public access, for example -

cloudnativesafeapp.net. Add a CNAME record (example- *.gitlab.cloudnativesafeapp.net) to this hosted

zone and point it to DNG hostname i.e., portal.safecloudnativeapp.net (created in Appendix B of this

document)

● Create SSL cert for Gitlab instance to be used for external access

© 2022 Cisco and/or its affiliates. All rights reserved. Page 20 of 56

● Create SSL cert for SSH instance to be used for external access (example - Common Name -

ssh.cloudnativesafeapp.net)

Implementation Summary

 Enable agentless VPN access to the private GitLab instance Step 1.

 Enable SSH connection to GitLab server and bastion hosts Step 2.

Implementation Procedure

Step 1. In this step we will protect the private Gitlab application.

● Log in to the Duo Admin Panel and navigate to Applications. Click Protect an Application and locate

the 2FA-only entry for Duo Network Gateway - Web Application in the applications list. Click Protect to

the far-right to configure the application and get the Client ID, Client secret, and API hostname. We will

need this information to complete the setup

● On the same page, scroll down, under the Policy section click on Apply a policy to group of users to

add health check policy and click on Save. For more details on refer to the Duo Health Check Application

documentation

● Return to the Duo Network Gateway admin console and click the Applications link on the left-hand side

of the screen. On the Applications page click Add New... and select Web Application from the drop-

down options. You will be taken to a new page. Under Configure 2FA enter the Client ID, Client secret,

and API hostname information from the application created in the previous step on Duo Admin Panel

https://duo.com/docs/device-health

© 2022 Cisco and/or its affiliates. All rights reserved. Page 21 of 56

● Scroll down to the External Website Settings section. In the External URL field enter the external

domain we created (e.g., https://gitlab.gitlab.cloudnativesafeapp.net). Select Provide my own

certificate next to Certificate Source. Choose the cert and key create earlier as prerequisites

● Scroll down to the Internal website settings section. Configure the settings related to the internal

application. Provide the internal domain name for Gitlab (http://gitlab.gitlab.safecloudnativeapp.net).

Once you've filled in all the required fields, click Add Application

© 2022 Cisco and/or its affiliates. All rights reserved. Page 22 of 56

In a similar manner, repeat the steps to protect any other privately hosted dev application or tool that you need

to expose.

 Now, we will protect the SSH connection to GitLab host Step 3.

● Create an external DNS record pointing to DNG portal, example- ssh.cloudnativesafeapp.net pointing to

portal.safecloudnativeapp.net. A group of SSH servers can be protected behind a single external URL

● Log in to the Duo Admin Panel and navigate to Applications and click Protect an Application and locate

the 2FA-only entry for Duo Network Gateway - SSH Servers in the applications list. Click Protect to the

far-right to configure the application and get the Client ID, Client secret, and API hostname. We will

need this information to complete your setup

● Navigate to the Duo Network Gateway admin console and click the Applications link on the left-hand

side of the screen. On the Applications page click Add New... and select SSH Servers from the drop-

down options. You will be taken to a new page. Under Configure 2FA enter the Client ID, Client secret,

and API hostname from the application created earlier in the Duo Admin Panel

© 2022 Cisco and/or its affiliates. All rights reserved. Page 23 of 56

● Scroll down to the External URL Settings section. In the External URL field enter hostname of the

external DNS record created earlier. Select Provide my own certificate next to Certificate Source.

Upload the certificate created as prerequisite

● Scroll down to the SSH Servers section. Fill in all the required fields, click Add SSH Servers. Since the

Git CLI client doesn’t support SSO over HTTP, we need to expose SSH connection to private Gitlab

instance to enable the use of Git CLI for SCM operations

● Once the page reloads, you'll see a new section at the top of the page called SSH Client Configuration

with SSH client configuration to provide to the end users after they configure DuoConnect. Using the Duo

Network Gateway to protect SSH servers requires a small software install on the user's computer called

DuoConnect. Follow the Duo documentation to install DuoConnect to end user machine based on

Operation System and set up the SSH configuration file as below

https://guide.duo.com/duoconnect

© 2022 Cisco and/or its affiliates. All rights reserved. Page 24 of 56

Design Validation

● Accessing Gitlab Web Application - Go to the browser on a client machine and access the Gitlab URL

(https://gitlab.gitlab.cloudnativesafeapp.net). Browser window will be redirected to AD FS URL for initial

authentication. Once the credential is added, the window is redirected to DUO portal for MFA

GitLab web portal can be accessed after the MFA is completed. If the end application is not capable of SSO

then it would prompt for another authentication (GitLab instance version used for validation did not support

SSO)

© 2022 Cisco and/or its affiliates. All rights reserved. Page 25 of 56

● Performing Git CLI operations - Launch CLI utility on the client machine and clone a git repo from the

GitLab instance

git clone git@gitlab.gitlab.safecloudnativeapp.net:root/front-end.git

The Git Operation will pause and launch a browser window prompting for the organization credentials. Add the

credentials, click on Sign in and this would initiate MFA process.

Note: Prior to running this test, the SSH keys from client machine were added to Gitlab. Browser cache

was to be cleared as well.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 26 of 56

Once the DUO MFA is completed, the Git operation on CLI will resume towards completion. From this point

onwards, the SSO credentials are cached for the defined period of time.

SSH to a private bastion host would also go through same set of authentication steps as with Git CLI if there

was no prior authentication.

Cisco Secure Cloud Analytics

Prerequisites

● Record the Observable ID from Cisco Secure Cloud Analytics portal

Implementation Summary

 Set up the Azure NSG flow logs monitoring Step 1.

 Integrate with staging and production AKS clusters Step 2.

Implementation Procedure

 We will set up Azure NSG flow log monitoring now. Step 1.

 Navigate to Network Watcher > Overview. Click on + Add to enable Network Watcher on the
target regions i.e. the Hub Resource Group Region

© 2022 Cisco and/or its affiliates. All rights reserved. Page 27 of 56

 To store NSG flow Logs, you'll need Storage Accounts in the same locations as your target
resource groups. A storage account with Blob storage capabilities (StorageV2 or BlobStorage) is
created already (as part of initial infrastructure provisioning using Terraform)

 Navigate to Azure Active Directory > Overview and retrieve AD name. Copy your Primary
Domain value (e.g.- ciscosafearchitecture.onmicrosoft.com)

 Navigate to Azure Active Directory > App Registrations > New registration. Add the Name:
swc-reader and leave others field as default. After the application is created, copy the Application
ID

 Select Certificates & secrets. Click the New client secret button, and fill out the form as follows:

Description: SWC Reader

Expires: Never

Click the Add button and copy the generated value. This is the Application key

 On the Secure Cloud Analytics console, add the collected Azure AD URL, Application ID, and
Application key under the Settings > Integrations > Azure > Credentials tab

 Navigate to Subscriptions and select your subscription on Azure console. Select Access Control
(IAM) option. Perform this step for both the Network Contributor and Monitoring Reader roles
individually. Click the Add button, select Add role assignment tab, select the role from the

© 2022 Cisco and/or its affiliates. All rights reserved. Page 28 of 56

dropdown list (Network Contributor and Monitoring Reader) and Assign access to: Azure AD
user, group, or service principle. Select swc-reader and click the Save button

 Navigate to Storage Accounts and select Shared access signature and fill out the form as
follows:

Allowed services: Blob

Allowed resource types: Service, Container, and Object

Allowed permissions: Read and List

Start and end times: Set these to begin now and end some point in the future (at least one year)

Allowed protocols: HTTPS

Click Generate SAS and connection string. Copy the Blob service SAS URL

© 2022 Cisco and/or its affiliates. All rights reserved. Page 29 of 56

 On the Secure Cloud Analytics console, navigate to Settings > Integrations > Azure > Storage
Access. Click on +New integration and add the copied Blob service SAS URL

 Navigate to Network Watcher > NSG Flow Logs. The list of Network Security Groups appears.
Select an HubNSG and Fill out the form as follows:

Status: On

Flow Logs version: Version 2

Storage account: Select the storage account create earlier in this section.

Retention: 30

Click the Save button

© 2022 Cisco and/or its affiliates. All rights reserved. Page 30 of 56

At this point Cisco Secure Cloud Analytics is set up to read and process the NSG flow logs from Hub Resource

Group. Click on the green cloud icon on the top right-hand side of the Secure Cloud Analytics portal to see

Azure sensor. The green color indicates successful integration.

Note: Refer to the documentation on the Cisco Secure Cloud Analytics GUI interface for detailed manual

steps.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 31 of 56

 Now we will Integrate with staging and production AKS clusters with Secure Cloud Analytics. Step 2.

 The Secure Cloud Analytics UI displays the detailed integration steps under Settings >
Integrations > Kubernetes. Follow the steps on the UI, instructions below are only to
demonstrate the integration for staging cluster, repeat the same steps to integrate the production
cluster

 Log into the bastion host and point the azure cli to staging EKS cluster.

az aks get-credentials --name spoke1akscluster --resource-group spoke1RG

 Enter the commands below to create Kubernetes secret (use the secret string available on the
portal)

echo -n "WwFx7sxGctIzcUdNqxWwFx7sxGctIzcUdNWwFx7sxGctIzcUdN" > obsrvbl-service-
key.txt

kubectl create secret generic obsrvbl --from-file=service_key=obsrvbl-service-key.txt

rm obsrvbl-service-key.txt

 After creating the secret, create a new service account and bind it to the read-only cluster role:

kubectl create serviceaccount obsrvbl

kubectl create clusterrolebinding "obsrvbl" --clusterrole="view" --
serviceaccount="default:obsrvbl"

 Next, create a Kubernetes daemonset using the obsrvbl-daemonset.yaml (A sample YAML manifest

is also available on the Secure Cloud Analytics Console itself). This configuration file describes the

specifications for a sensor pod to be run as daemonset on each node

 kubectl create -f obsrvbl-daemonset.yaml

Design Validation

● Use the kubectl CLI to find out the IP address of a pod for any microservice, example below shows a

pod for carts microservice

Switch to Secure Cloud Analytics dashboard and navigate to Investigate > By IP Address and add the pod IP

along with Start Date and End Date to filter out the flows for this specific pod. List flows confirms successful

integration.

https://github.com/cisco-security/Cisco-Validated-Designs/blob/master/safe-cloud-caas-azure/cisco-secure-analytics/obsrvbl-daemonset.yaml

© 2022 Cisco and/or its affiliates. All rights reserved. Page 32 of 56

● In a similar manner as above, lets verify flows records for bastion host. Go to Secure Cloud Analytics

dashboard and navigate to Investigate > Session Traffic, add the IP address in the filter options and

click on Update to see the sessions

● To verify the Azure Cloud Posture, navigate to Investigate > Event Viewer and switch to Cloud Posture

tab. The Secure Cloud Analytics actively monitors Azure environment for compliances and the dashboard

displays a detailed report on compliance status

© 2022 Cisco and/or its affiliates. All rights reserved. Page 33 of 56

● Cisco Secure Cloud Analytics network activity to look for any unexpected logins. An alert is generated if

a device is accessed from a remote location that doesn’t normally access the resource

● Cisco Secure Cloud Analytics detects data exfiltration attempts over DNS protocol

● If an algorithmically generated domain is resolved on the any of the Azure resources or AKS cluster then

Cisco Secure Cloud Analytics records such an observation for threat hunting

Radware Kubernetes Web Application Firewall

Prerequisites

© 2022 Cisco and/or its affiliates. All rights reserved. Page 34 of 56

● Kubernetes WAF is installed on the staging and production cluster. Refer to the Radware KWAF

documentation (login required) for initial installation

Implementation Summary

 Apply web security policy profile to frontend microservice Step 1.

 Update frontend Kubernetes deployment and service object definitions Step 2.

Implementation Procedure

 In this step we will create policy profile for applying WAF security to Frontend microservice of Step 1.
Sock Shop application in staging environment.

● Login to the bastion host and point to the staging AKS cluster using Azure CLI

az aks get-credentials --name spoke1akscluster --resource-group spoke1RG

● Create a policy profile for with WAF controls using the YAML manifest sockshop-policy-profile.yaml

Kubectl apply -f sockshop-policy-profile.yaml

Step 2. Update the frontend deployment and service object definitions to include the inline enforcer
container. Use the YAML manifest frontend-with-waf.yaml

Kubectl delete deployment front-end -n sock-shop

Kubectl delete service front-end -n sock-shop

kubectl apply -f frontend-with-waf.yaml

Kubectl get pods -n sock-shop

Once the validation is completed in staging environment, same steps and manifest files can be followed to

deploy the WAF security in production environment.

Design Validation

● Browse the web application and try to inject OS commands (for example – uname -r) in the URL. The

Kubernetes WAF will detect and block any such malicious attempts

● Copy the Case Number from the block page notification on browser. Login to KWAF dashboard,

navigate to Forensics> Security Events and filter the events using copied string to see the detailed

information on related event

https://portals.radware.com/Customer/Home/Downloads/Application-Network-Security/?Product=Kubernetes-WAF
https://portals.radware.com/Customer/Home/Downloads/Application-Network-Security/?Product=Kubernetes-WAF
https://github.com/cisco-security/Cisco-Validated-Designs/blob/master/safe-cloud-caas-azure/cisco-secure-radware-kwaf/sockshop-policy-profile.yaml
https://github.com/cisco-security/Cisco-Validated-Designs/blob/master/safe-cloud-caas-azure/cisco-secure-radware-kwaf/sockshop-waf-frontend.yaml

© 2022 Cisco and/or its affiliates. All rights reserved. Page 35 of 56

Cisco Secure Workload

Prerequisites

● A VM instance (RHEL/CentOS 7 (x86_64), 2 CPU cores and 4 GB RAM) in the Hub VNet

● Ensure the VM has outgoing connectivity on TCP port 443

Implementation Summary

 Download and install the secure connector Step 1.

 Set up the external Kubernetes Orchestration Step 2.

 Install daemonset on AKS nodes Step 3.

 Create the scopes for stage and production environment Step 4.

 Create agent configuration profile and add it to scopes Step 5.

 Create inventory filters Step 6.

 Create application workspace, policies and enable policy enforcement Step 7.

Implementation Procedure

 We need a secure connector to enable connectivity between Cisco Secure Workload and API Step 1.
servers for Staging and Production AKS clusters (AKS clusters are configured for private access).
Navigate to Monitoring > Agents > Installer + on Cisco Secure Workload dashboard. Select Manual
Install using classic packaged installers and click on Next. Filter the packages using “connector”
string and click on Download to download the package. Copy the download package to Secure
Connector VM instance in the Hub Resource Group. Install the copied Package.

 sudo rpm -ivh tet-secureconnector-client-site-3.5.1.17-el7.x86_64.rpm

© 2022 Cisco and/or its affiliates. All rights reserved. Page 36 of 56

● Click on setting icon on the UI and navigate to API Keys and click on Create API key to create one. Note

that the API key used must have the external system integration capability and must have write access

to the specified root scope

● Download the bash script and update it with HOST, API_KEY, API_SECRET and ROOTSCOPE_NAME.

Run the script to retrieve the registration token

HOST=https://mytaas.portal.com

API_KEY="b404cbc640666bc 2ac404cbc640666bc

API_SECRET="de8c242af09404cbc641510d7c9c69412d45e23c6"

ROOTSCOPE_NAME="MYROOTSCOPE"

./secureconnector.sh

● Stop the secure connector and copy the registration token. Once the token is copied, start the secure

connector. At this point the connector is fully set up

sudo systemctl stop tetration-secure-connector

sudo cp registration.token /etc/tetration/cert/registration.token

sudo systemctl start tetration-secure-connector

Step 3. Navigate to Visibility > External Orchestration on Cisco Secure Workload dashboard. Click on
+Create New Configuration. Fill in all the details as below.

Type: Kubernetes

K8s Manager Type: None

Cluster Name: spoke1k8s

Description: spoke1k8s

CA Certificate: Use CLI - terraform output cluster_ca_certificate | base64 -d

Token: Create read only cluster role for tetration and obtain the token using kubectl.

kubectl apply -f k8s-workload-readonly.yaml

kubectl get secret --namespace=default `kubectl --namespace=default get sa tetration-read-

only -o json | jq -r '.secrets[0].name'` -o json | jq -r '.data.token' | base64 -d ; echo

https://github.com/cisco-security/Cisco-Validated-Designs/blob/master/safe-cloud-caas-azure/cisco-secure-workload/secureconnector.sh
https://github.com/cisco-security/Cisco-Validated-Designs/blob/master/safe-cloud-caas-azure/cisco-secure-workload/k8s-workload-readonly.yaml

© 2022 Cisco and/or its affiliates. All rights reserved. Page 37 of 56

 Switch to Hosts List tab from vertical menu on the left-hand side and add API server endpoint
address and port details for the AKS cluster (use CLI kubectl cluster-info to grab the API Control
plane details). Once all the details are added, click on Create to finish the set up. AKS cluster
orchestration will show as Success in few mins. Repeat the same steps for production AKS cluster.

Step 4. Navigate to Monitoring > Agents > Installer + on Cisco Secure Workload dashboard.

● Select Auto-Install Agent using an Installer and click on Next. Select Kubernetes and Download

Installer

© 2022 Cisco and/or its affiliates. All rights reserved. Page 38 of 56

● Copy the script to bastion host and run the pre-check to make sure that all the requirements for installing

enforcement agents meet

scp -i azure.pem tetration_installer_intgssopov_enforcer_kubernetes_tuvok.sh

azureuser@$(terraform output BastionLinuxHostIP):

bash tetration_installer_intgssopov_enforcer_kubernetes_tuvok.sh --pre-check

● Install the enforcement agents (daemonsets objects) on Kubernetes nodes by running the bash script.

Verify the Tetration agent pods in the namespace tetration on the AKS cluster

bash tetration_installer_intgssopov_enforcer_kubernetes_tuvok.sh

 Click settings icon on the top right-hand side corner of the Cisco Secure Workload console, and Step 2.
then Scopes to enter scope configuration. Select a parent scope (e.g., Azure) and click on Add to
create the scope for the Staging cluster. Use the query - *orchestrator_system/cluster_name =
spoke1k8s.

Step 5. Now, navigate to Software Agent Config on Secure Workload dashboard. Click on Create
Profile to create an agent configuration profile, make sure enforcement capability is enabled. On
the same page, click on Create intent to apply the agent configuration profile to the newly created
scopes in step 4 above.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 39 of 56

Step 6. Login to the bastion host. Update the variables in the file $HOME/Cisco-Validated-
Designs/safe-cloud-caas-azure/Cisco Secure Workload/ansible/host_vars/tetration.yaml as
per your environment. Run the ansible playbook for inventory filters (sockshop-filters.yaml) in
directory Cisco-Secure-Workload > ansible to create inventory filters.

ansible-playbook sockshop-filters.yaml

Step 7. Run the ansible playbook (sockshop-policies.yaml) to create the application workspace,
policies and enable enforcement for staging environment. Once policies are validated on staging
environment, same steps can be followed for production environment.

ansible-playbook sockshop-policies.yaml

https://raw.githubusercontent.com/cisco-security/Cisco-Validated-Designs/master/safe-cloud-caas-azure/cisco-secure-workload/sockshop-filters.yaml
https://github.com/cisco-security/Cisco-Validated-Designs/blob/master/safe-cloud-caas-azure/cisco-secure-workload/sockshop-policies.yaml

© 2022 Cisco and/or its affiliates. All rights reserved. Page 40 of 56

Design Validation

● Frontend microservice of the Sock Shop application is allowed to communicate with Orders microservice

before applying the policies

● The communication from Frontend microservice to the Payment microservice is blocked after applying

the policies

© 2022 Cisco and/or its affiliates. All rights reserved. Page 41 of 56

Appendix

Appendix A – Setting up the Azure Infrastructure and Dev environment

The application environment is set up as shown in architecture diagram above. This section of the Appendix

covers the following:

Implementation Summary

 Set up GitLab repositories Step 1.

 Set up GitLab runners Step 2.

 Deploy the production and staging applications Step 3.

 Set up GitLab CI/CD pipelines Step 4.

Prerequisites

● Use Terraform modules shared here to create the Azure infrastructure – Resource Groups, Virtual

Networks, Subnets, Route Tables, Peering links. The Terraform module also privisions bastion hosts

(with pre-installed utilities – az cli, kubectl, helm, git client.), Duo Network Gateway, GitLab Instances

and a VM for Secure Workload Connector in the Hub VNet

● You would need to manually stand up Microsoft AD (private IP only) and ADFS instance(with public IP) in

the Hub Subnet B and Hub Subnet A respectively. The shared Terraform scripts doesn’t provision these

two resources

● Wherever needed use the terraform output cli to obtain the IP addresses for bastion hosts, GitLab

Runner, Duo Network Gateway and Secure Workload Connector and other resource related details

https://github.com/cisco-security/Cisco-Validated-Designs/tree/master/safe-cloud-caas-azure/azure-infrastructure
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-linux?pivots=apt
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html#eksctl-gs-install-kubectl
https://docs.aws.amazon.com/eks/latest/userguide/helm.html
https://docs.gitlab.com/ee/topics/git/how_to_install_git/

© 2022 Cisco and/or its affiliates. All rights reserved. Page 42 of 56

Set up GitLab repositories

Follow the steps below to initialize the GitLab instance.

 Once the terraform run is completed, use SCP to copy the SSH Key and kubeconfig file to the Step 1.
bastion host and then SSH to the bastion host.

echo "$(terraform output vm_ssh)" > azure.pem && chmod 400 azure.pem

scp -i azure.pem azure.pem azureuser@$(terraform output BastionLinuxHostIP):

ssh -i azure.pem azureuser@$(terraform output BastionLinuxHostIP)

 Run the commands below to get root credentials to GitLab Instance. Step 2.

ssh -i azure.pem azureuser@<GitLabHostIP> 'sudo cat /etc/gitlab/initial_root_password'

RDP to the Windows bastion host using crede kubectl create namespace appdynamics

 cantials from Terraform output (Azure Portal: Home > Virtual Machines > BastionWin > Connect Step 3.
> Download RDP file). Launch a browser session and login to the GitLab instance(terraform output
GitLabHostURL) using GitLab credentials from Step2. Navigate to User settings > Access Tokens and
create a token with api and write_repository permissions. Record the token value, you will need it in
Step 5 below.

Note: It takes 20-25 mins after the terraform run is completed for the GitLab Instance to be fully

initialized. Also, you may want to install chrome for better UI experience.

Note: The GitLab instance is not accessible over the internet yet, we will set up Duo Network Gateway in

the Appendix C of this document to securely expose the GitLab instance over internet.

 Navigate to GitLab homepage and click on New Project > Create Blank Project. Fill in the Step 4.
appropriate details and Create project for the front-end microservice. Make sure to uncheck the
Initialize repository with a README option.For the purpose of this document, we will focus on front
end microservice. However, same steps can be followed to set up the projects for other Sock Shop
microservices.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 43 of 56

 Run the commands below on bastion host to clone the front-end microservice source code and Step 5.
set up a local Git repo and point it to private GitLab remote repo created in Step4.

 git clone https://github.com/amansin0504/azure-front-end.git front-end && cd front-end

 git config --global user.name "Administrator" && git config --global user.email
"admin@safelab.com"

 git remote rm origin

 git remote add origin
http://Administrator:<GitLabToken>@<GitLabFQDN>/<GroupName>/front-end.git

 git push -u origin --all

Note: The the repo includes GitLab CI/CD pipeline configuration file (.gitlab-ci.yaml). Complete source

code can be found at Sock Shop microservices demo application.

Set up the GitLab runners

https://github.com/microservices-demo

© 2022 Cisco and/or its affiliates. All rights reserved. Page 44 of 56

This section covers the steps to create GitLab runners.

 Login to Gitlab UI and navigate to Settings > CI/CD under front-end project and expand the Step 1.
Create Runners section by clicking on Expand button. Leave this page open, we will need the GitLab
URL, and Registration token shown on this page in the next step.

 SSH to the bastion host, update the command below with GitLab runner IP address from Step 2.
terraform output and, registration token and URL copied in Step 1 and run the command to register the
GitLab runner.

ssh -i azure.pem azureuser@<GitLabRunnerIP> << EOF

sudo gitlab-runner register \

--non-interactive \

--url <GitLabURL> \

--registration-token <GitLabRegistrationToken> \

--executor docker \

--docker-image alpine:3.14.0 \

--description docker-runner \

--docker-privileged \

--docker-volumes /var/run/docker.sock:/var/run/docker.sock \

--tag-list docker

EOF

© 2022 Cisco and/or its affiliates. All rights reserved. Page 45 of 56

Deploy the production and staging application

Follow the steps below to deploy Sock Shop demo application to production and staging environments.

 SSH to the Linux bastion host and authenticate the azure CLI. Follow the documentation for more Step 1.
details.

 az login

 Install the Nginx ingress controller on both the clusters Step 2.

az aks get-credentials --name spoke1akscluster --resource-group spoke1RG

kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-
v0.48.1/deploy/static/provider/cloud/deploy.yaml

az aks get-credentials --name spoke2akscluster --resource-group spoke2RG

 kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-
v0.48.1/deploy/static/provider/cloud/deploy.yaml

 Deploy an initial version of application to staging and production eks clusters using the YAML Step 3.
(sock-shop-with-

 ingress.yaml) manifest.

az aks get-credentials --name spoke1akscluster --resource-group spoke1RG

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-linux?pivots=apt
https://github.com/cisco-security/Cisco-Validated-Designs/blob/master/safe-cloud-caas-aws/sock-shop-demo/sock-shop-demo-withingress.yaml

© 2022 Cisco and/or its affiliates. All rights reserved. Page 46 of 56

kubectl apply -f https://raw.githubusercontent.com/cisco-security/Cisco-Validated-
Designs/master/safe-cloud-caas-azure/sock-shop-demo/sockshop-withLB.yaml

az aks get-credentials --name spoke2akscluster --resource-group spoke2RG

kubectl apply -f https://raw.githubusercontent.com/cisco-security/Cisco-Validated-
Designs/master/safe-cloud-caas-azure/sock-shop-demo/sockshop-withLB.yaml

 Create public DNS records for stage and production application. The DNS records will point to Step 4.
Load balancer

 addresses. Run the command below to get the Load balancer address for front-end service

 used to expose the application.

 kubectl get svc front-end -n sock-shop

Set up the Gitlab CI/CD Pipeline

 Go to Menu > Admin > Setting > Network. Expand Outbound requests section and enable Allow Step 1.
requests to the local network from web hooks and services.

 Follow the GitLab documentation to integrate the AKS cluster with GitLab. This would enable Step 2.
automated deployment to Kubernetes clusters using CI/CD pipelines.

 Navigate Settings > CI/CD under front-end project and expand the Variables section. Add the Step 3.
key pair value pairs below as CI/CD Environment variables. This will allow GitLab to push container
images to the private Azure registry.

 DOCKER_REGISTRY: (Use terraform cli – ‘terraform output RegistryLogin‘)

 REGISTRY_USERNAME: (Use terraform cli – ‘terraform output RegistryUser’)

 REGISTRY_PASSWORD: (Use terraform cli – ‘terraform output RegistryPassword’)

 Make a test git push to front-end repo and that should trigger the GitLab CI/CD pipeline to build, Step 4.
test, scan and deploy the new image to stage and production environments that we set up above. Go
to CI/CD > pipelines on the sidebar and click on the latest pipeline run to see the status of the pipeline
run. The pipeline builds and deploys the updated image to the Kubernetes cluster.

https://docs.gitlab.com/ee/user/project/clusters/add_existing_cluster.html#how-to-add-an-existing-cluster

© 2022 Cisco and/or its affiliates. All rights reserved. Page 47 of 56

Appendix B – Installing Duo Network Gateway

Prerequisites

● A domain controller hosted in private subnet in Hub VNet with Active Directory service and private CA.

● Microsoft AD FS server in the public subnet (Integrated with the Active Directory Service hosted in

private subnet). Duo Network Gateway requires a SAML 2.0 Identity Provider (IdP) to use as its primary

authentication source. We use AD FS as SAML identity provider

● Duo Network Gateway is provisioned and installed (Terraform modules include this)

● Public DNS record pointing to AD FS server. We use the DNS name adfs.safecloudnativeapp.net

Implementation Summary

 Create DNS record for Duo Network Gateway Step 1.

 Install Docker and Docker compose on VM instance Step 2.

 Install DNG using docker-compose Step 3.

 Access the DNG admin console and do the initial set up Step 4.

 Configure AD FS to be used as Authentication Source for DNG Step 5.

 Configure authentication source on DNG admin console Step 6.

Implementation Procedure

 Register a public domain name record pointing to DNG instance. We use the DNS name Step 1.
portal.safecloudnativeapp.net.

 Login to the DNG instance. Duo Network Gateway is pre-installed on this VM as part of initial Step 2.
terraform infrastructure provisioning. Follow the Duo documentation for more details.

ssh -i azure.pem azureuser@$(terraform output DuoNetworkGatewayHostIP)

docker ps

Note: Save this YAML file in a persistent directory location for future use; it will be required for later use when deploying, updating,

or interacting with your Duo Network Gateway server.

 Go back a client machine and navigate to https://portal.safecloudnativeapp.net:8443 to log into Step 3.
the Duo Network Gateway admin console. The first page of the Duo Network Gateway setup screen will
ask you to choose a password for the Duo Network Gateway admin console. Once you've entered a
password, click Save and Continue. On the Make Duo Network Gateway visible to the internet page
fill in the following fields.

● Admin Email – Email address for the admin user (admin@safecloudnativeapp.net)

● Hostname - FQDN created for Duo Network Gateway in step 2 (portal.safecloudnativeapp.net)

● Certificate and Private Key - Complete certificate chain and private key created for Duo Network

Gateway (CN=portal.safecloudnativeapp.net). The format should be Base64-encoded X.509 (pem, cer,

or crt)

Click Save and Continue after filling in all the details.

https://duo.com/docs/dng#prerequisites

© 2022 Cisco and/or its affiliates. All rights reserved. Page 48 of 56

 Now, we will configure the AD FS service to be used as Duo Network Gateway Authentication Step 4.
Source.

● On the Duo Network Gateway admin console home page click the Authentication Source link under

Step 2. Under the Metadata section click on Download XML metadata. We will need this XML file later

in the setup.

● Switch to the ADFS server(Needs to be installed manually, not part of terraform modules) and launch the

ADFS management console. In the ADFS Management window, right-click Relying Party Trust to add a

relying party trust. On the Welcome page of the wizard, leave the Claims aware option selected and

click on Start.

● In Select Data Source step, choose Import data about the relying party from a file. Browse the

Metadata file downloaded in at the beginning of the step 6 and click Next.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 49 of 56

● Add a meaningful Display name and Notes for Duo Network Gateway and click on Next.

● Select Permit Everyone policy on the Choose Access Control Policy page and click Next.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 50 of 56

● On the Ready to Add Trust step, simply click Next.

● Once the configuration is done, click on Close. A Claim Issuance policy configuration wizard will be

launched.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 51 of 56

● In Choose Rule Type page on Add Transform Claim Rule wizard, select Send LDAP Attributes as Claims

as the Claim rule template and click Next.

● In Configure Claim Rule, do the following and click Next:

o Enter a meaningful Claim rule name

o From the Attribute Store menu, choose Active Directory

o Map the LDAP attributes SAM-Account-Name to Outgoing Claim Type Name ID

© 2022 Cisco and/or its affiliates. All rights reserved. Page 52 of 56

● Click on Apply to complete the configuration

● On the AD FS Management console click the arrow icon next to Service. Under on Certificates option,

right-click the certificate under Token-signing and select View Certificate. On the new Certificate

window select the Details tab. Click the button Copy to File. Follow the wizard (on the Export Private

Key page select No, do not export the private key) and click Next. Select Base-64 encoded X.509

(.CER) on the Export File Format page. Click Next and save this AD FS certificate to be used later

© 2022 Cisco and/or its affiliates. All rights reserved. Page 53 of 56

● Download ADFS metadata file by visiting the URL:

https://adfs.safecloudnativeapp.net/FederationMetadata/2007-06/FederationMetadata.xml

 Now switch back to the Duo Network Gateway admin console and follow the steps below to Step 5.
configure the authentication source

● On the Duo Network Gateway admin console home page click the Authentication Source link under Step

2 Scroll down to the Configure SAML Identity Provider section of the page. Copy the entityID and

AssertionConsumerService value from the AD FS XML file and paste it into the Duo Network Gateway

Entity ID or Issuer ID and Assertion Consumer Service URL or Single Sign-On URL fields

● Click the Choose File button next to Certificate to select the certificate file downloaded at the end of

step 6. Upload the certificate. Click on Save Settings

© 2022 Cisco and/or its affiliates. All rights reserved. Page 54 of 56

Note: Username Attribute and Enforced Email Domain is an optional setting. For more details, refer to the Duo Network Gateway

Documentation

Appendix C - Acronyms

Acronym Definition

AD FS Active Directory Federation Service

AKS Azure Kubernetes Service

API Application Programming Interface

CI/CD Continuous Integration/Continuous Delivery

CIS Center for Information Security

CNCF Cloud Native Computing Foundation

https://duo.com/docs/dng#install-duo-network-gateway

© 2022 Cisco and/or its affiliates. All rights reserved. Page 55 of 56

Acronym Definition

CRD Custom Resource Definitions

CVD Cisco Validated Design

DNG Duo Network Gateway

FQDN Fully Qualified Domain Name

IOC Indicators of Compromise

LB Load Balancer

MFA Multi-Factor Authentication

PHP Hypertext Preprocessor

PIN Places in Network

SaaS Software as a Service

SCM Source Code Management

SIEM Security Information and Event Management

SQL Structured Query Language

SSO Single Sign On

SWC Stealthwatch Cloud

VPC Virtual Private Cloud

WAF Web Application Firewall

XSS Cross Site Scripting

2FA Two Factor Authentication

Appendix D - References

This section lists all the references.

● Cisco SAFE

● Cisco Secure Cloud Workload

● Cisco Secure Cloud Analytics

● Radware KWAF

● Azure Services

● Nginx

● Sock Shop Demo Application

● GitLab

https://www.cisco.com/c/en/us/solutions/enterprise/design-zone-security/landing_safe.html
https://www.cisco.com/site/us/en/products/security/secure-workload/index.html
https://www.cisco.com/site/us/en/products/security/secure-workload/index.html
https://www.cisco.com/c/en/us/products/security/stealthwatch-cloud/index.html
https://www.radware.com/products/kubernetes-waf1
https://docs.microsoft.com/en-us/
https://kubernetes.github.io/ingress-nginx/deploy/#azure
https://microservices-demo.github.io/docs/quickstart.html
https://docs.gitlab.com/charts/quickstart/

© 2022 Cisco and/or its affiliates. All rights reserved. Page 56 of 56

Appendix E - Feedback

If you have feedback on this design guide or any of the Cisco Security design guides, please send an email to

ask-security-cvd@cisco.com.

mailto:ask-security-cvd@cisco.com

