CVP – Enterprise Cisco SD-WAN Retail Profile (Hybrid WAN, Segmentation, Zone-Based Firewall, Quality of Service, and Centralized Policies)
Contents

Profile introduction... 3

Network profile.. 5
 Topology diagram ... 5
 Hardware and feature specifications .. 6
 Key vertical features .. 6
 Hardware profile .. 7

Use case scenarios... 7
 Test methodology .. 7
 Use cases ... 7

Appendix A: System configuration .. 9

Appendix B: Hybrid transports VPN 0 configuration ... 9
 vEdge with Hybrid Transport .. 9
 cEdge with Hybrid Transport ... 11

Appendix C: Data center LAN-side configuration .. 13
 vEdge Configuration .. 13
 cEdge Configuration .. 14

Appendix D: DHCP and VRRP branch configuration ... 15
 vEdge Configuration .. 15
 cEdge Configuration .. 16

Appendix E: Quality-of-Service (QoS) configuration ... 16
 vEdge Configuration .. 16
 cEdge Configuration .. 22

Appendix F: Guest Wi-Fi with DIA and ZBFW ... 28
 vEdge Configuration .. 28
 cEdge Configuration .. 30

Appendix G: Centralized policies ... 33
 Control policy applied toward branches in Group1 .. 33
 Application-aware routing policy for the branch .. 35
Profile introduction

The Cisco Software Defined WAN (SD-WAN) is a cloud-hosted and cloud-delivered overlay WAN architecture that facilitates digital and cloud transformation for enterprises. It significantly drops WAN costs, reduces the time to deploy services, build application resiliency and provides a robust security architecture for hybrid networks.

Cisco SD-WAN solves many critical enterprise problems, including:

- Establishing transport-independent WAN for lower cost and higher diversity
- Meeting Service-Level Agreements (SLAs) for business-critical and real-time applications
- Providing end-to-end segmentation for protecting critical enterprise compute resources
- Extending seamlessly into the private/public cloud
- Providing direct Internet access from the branches with Zone-Based Firewall
- Providing secured control and data plane connectivity

Cisco SD-WAN provides data plane and control plane separation by having controllers in the cloud (public or private).

This document covers the enterprise solution profile built with the features described below.

Security

The Cisco SD-WAN solution offers secure control and management communications between the routers and the control components. Data plane communication between the WAN Edge routers is encrypted and secured based on IPSec encapsulation.

Hybrid transport

There are two data centers in this profile with each data center having two SD-WAN routers. All of the data-center SD-WAN routers are connected to Internet and Multiprotocol Label Switching (MPLS) transports.

The branches have a range of connectivity models. Some are hybrid and connected to the Internet and MPLS; some are connected to only one transport, either to the Internet or to MPLS.

The same profile was configured and tested with dual Internet transports.

Segmentation and Zone-Based Firewall (ZBFW)

There can be multiple segments in the branches, and, with Cisco SD-WAN, a user is able to keep the segments separate within the branch and on the overlay. In this profile, two VPN segments have been defined. One segment is used for Guest Wi-Fi (VPN 40) and requires Direct Internet Access (DIA) only. A guest segment is not allowed to talk to any other segment within the branch or on the overlay. The store segment (VPN 10) has three VLANs, for VoIP, for Point-Of-Sale (POS) systems, and for employees.

Zone-Based Firewall is deployed for the traffic from Guest Wi-Fi VPN to DIA.
Policy-based hub-and-spoke topology
Centralized policies are deployed to establish a hub-and-spoke topology between the data centers and the branches.

One set of branches prefers the default route from Data Center 1 (DC1), and another set of branches prefers the default from Data Center 2 (DC2).

Quality of Service
Quality of Service (QoS) is configured on all devices. The WAN bandwidth is appropriately distributed between different types of applications. Voice is given dedicated bandwidth on WAN interfaces and placed in a Low Latency Queue. Other traffic classes share the remaining bandwidth among them based on weight assignment.

SLA based application-aware routing policies
Centralized application-aware routing policies are configured for hybrid sites. Voice SLAs are defined and MPLS is defined as the preferred path for Voice traffic. Internet is defined as the preferred path for Best-Effort traffic.

Dynamic Host Configuration Protocol (DHCP) servers for the branches
The WAN edge routers in the branches are configured as DHCP) servers for some of the segments for allocating IP addresses to the clients.

High Availability
In the data center, Border Gateway Protocol (BGP) is deployed for dynamic routing.

One set of branches utilizes Virtual Router Redundancy Protocol (VRRP) on the SD-WAN edge routers connected to the Layer2 (L2) switch within the branch. Another set of branches run Open Shortest Path First (OSPF) Protocol between the SD-WAN edge router and the Layer 3 (L3) switch within the branch.

Table 1. Profile feature summary

<table>
<thead>
<tr>
<th>Deployment area</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security</td>
<td>TLS/DTLS certificate-based control plane, IPsec-based data plane, Segmentation, Zone-Based Firewall</td>
</tr>
<tr>
<td>Services</td>
<td>QoS, DIA, NAT, ACL, DHCP Server</td>
</tr>
<tr>
<td>Routing</td>
<td>BGP, OSPF, VRRP</td>
</tr>
<tr>
<td>Centralized Policies</td>
<td>SLA-based path selection, policy-based hub-and-spoke topology</td>
</tr>
<tr>
<td>Centralized Management</td>
<td>Configuration, Monitoring and Policy management through vManage</td>
</tr>
</tbody>
</table>
Network profile

Based on research, customer feedback, and configuration samples, the SD-WAN profile is designed with a generic deployment topology that you can easily modify to fit any specific deployment scenario. This profile caters to enterprise network deployments with a large number of remote/branch offices and few data centers.

Topology diagram

Figure 1. Topology overview
Figure 2. Branch topology (Branch Type A and Type B)

Hardware and feature specifications
This section describes the 3-D feature matrix, where the hardware platforms are listed along with their Place In Network (PIN) and the relevant vertical deployment.

Key vertical features
Table 2 defines the Hardware, PIN, and SD-WAN features deployed.

Table 2. 3-D feature summary with hardware and PIN

<table>
<thead>
<tr>
<th>PIN</th>
<th>Platforms</th>
<th>Critical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-WAN routers in the data centers</td>
<td>Viptela vEdge 2000, Viptela vEdge 5000, Cisco® ASR 1001-HX, ASR 1002-HX</td>
<td>Dynamic routing (BGP), Quality of Service (QoS), Hybrid WAN, ACL</td>
</tr>
<tr>
<td>SD-WAN routers in the branches</td>
<td>vEdge100, vEdge1000, ISR 4331</td>
<td>Segmentation, Zone-Based Firewall, VRRP/OSPF, DHCP Server, Quality of Service (QoS), Hybrid WAN, NAT/DIA, TLOC-Extension, ACL</td>
</tr>
<tr>
<td>Controller deployment</td>
<td>EXi6.0, vBond, vSmart, vManage</td>
<td>Centralized Management, Control, Provisioning, Monitoring, Policy</td>
</tr>
</tbody>
</table>
PIN

<table>
<thead>
<tr>
<th>Platforms</th>
<th>Critical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet transport</td>
<td>ISR/ASR Routers</td>
</tr>
<tr>
<td>MPLS transport</td>
<td>ISR/ASR Routers</td>
</tr>
<tr>
<td>L2/L3 access switches</td>
<td>CAT3K</td>
</tr>
</tbody>
</table>

Hardware profile

Table 3 defines the set of relevant servers, test equipment, and endpoints that are used to complete the end-to-end deployment.

This list of hardware, along with the relevant software versions and the role of these devices, complements the actual physical topology shown in Figure 1.

Table 3. Hardware profile of servers and endpoints

<table>
<thead>
<tr>
<th>Virtual machine and hardware</th>
<th>Software version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirent</td>
<td>Spirent Test Center</td>
<td>Generates L4/L7 traffic</td>
</tr>
</tbody>
</table>

Use case scenarios

Test methodology

To validate a new release, the network topology is upgraded with the new software image with an existing configuration composed of the use cases and the relevant traffic profile. New use cases acquired from the field or from customer deployments are added to the existing configuration.

With respect to the longevity of this profile, the setup, CPU, and memory use/leaks are monitored during the validation phase. Furthermore, to test the robustness of the software release and platform being tested, negative events are triggered during the use-case execution process.

Use cases

Table 4 describes the use cases executed as part of this profile test. The use cases are divided into buckets of technology areas to view complete coverage of the deployment scenarios.

The technology buckets comprise System Upgrade, Security, Network Service, Monitoring & Troubleshooting, simplified management, system health monitoring along with system, and network resiliency.

Table 4. List of use case scenarios

<table>
<thead>
<tr>
<th>No</th>
<th>Focus area</th>
<th>Use cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>System health monitoring</td>
<td>● Monitor site health</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Monitor device health</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Monitor Bidirectional Forwarding Detection (BFD) session state from the devices</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Monitor control session state</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Monitor BFD / transport performance statistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● View alarms and events</td>
</tr>
<tr>
<td>2</td>
<td>Configuration templates</td>
<td>● Utilize the configuration template from vManage to update the device configuration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Configure/update ACLs and route policies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Define/update ZBFW policies</td>
</tr>
<tr>
<td>3</td>
<td>Centralized policy management</td>
<td>● Utilize vManage GUI interface to provision and update centralized policies</td>
</tr>
<tr>
<td>4</td>
<td>Software upgrade</td>
<td>● Upgrade the controllers and SD-WAN routers through vManage</td>
</tr>
<tr>
<td>5</td>
<td>Admin-tech</td>
<td>● Collect admin-tech from the controllers and SD-WAN edges</td>
</tr>
<tr>
<td>No</td>
<td>Focus area</td>
<td>Use cases</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 6 | Troubleshooting | • SSH into devices from vManage portal
• Issue real-time commands from device dashboard |
| 7 | Security | |
| 8 | Zone-Based Firewall | • Define and apply ZBFW to traffic that is allowed to use DIA from Guest Wi-Fi VPN/VRF |
| 9 | Network services | |
| 10 | Segmentation | • Configure VLAN segments in the branch
• Guest Wi-Fi VPN segmented from corporate VPN
• VPN membership policy for the centralized vSmart policies |
| 11 | Quality of Service (QoS) | • Provide classification of traffic for QoS using Access Control List (ACL) and map it to forwarding classes
• BW allocation forwarding class mapping to queues
• Voice traffic is mapped to Low Latency Queuing (LLQ)
• Shaping on the WAN interfaces |
| 12 | Centralized control policies| • Hub-and-spoke topology between data centers and remote branches
• Different branch groups prefer one data center over another for a default route |
| 13 | Centralized SLA-based routing policy | • Define SLA threshold for voice
• Prefer MPLS for voice
• Prefer Internet for best-effort data |
| 14 | VPN membership policy | • Utilize VPN membership policy to restrict Guest Wi-Fi routing from overlay |
| 15 | Routing | |
| 16 | Quality of Service (QoS) | • In the data center, run BGP between the SD-WAN edge routers and the data-center aggregation routers
• Redistribute routes between BGP and Overlay Management Protocol (OMP) |
| 17 | Application visibility | |
| 18 | BGP | • Run OSPF in the branches access switch/router
• Redistribute OSPF into OMP |
| 19 | System resiliency | • Run VRRP on the vLANs in the branches |
| 20 | DPI/NBAR | • Enable application visibility |
| 21 | Application visibility | |
| 22 | System resiliency | • Enable cFLOWD/netflow export to collector |
| 23 | System resiliency | • Verify system-level resiliency during the following events:
• Power failure
• WAN/LAN interface flaps
• Network impairments as per SLA requirements |
| 24 | Negative testing | • Verify that the system holds well and recovers to working condition after the following negative events are triggered:
• Configuration changes: add/remove configuration snippets, replace configuration
• Clear counters, clear routes
• Routing protocol interface flap |
Appendix A: System configuration

The system configuration is the same across all controllers and WAN Edge routers, including Cisco XE SDWAN (cEdge) and Viptela SDWAN (vEdge).

 system
 host-name vEdge3
 system-ip 11.2.1.3
 site-id 1200
 admin-tech-on-failure
 no route-consistency-check
 sp-organization-name "Cisco Sy1 - 19968"
 organization-name "Cisco Sy1 - 19968"
 vbond vbondesc.com

Appendix B: Hybrid transports VPN 0 configuration

vEdge with Hybrid Transport

 vpn 0
 name "Transport VPN"
 dns 8.8.4.4 secondary
 dns 8.8.8.8 primary
 host vbondesc.com ip 21.1.1.11 21.1.2.11
 interface ge0/0
 ip address 20.1.3.101/24
 nat
 !
 tunnel-interface
 encapsulation ipsec
 color gold
 no allow-service bgp
 allow-service dhcp
 allow-service dns
 allow-service icmp
 no allow-service sshd
 no allow-service netconf
 no allow-service ntp
 no allow-service ospf
 no allow-service stun
allow-service https
!
no shutdown
shaping-rate 10000
qos-map WANQoS
!
interface ge0/1
ip address 20.2.3.101/24
tunnel-interface
 encapsulation ipsec
color mpls restrict
 no allow-service bgp
 allow-service dhcp
 allow-service dns
 allow-service icmp
 no allow-service sshd
 no allow-service netconf
 no allow-service ntp
 no allow-service ospf
 no allow-service stun
 allow-service https
!
no shutdown
shaping-rate 10000
qos-map WANQoS
!
interface ge0/7
mtu 1504
no shutdown
!
!
ip route 0.0.0.0/0 20.1.3.1
ip route 0.0.0.0/0 20.2.3.1
!
cEdge with Hybrid Transport

```plaintext
ip host vbondesc.com 21.1.1.11 21.1.2.11
ip name-server 8.8.4.4 8.8.8.8
ip route 0.0.0.0 0.0.0.0 20.1.15.1 1
ip route 0.0.0.0 0.0.0.0 20.2.15.1 1

interface GigabitEthernet0/0/0
   no shutdown
   arp timeout 1200
   mtu 1500
   negotiation auto
   service-policy output shape_GigabitEthernet0/0/0
   ip mtu 1500
   ip nat outside
   ip address 20.1.15.101 255.255.255.0
exit

interface GigabitEthernet0/0/1
   no shutdown
   arp timeout 1200
   mtu 1500
   negotiation auto
   service-policy output shape_GigabitEthernet0/0/1
   ip mtu 1500
   ip address 20.2.15.101 255.255.255.0
exit

interface Tunnel0
   no shutdown
   ip unnumbered GigabitEthernet0/0/0
   no ip redirects
   ipv6 unnumbered GigabitEthernet0/0/0
   no ipv6 redirects
tunnel source GigabitEthernet0/0/0
   tunnel mode sdwan
```

© 2018 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information.
exit

interface Tunnel1
 no shutdown
 ip unnumbered GigabitEthernet0/0/1
 no ip redirects
 ipv6 unnumbered GigabitEthernet0/0/1
 no ipv6 redirects
 tunnel source GigabitEthernet0/0/1
 tunnel mode sdwan
exit
!

sdwan

interface GigabitEthernet0/0/0
 tunnel-interface
 color gold restrict
 no last-resort-circuit
 vmanage-connection-preference 5
 no allow-service all
 no allow-service bgp
 allow-service dhcp
 allow-service dns
 allow-service icmp
 no allow-service sshd
 no allow-service netconf
 no allow-service ntp
 no allow-service ospf
 no allow-service stun
 allow-service https
 encapsulation ipsec weight 1
exit
exit

interface GigabitEthernet0/0/1
 tunnel-interface
 color mpls restrict
 no last-resort-circuit
 vmanage-connection-preference 5
 no allow-service all
no allow-service bgp
allow-service dhcp
allow-service dns
allow-service icmp
no allow-service sshd
no allow-service netconf
no allow-service ntp
no allow-service ospf
no allow-service stun
allow-service https
encapsulation ipsec weight 1
exit
exit

Appendix C: Data center LAN-side configuration

vEdge Configuration

vpn 10
router
bgp 65220
 address-family ipv4-unicast
 maximum-paths paths 2
 redistribute ospf
 !
neighbor 10.201.1.2
 no shutdown
 remote-as 65221
 !
neighbor 10.201.2.2
 no shutdown
 remote-as 65221
 !
 !
interface 10ge2/2
 ip address 10.201.1.1/24
 no shutdown
 access-list LAN-Classification in
interface 10ge2/3
ip address 10.201.2.1/24
no shutdown
access-list LAN-Classification in
!
!
cEdge Configuration

vrf definition 10
rd 1:10
address-family ipv4
exit-address-family
!
address-family ipv6
exit-address-family
!
!
interface GigabitEthernet1/0/0
no shutdown
vrf forwarding 10
ip address 10.201.3.1 255.255.255.0
!
interface GigabitEthernet1/0/1
no shutdown
vrf forwarding 10
ip address 10.201.4.1 255.255.255.0
!

router bgp 65220
timers bgp 60 180
bgp log-neighbor-changes
distance bgp 20 200 20
address-family ipv4 unicast vrf 10
maximum-paths 2
neighbor 10.201.3.2 remote-as 65221
neighbor 10.201.3.2 activate
neighbor 10.201.3.2 ebgp-multihop 1
neighbor 10.201.4.2 remote-as 65221
neighbor 10.201.4.2 activate
neighbor 10.201.4.2 ebgp-multihop 1
redistribute omp
exit-address-family
!
!

Appendix D: DHCP and VRRP branch configuration

vEdge Configuration

vpn 10
interface ge0/7.10
ip address 10.10.1.1/24
no shutdown
access-list LAN-Classification in
vrrp 10
track-omp
ipv4 10.10.1.3
!
dhcp-server
address-pool 10.10.1.0/25
exclude 10.10.1.1-10.10.1.100
offer-time 600
lease-time 86400
admin-state up
options
default-gateway 10.10.1.3
dns-servers 8.8.8.8 8.8.4.4
!
!
!
cEdge Configuration

ip dhcp excluded-address vrf 10 10.40.1.0 10.40.1.100
ip dhcp pool vrf-10-GigabitEthernet1/0/0.10
vrf 10
default-router 10.40.1.3
dns-server 8.8.4.4 8.8.8.8
network 10.40.1.0 255.255.255.0
lease 1 0 0
exit

interface GigabitEthernet1/0/0.10
no shutdown
encapsulation dot1Q 10
vrf forwarding 10
ip mtu 1500
ip address 10.40.1.1 255.255.255.0
vrrp 10 address-family ipv4
 vrrpv2
 priority 40
 address 10.40.1.3
 track omp shutdown
exit
exit

Appendix E: Quality-of-Service (QoS) configuration

vEdge Configuration

vpn 0
interface ge0/0
 shaping-rate 10000
 qos-map WANQoS
!
in interface ge0/1
 shaping-rate 10000
 qos-map WANQoS
!
vpn 10
interface ge0/7.10

access-list LAN-Classification in

policy
class-map
class Queue0 queue 0
class Voice_EF queue 0
class Queue1 queue 1
class Queue2 queue 2
class NetProtocol_CS3 queue 3
class Queue3 queue 3
class NetMgmt_CS2 queue 4
class Queue4 queue 4
class CriticalData_AF21 queue 5
class Queue5 queue 5
class Queue6 queue 6
class Scavanger_AF11 queue 6
class BestEffort_CS1 queue 7
class Queue7 queue 7
!
access-list LAN-Classification
sequence 1
match
destination-port 1719-1721
!
action accept

class Voice_EF
set
dscp 46
!
!
sequence 11
match
destination-port 2326-2485
!
action accept
class Voice_EF
set
dscp 46
!
!
sequence 21
match
protocol 8 88 89
!
action accept
class NetProtocol_CS3
set
dscp 24
!
!
!
sequence 31
match
destination-port 22
!
action accept
class NetProtocol_CS3
set
dscp 24
!
!
!
sequence 41
match
destination-ip 10.200.200.0/24
!
action accept
class NetMgmt_CS2
set
dscp 16
!
!
!

sequence 51
match
destination-ip 10.200.201.0/24
destination-port 161 162 514
!
action accept
class CriticalData_AF21
set
dscp 20
!
!
!
!

sequence 61
match
destination-port 20 21
!
action accept
class BestEffort_CS1
set
dscp 8
!
!
!

sequence 71
match
destination-ip 10.200.202.0/24
!
action accept
class Scavanger_AF11
set
dscp 10
!
!
! sequence 81
action accept
 class BestEffort_CS1
 set
dscp 10!
!
default-action accept!
qos-scheduler WANQoS_0
 class Queue0
 bandwidth-percent 11
 buffer-percent 11
 scheduling llq!
qos-scheduler WANQoS_1
 class Queue1
 bandwidth-percent 10
 buffer-percent 10
 drops red-drop!
qos-scheduler WANQoS_2
 class Queue2
 bandwidth-percent 10
 buffer-percent 10
 drops red-drop!
qos-scheduler WANQoS_3
 class Queue3
 bandwidth-percent 5
 buffer-percent 5
 drops red-drop!
qos-scheduler WANQoS_4
 class Queue4
 bandwidth-percent 2
buffer-percent 2
drops red-drop
!
qos-scheduler WANQoS_5
 class Queue5
 bandwidth-percent 48
 buffer-percent 48
 drops red-drop
!
qos-scheduler WANQoS_6
 class Queue6
 bandwidth-percent 5
 buffer-percent 5
 drops red-drop
!
qos-scheduler WANQoS_7
 class Queue7
 bandwidth-percent 9
 buffer-percent 9
 drops red-drop
!
qos-map WANQoS
 qos-scheduler WANQoS_0
 qos-scheduler WANQoS_1
 qos-scheduler WANQoS_2
 qos-scheduler WANQoS_3
 qos-scheduler WANQoS_4
 qos-scheduler WANQoS_5
 qos-scheduler WANQoS_6
 qos-scheduler WANQoS_7
!
!
cEdge Configuration

sdwan

interface GigabitEthernet1/0/0.10
access-list LAN-Classification in exit

class-map match-any BestEffort_CS1
 match qos-group 7
!
class-map match-any CriticalData_AF21
 match qos-group 5
!
class-map match-any NetMgmt_CS2
 match qos-group 4
!
class-map match-any NetProtocol_CS3
 match qos-group 3
!
class-map match-any Queue0
 match qos-group 0
!
class-map match-any Queue1
 match qos-group 1
!
class-map match-any Queue2
 match qos-group 2
!
class-map match-any Queue3
 match qos-group 3
!
class-map match-any Queue4
 match qos-group 4
!
class-map match-any Queue5
 match qos-group 5
!
class-map match-any Queue6
 match qos-group 6
!
class-map match-any Queue7
 match qos-group 7
!
class-map match-any Scavanger_AF11
 match qos-group 6
!
class-map match-any Voice_EF
 match qos-group 0
!
policy-map WANQoS
 class Queue0
 priority percent 11

 class Queue1
 random-detect
 bandwidth percent 10

 class class-default
 random-detect
 bandwidth percent 10

 class Queue3
 random-detect
 bandwidth percent 5

 class Queue4
 random-detect
 bandwidth percent 2

 class Queue5
 random-detect
 bandwidth percent 48

 class Queue6
 random-detect
bandwidth percent 5
!
class Queue7
 random-detect
 bandwidth percent 9
!
!
policy-map shape_GigabitEthernet0/0/0
 class class-default
 service-policy WANQoS
 shape average 10000000
!
!
policy-map shape_GigabitEthernet0/0/1
 class class-default
 shape average 100000000
!
!
interface GigabitEthernet0/0/0
 no shutdown
 arp timeout 1200
 ip address 20.1.16.101 255.255.255.0
 ip mtu 1500
 ip nat outside
 mtu 1500
 negotiation auto
 service-policy output shape_GigabitEthernet0/0/0
exit
interface GigabitEthernet0/0/1
 no shutdown
 arp timeout 1200
 ip address 20.2.16.101 255.255.255.0
 ip mtu 1500
 mtu 1500
 negotiation auto
 service-policy output shape_GigabitEthernet0/0/1
exit
policy
class-map
 class BestEffort_CS1 queue 7
 class CriticalData_AF21 queue 5
 class NetMgmt_CS2 queue 4
 class NetProtocol_CS3 queue 3
 class Queue0 queue 0
 class Queue1 queue 1
 class Queue2 queue 2
 class Queue3 queue 3
 class Queue4 queue 4
 class Queue5 queue 5
 class Queue6 queue 6
 class Queue7 queue 7
 class Scavanger_AF11 queue 6
 class Voice_EF queue 0
!
access-list LAN-Classification
sequence 1
 match
 destination-port 1719-1721
 !
 action accept
 class Voice_EF
 set
dscp 46
 !
!
sequence 11
 match
 destination-port 2326-2485
 !
 action accept
 class Voice_EF
 set
dscp 46
 !
!
! sequence 21
match
 protocol 8 88 89
! action accept
 class NetProtocol_CS3
 set
 dscp 24
!
! sequence 31
match
 destination-port 22
! action accept
 class NetProtocol_CS3
 set
 dscp 24
!
! sequence 41
match
 destination-ip 10.200.200.0/24
! action accept
 class NetMgmt_CS2
 set
 dscp 16
!
! sequence 51
match
 destination-ip 10.200.201.0/24
destination-port 161 162 514
!
action accept
 class CriticalData_AF21
 set
dscp 20

 !
!
sequence 61
match
destination-port 20 21
!
action accept
 class BestEffort_CS1
 set
dscp 8

!
sequence 71
match
destination-ip 10.200.202.0/24
!
action accept
 class Scavanger_AF11
 set
dscp 10

!
sequence 81
action accept
 class BestEffort_CS1
 set
dscp 10

 !
Appendix F: Guest Wi-Fi with DIA and ZBFW

vEdge Configuration

```plaintext
! default-action accept
!

vpn 40
 name "Guest Wifi"
 interface ge0/7.40
 ip address 10.10.4.1/24
 no shutdown
 access-list WIFI-Classification in
 policer LimitWIFI out
 vrrp 40
  track-omp
  ipv4 10.10.4.3
!

dhcp-server
  address-pool 10.10.4.0/25
  exclude 10.10.4.1-10.10.4.100
  offer-time 600
  lease-time 86400
  admin-state up
  options
   default-gateway 10.10.4.3
   dns-servers 8.8.8.8 8.8.4.4
!
!
ip route 0.0.0.0/0 vpn 0
!
policy
 policer LimitWIFI
  rate 2000000
  burst 30000
  exceed drop
!
```
zone GuestWifi
 vpn 40
!
zone InternetZone
 vpn 0
!
zone-pair ZP_GuestWifi_Internet_-_630006705
 source-zone GuestWifi
 destination-zone InternetZone
 zone-policy GuestWifiZBFW
!
zone-based-policy GuestWifiZBFW
 sequence 1
 match
 protocol 6
 destination-port 443 80 8080 8443
 !
 action inspect
 !
 !
 sequence 11
 match
 protocol 6 17
 destination-port 53
 !
 action inspect
 !
 !
 default-action drop
!
zone-to-nozone-internet allow
!
cEdge Configuration

interface GigabitEthernet0/0/0
 no shutdown
 arp timeout 1200
 ip address 20.1.16.101 255.255.255.0
 ip mtu 1500
 ip nat outside
 mtu 1500
 negotiation auto
 service-policy output shape_GigabitEthernet0/0/0
exit

sdwan
 interface GigabitEthernet1/0/0.10
 access-list LAN-Classification in
exit
vrf definition 40
 rd 1:40
 address-family ipv4
 exit-address-family
 !
 address-family ipv6
 exit-address-family
 !
 !
 ip dhcp excluded-address vrf 40 10.40.1.0 10.40.1.100
 ip dhcp pool vrf-40-GigabitEthernet1/0/0.40
 vrf 40
 lease 1 0 0
 default-router 10.40.1.3
 dns-server 8.8.4.4 8.8.8.8
 network 10.40.1.0 255.255.255.0
exit
 ip dhcp use hardware-address client-id

 ip access-list extended GuestWifiZFW-seq-1-acl_
11 permit object-group GuestWifiZBFW-seq-1-service-og_ any any
!

ip access-list extended GuestWifiZBFW-seq-11-acl_
11 permit object-group GuestWifiZBFW-seq-11-service-og_ any any
!

ip nat inside source list nat-dia-vpn-hop-access-list interface GigabitEthernet0/0/0 overload
ip nat translation tcp-timeout 60
ip nat translation udp-timeout 1
ip nat route vrf 40 0.0.0.0 0.0.0.0 global
!

! policy-map type inspect GuestWifiZBFW
class GuestWifiZBFW-seq-1-cm_
 inspect
!
class GuestWifiZBFW-seq-11-cm_
 inspect
!
class class-default
drop
!
!
interface GigabitEthernet1/0/0.40
no shutdown
encapsulation dot1Q 10
vrf forwarding 40
ip address 10.40.1.1 255.255.255.0
vrrp 10 address-family ipv4
vrrpv2
 address 10.40.1.3
 priority 40
 track omp shutdown
exit
exit
!
object-group service GuestWifiZBFW-seq-1-service-og_
tcp-udp 53
!
object-group service GuestWifiZBFW-seq-11-service-og_
tcp 80
tcp 443
tcp 8080
tcp 8443
!
parameter-map type inspect-global
 alert on
 log dropped-packets
 multi-tenancy
 vpn zone security
!
zone security GuestWifi
 vpn 40
!
zone security InternetZone
 vpn 0
!
zone-pair security ZP_GuestWifi_Internet_630006705 source GuestWifi destination InternetZone
 service-policy type inspect GuestWifiZBFW
!
policy
 policer LimitWIFI
 rate 2000000
 burst 30000
 exceed drop
!
access-list WIFI-Classification
 sequence 1
 action accept
 policer LimitWIFI
 class Scavanger_AF11
 set
dscp 10
!

Appendix G: Centralized policies

Control policy applied toward branches in Group1

policy
 control-policy Group1BranchControl-Out
 sequence 1
 match route
 site-list DC1
 prefix-list DefaultPrefix
 !
 action accept
 set
 preference 100
 !
 !
 sequence 11
 match route
 site-list DC1
 !
 action accept
 !
 !
 sequence 21
 match route
 site-list DC2
 prefix-list DefaultPrefix
 !
 action accept
set
 preference 50
!
!
!
sequence 31
 match route
 site-list DC2
 !
 action accept
 !

!
sequence 41
 match tloc
 site-list DC1
 !
 action accept
 !

!
sequence 51
 match tloc
 site-list DC2
 !
 action accept
 !

 default-action reject
 !

vpn-membership vpnMembership_303141673
 sequence 10
 match
 vpn-list storeVPN
 !
 action accept
 !

 default-action reject
 !
lists
 prefix-list DefaultPrefix
 ip-prefix 0.0.0.0/0
 !
 site-list BranchGroup1
 site-id 1000-1999
 !
 site-list BranchGroup2
 site-id 2000-2999
 !
 site-list DC1
 site-id 100
 !
 site-list DC2
 site-id 200
 !
 vpn-list storeVPN
 vpn 10
 !
 !
 apply-policy
 site-list BranchGroup1
 control-policy Group1BranchControl-1 out
 vpn-membership vpnMembership_303141673
 !
 !

Application-aware routing policy for the branch

policy
 sla-class BestEffort
 latency 250
 loss 10
 jitter 30
 !
 sla-class CriticalData
 latency 200
loss 3
jitter 20
!
sla-class Voice
latency 150
loss 1
jitter 5
!
app-route-policy _storeVPN_CVP-APP-Routelu
vpn-list storeVPN
 sequence 1
 match
dscp 46
 !
 action
 sla-class Voice preferred-color mpls
 !
 !
 sequence 11
 match
 dscp 20
 !
 action
 sla-class CriticalData preferred-color mpls
 !
 !
 sequence 21
 match
 dscp 0-10
 !
 action
 sla-class BestEffort preferred-color gold
 !
 !
lists
prefix-list DefaultPrefix
 ip-prefix 0.0.0.0/0
! site-list BranchGroup1
 site-id 1000-1999
!
site-list BranchGroup2
 site-id 2000-2999
!
site-list DC1
 site-id 100
!
site-list DC2
 site-id 200
!
vpn-list storeVPN
 vpn 10
!
!
apply-policy
 site-list BranchGroup1
 control-policy Group1BranchControl-Out out
!
!