
Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Cisco Secure ADC
and Cisco ACI Ansible
Automation

© 2022 Cisco and/or its affiliates. All rights reserved.

Contents

Introduction ... 2

Automating Application Delivery Services 2

Supporting Files .. 2

Supporting Documentation ... 2

Demonstration Network Architecture .. 3

Prerequisites ... 4

DevOps Station Setup ... 4

Ansible Automations ... 5

Automation of Compute and Networking Resources 13

Summary .. 16

Example Playbooks ... 16

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Introduction
Cisco® Secure Application Deliver Controller (ADC) ensures that applications are available, even at times of peak
traffic, enhancing reliability and trust within tenant networks and optimizing data center performance. Individual
instances or clusters of Cisco Secure ADCs can be configured to act as a virtual server and receive traffic for
distribution to backend servers on a specific virtual IP address and port for each application. The required processing
is performed on the application traffic (such as SSL offload or Web Application and API Protection functions), and
traffic is distributed to the appropriate backend (“real”) servers on which the application is running.

This document demonstrates the interoperability of Cisco Secure ADC (OEM Radware Alteon1) and Cisco ACI while
using Ansible for automation.

It provides an example of Day 1 automation for provisioning an ADC service infrastructure, for an example web
application. The application consists of several web servers (real servers) that will be presented as a single application
service address (VIP). The resulting ADC service should provide capabilities to allow incoming HTTP/S traffic destined
for the application service address to be dynamically/algorithmically distributed (load balanced) to each real server.

Optionally, enhanced features like SSL Inspection, Web Application Firewall (WAF) (aka, Web Application and API
Protection [WAAP]), and API protection may be enabled on the Cisco Secure ADC platform.

Automating Application Delivery Services
Whether you are performing the initial configuration or orchestrating workflows within data center service definitions
to account for expected or observed capacity, automating L4-7 service enhancements can greatly reduce the time to
deploy and dynamically scale applications. This guide provides the common tasks that can be performed via Ansible
to automate the provisioning and management of ADC services.

Application delivery can be a provided “service” within itself. Data center operators can provide ADC services to
internal or external customers to enhance the performance of the applications that their customers own and maintain.
Cisco Secure ADC can also be used to protect applications by providing Web Application Firewall (WAF) and bot
management capabilities and can be used to simply provide SSL/TLS processing acceleration or decryption services
for security infrastructure.

Supporting Files
The supporting files are located here: https://github.com/Radware/cisco-adc/tree/main/common_ansible_tasks

Supporting Documentation
• Cisco ACI and Cisco Secure ADC Design Guide: www.cisco.com/c/en/us/solutions/data-center-virtualization/

application-centric-infrastructure/aci-secure-adc-design-guide.html
• Ansible Documentation: https://docs.ansible.com
• Cisco ACI Fundamentals: www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/4-x/aci-fundamentals/

Cisco-ACI-Fundamentals-42x.html
• Ansible Cisco ACI Guide: https://docs.ansible.com/ansible/latest/scenario_guides/guide_aci.html
• Cisco DevNet Learning Labs about ACI: https://developer.cisco.com/learning/tracks/aci-programmability
• Ansible Cisco ACI Collection: https://galaxy.ansible.com/cisco/aci
• Ansible Radware Collection: https://galaxy.ansible.com/radware/radware_modules
• Alteon Multi Cloud: www.radware.com/solutions/alteon-multi-cloud/
• Cisco Secure ADC Datasheet: www.cisco.com/c/en/us/products/collateral/security/secure-adc-alteon-ds.pdf

1 Alteon is a registered trademark of Radware, Inc.

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Demonstration Network Architecture
For illustration purposes, a traditional data center network topology is shown below in Figure 1. The two-tiered, spine-
and-leaf architecture is assumed to be the environment where Cisco Secure ADC will reside within these examples.
Typically, Cisco Secure ADC will be deployed under the leaf tier without operational visibility to the encapsulated
frames. Meaning: Cisco Secure ADC will only see traffic within the unencapsulated overlay networks and routing
domains. However, a single Cisco Secure ADC can service multiple tenants due to the segmentation within the
platform. The examples provided assume residence within a single tenant.
Figure 1. Typical spine-and-leaf topology

APIC

APIC
APIC

External
network
(L3Out)

Spine

Leaf

Cisco ACI® fabric
(Cisco Nexus® 9000)

L4-L7 services
(FW, LB)

APIC
(Application Policy

Infrastructure Controller)

Servers and storages

VM VM

Figure 2 below illustrates the logical relationships between managed objects within Cisco ACI Management
Information Model and their correlating physical counterparts.
Figure 2. Logical diagram of ACI objects

Tenant ‘’Tenant1’’

Cisco APIC

Alteon® Cloud Control

vCenter

VRF ‘’VRF1’’

EPG ‘‘External’’

Clients

L4-L7 Device

Secure ADC
Active

Secure ADC
Standby

Cluster

Web servers

EPG ‘‘Web’’

Contract
‘‘ADC-to-Web’’

Contract
‘‘External-to-ADC’’

BD: ‘‘BD-External’’ BD: ‘‘BD-Web’’

APIC

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Prerequisites
DevOps Station
This document assumes the use of a Linux-based “DevOps Station.” This host is assumed to be the Ansible “control
node” within the examples, and it is assumed to be where playbooks and commands are invoked. For this document,
a current release of Ubuntu Desktop was used. Any distribution of Linux may be used if the rest of the requirements
are met.

Cisco ACI Ansible Support
• Ansible 2.9 or later

Cisco Secure ADC Ansible Support
• Ansible 2.9 or later
• alteon-sdk python package
• Alteon Version 31.0.10.0, 32.2.2.0, or later

Alteon Cloud Control for Cisco ACI
Alteon Cloud Control for ACI is a software module available on Cisco DC App Center that provides integration
between Cisco Application Policy Infrastructure Controller (APIC) and Radware Alteon Cloud Control. It enables
monitoring and troubleshooting ADC functionality from within Cisco APIC and provides the administrator visibility of
the entire application environment (L2-L7) from the ACI interface.

An Alteon Multi Cloud system can deploy Cisco Secure ADC services in multiple AWS, Azure, VMware, and
OpenStack cloud environments. Alteon Cloud Control (ACC) allows you to define ADC services for your applications
and deploys the Cisco Secure ADC instances required for that service on the application cloud environment, where it
continuously monitors the Cisco Secure ADC clusters, performs automatic scaling as needed by the application traffic,
and allows you to monitor and troubleshoot application performance. For more information see: www.radware.com/
solutions/alteon-multi-cloud/

Alteon Cloud Control is an optional component covered in this guide. The following requirement is only needed if
using the Alteon Cloud Control integration for Cisco ACI that is available on the Cisco DC App Center.

• Alteon Cloud Control version 1.4.0 or later

DevOps Station Setup
Once Ubuntu has been installed on the DevOps Station, the following commands must be executed to ensure that
remote access, ansible, and supporting modules are present.

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Once complete, these commands will result in the installation of:

• An OpenSSH server to gain access to the DevOps Station remotely
• Ansible from the Ubuntu Linux Distribution
• pip Python package installation tool from the Ubuntu Linux Distribution
• The convenience package to set the global Ubuntu Python interpreter to Python version 3 for Ubuntu
• Radware’s Python SDK for Alteon/Cisco Secure ADC
• Radware’s collection of Ansible modules
• VMware community collection of Ansible modules
• Cisco’s collection of Ansible modules for Cisco ACI

Ansible Automations
This section details common provisioning tasks targeting Cisco ACI and Cisco Secure ADC that can be performed
using Ansible. The products, tasks, and playbooks demonstrated within this guide are not limited to the Ansible setup
or examples provided. The examples in this guide either assume that inventories and common variables are either
managed externally via a customer-specific Ansible configuration or the variables and target systems are explicitly
defined within. The variables within the examples are assumed to be defined either within the playbook they are
contained or imported.

Any directory hierarchy and configuration of Ansible are only presented as a sample for demonstration purposes. Instructions
for deploying full CI/CD frameworks, methods, and tools for full management are outside the scope of this document.

Common Cisco ACI Tasks
For illustration purposes, below is a diagram of a portion of the ACI Management Information Tree (MIT). It is a
hierarchical representation of the physical and logical components managed by Cisco APIC. The diagram shows the
relationship of different managed objects.

Tenant

Outside
Network

Endpoint
Group

Application
Profile

Bridge
Domain VRF Contract

Subnet Subject

34
85

05

Filter

Legend:
Solid lines indicate that objects contain the ones below.
Dotted lines indicate a relationship.
1:n indicates one to many; n:n indicates many to many.

n n n n n n

n
n

n n

n

1
1

11

1 1
1 11 1

n
n

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Create Tenant
In the context of Cisco ACI, a tenant is a unit of isolation from a policy perspective. Tenants can represent a specific
customer, application, business unit, application owner, etc. A tenant represents the highest-level container object to
differentiate between the objects that define the related networking constructs (such as VRFs, bridge domains, and
subnets) and the objects that define the related policies such as application profiles and endpoint groups.

Below is an example of how to create a tenant using the aci_tenant module.

Create Tenant VRF
Virtual Routing and Forwarding (VRF) objects define tenant networks. They are unique Layer 3 forwarding and
application policy domains. A tenant can have multiple VRFs.

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Create Bridge Domain and Associate with VRF
Within ACI, the bridge domain represents the Layer 2 broadcast boundary and is generally linked to a VRF within
a tenant. The example presented creates a bridge domain with the default parameters and associates it with an
example VRF.

Create EPGs
Endpoint Groups (EPGs) are logical groupings of application endpoints within the ACI Management Information Tree
(MIT). The design of EPG mappings is specific to application environments. The example provided creates a basic EPG
for use in policy enforcement within ACI. The following reference details the usage and design of EPGs within ACI.

www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-
paper-c11-731630.html

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Create Logical L4-L7 ADC Device
As of the time of this writing, Ansible modules for adding or removing L4-L7 devices within ACI do not exist. However,
the Ansible modules for Cisco ACI include the aci_rest module. This module allows you to automate functions not
covered by the rest of the library. The task of creating a logical L4-L7 ADC within ACI must use this module. The
example provided below shows how you can send JSON payload via the aci_rest module. Alternatively, YAML-style or
XML payload can be used. The XML option may be more suitable for complex tasks that require templating. For this,
Ansible provides Jinja2 templating functionality to enable use of dynamic expressions with access to Ansible variables
and facts. The XML templates can be explicitly stated in the “content” within your Ansible playbook or included as an
external Jinja2 template file.

References

• Cisco ACI REST API Configuration Guide: www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/
rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide.html

• ACI REST API object model: https://developer.cisco.com/site/apic-mim-ref-api/
• Ansible Jinja2 templating: https://docs.ansible.com/ansible/latest/user_guide/playbooks_templating.html

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Note: This example will result in a cluster with missing logical interfaces and is only provided as an example for passing API
calls via the Ansible module.

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Create Contract
Below is a representation of the policy model used by Cisco APIC. An Endpoint Group (EPG) either consumes or
provides a contract. The concepts for creating and managing contracts within ACI is detailed here:

www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-
paper-c11-743951.html

Contracts can be created and manipulated using Ansible. Below is an example of how to automate the creation of a
basic contract.

Common Cisco Secure ADC Tasks
Ansible modules have been created to automate the provisioning and management of Cisco Secure ADC instances.
The examples provided illustrate the common tasks that can be executed to provision basic network parameters and
create a load-balancing service for a managed application.

Create IP Interfaces

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Create Default Gateway

Create Real Servers
Real servers are the actual servers (physical or virtual) that comprise a pool of resources that Cisco Secure ADC can
load-balance incoming traffic to as part of an application.

Create Server Group
Server groups contain the parameters related to the real servers associated with an application and the algorithms
used for load balancing and any health check parameters used to determine real server availability.

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Common ADC Operational Parameters

Administrative Authentication

The following task provisions a primary and secondary RADIUS server for administrative access.

Audit Logging (syslog)

The following task provisions a primary syslog server for Cisco Secure ADC and sets the desired logging level.

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Automation of Compute and Networking Resources
Ansible automation can be employed to manage the lifecycle of networking and compute resources to serve Cisco
Secure ADC services. More information on how to use environment-specific modules can be found here: https://
docs.ansible.com/ansible/2.9/modules/list_of_cloud_modules.html

In addition to Day 1 automation, virtual resource templates for compute, memory, storage, and networking can be
predefined for virtual ADC instances and deployed (or reclaimed) programmatically on demand to service changing
capacity requirements.

Within this section of the guide, we adopt the operational service model where individual running instances of Cisco
Secure ADC are treated as expendable/repeatable and any critical configurations are present and saved elsewhere
(for example: stored in Vision Management, Alteon Cloud Control, a CMDB, etc.). These are then available for other
cloned instances to either use or have pushed to them during or shortly after creation; these are “cattle” in the “cattle
vs. pets” DevOps model adopted in most public and private cloud environments. In this model, individual instances
of Cisco Secure ADC are not “special” and can be easily replicated within the virtual environment. The function
they provide is considered critical, but single instances of ADC “appliances” are not. This is in stark contrast to the
“monolithic” model where standalone physical appliances are cared for in a much more deliberate way.

Redundancy and high availability are assumed to be provided within the hypervisor environment or within an
organization’s normal lifecycle and methodologies supporting the care of underlying physical assets or even provided
under SLA from an operator’s infrastructure-as-a-service vendor. In short, single virtual instances of an ADC are only
part of the picture when providing an “ADC service” for an organization—at times, these instances are even temporary
in “scale in/scale out” scenarios.

Alteon Cloud Control for Cisco ACI
As previously mentioned, Alteon Cloud Control for ACI is a Cisco DC App Center application that provides integration
between Cisco Application Policy Infrastructure Controller (APIC) and Radware Alteon Cloud Control. It enables
monitoring and troubleshooting ADC functionality from within Cisco APIC and provides the administrator visibility of
the entire application environment (L2-L7) from the ACI interface. Automations are an inherent part of the functionality
of Alteon Cloud Control, and compute resources related to Cisco Secure ADC can be optionally provisioned and
operated using this solution (either as an augmentation of an existing Ansible-focused framework or as a standalone
approach.) The Alteon Cloud Control for ACI application is focused on providing “Day 2” visibility of applications
delivered by Cisco Secure ADC and is recommended but not required. The remainder of this section details common
tasks to manage compute and networking aspects using only Ansible on the most common hypervisor.

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Common VMware ESXi Ansible Tasks
VMware ESX/vSphere is one of the most common hypervisors in use in data center environments today. Naturally,
Cisco Secure ADC is supported in this environment. The examples in this guide assume that a VMware environment
already exists where the ADC services will reside. Furthermore, it is assumed that Cisco ACI components are already
present and managed within (VMM domains, etc.).

Deploy Cisco Secure ADC Virtual Appliance from OVA

The first step to creating an instance of Cisco Secure ADC within VMware ESX/vSphere is to create an instance from
the official OVA. Below is an example of how to perform this function within Ansible.

This will result in an instantiation of Cisco Secure ADC. The network placement is dependent on the existing
environment. The first interface provisioned is assigned to the dedicated management interface of the Cisco Secure
ADC instance. Once present, the ADC can be powered up as is or used as a basis for creating a stored template for
ease and speed of deployment within the environment.

Deploy Cisco Secure ADC Virtual Appliance from Stored Template

Once the initial OVA has been provisioned within the vCenter, it can be converted to a template within the vCenter
interface. This is generally a deliberate task that is assumed to happen infrequently.

Once the template has been created, new ADC instances can be created using it. Below is an example.

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Query ESXi for Cisco ADC Virtual Appliance Resource Information
When a new guest ADC is created, there are items that are dynamically created (such as UUIDs) that other modules
and tasks require. These can be obtained by using the vmware_guest_info module. Below is an example of a task that
returns all the information related to the virtual ADC.

Changing Running State of Cisco Secure ADC VA
The example below shows how to change the “state” of a guest ADC. To change the operational state, the options are:

• poweredoff
• poweredon
• restarted
• suspended
Note: These are not the only options possible for the “state” (this variable also controls if the ADC is present within the inventory or not), so
care should be taken to ensure that if the intention is to reboot or power cycle the virtual ADC, you only set it to one of the options above.

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Removing a Cisco Secure ADC VA

The following example details how to remove a Cisco Secure ADC from the VMware inventory. Note that the state of
the ADC must be “poweredoff” to be removed (see example above).

Note: This will completely remove the ADC from the inventory within VMware and all data will be lost. Use with care.

Summary
Within this guide we have provided a foundation of common tasks that can be automated using Ansible when
managing Cisco Secure ADC deployed within Cisco ACI Fabric. Automation of the provisioning of Cisco Secure ADC
services can ensure rapid application deployment and horizontal scaling when on-demand expansion is required.
The tasks within this guide can be used for initial provisioning, a basis for repeatable and programmatic operational
functions, or even a starting point for reusable workflows to integrate Cisco Secure ADC into CI/CD pipelines.

Ansible can be used for many more operational tasks, and playbooks can be crafted to manage and orchestrate
changes across platforms from different vendors. We encourage further exploration into the references section and
the Ansible documentation for further details on the possibilities.

Example Playbooks
The following sections provide a collection of related tasks already covered in this document. The purpose is that
they can be used to assist in the creation of comprehensive playbooks with site-specific detail (generally provided via
Ansible’s native external inclusion mechanism) or to merely illustrate the sequence in which the tasks can be performed.

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Cisco ACI Basic Setup Playbook
The following playbook will automate many of the manual steps needed to establish a working environment within
ACI. The example assumes that certain finalizing steps are performed manually based on operator knowledge about
the environment (interfaces, addresses, protocols, etc.).

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Cisco Secure ADC Basic SLB Playbook
This example illustrates an entire playbook to provision networking and basic load-balancing functions (on a running
Cisco Secure ADC) for an example application.

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved.

Design guide
Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved. Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list
of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1110R) CXX-XXXXXX-00 06/22

