

© 2022 Cisco and/or its affiliates. All rights reserved. Page 1 of 91

Catalyst Programmability and
Automation

October 2022

White paper

Cisco public

© 2022 Cisco and/or its affiliates. All rights reserved. Page 2 of 91

Contents

Programmability and automation overview 3

Day 0: Provisioning automation 4

Day 1: Model-driven programmability 4

Day 2: Model-driven telemetry 5

Day N: Device optimization 5

Cisco IOS XE operational consistency 6

Yet Another Next Generation (YANG) data modeling language (RFC 6020, RFC 7950) 6

YANG on GitHub 8

YANG version 1.1 transition 9

YANG Suite tooling 9

Cisco native YANG 10

Standards-based and third-party YANG 15

YANG summary 16

Day 1: Model-driven programmability 16

Security and authentication 16

NETCONF protocol (RFC 6241) 19

RESTCONF (RFC 8040) 23

gNMI 25

Tooling: Cisco YANG Suite 29

Tooling: Cisco pyATS 45

Tooling: Cisco Network Services Orchestrator (NSO) 46

Tooling: Ansible 47

Tooling: Terraform 54

Day 2: Model-driven telemetry 58

NETCONF and SNMP event streams 58

NETCONF dial-in model-driven telemetry 62

gNMI dial-in model-driven telemetry 64

gRPC dial-out model-driven telemetry 64

Tooling: Cisco YANG Suite 69

Tooling: Cisco Crosswork 72

Tooling: Cisco Telemetry Broker 73

Tooling: The TIG stack 74

Day N: Device optimization 76

gNOI 77

CLI to YANG 80

Guest Shell 81

Conclusion 90

Additional resources 90

Developer community and feedback 91

Blogs 91

© 2022 Cisco and/or its affiliates. All rights reserved. Page 3 of 91

Programmability and automation overview

The world of programmability has been evolving for years, and with the latest Cisco IOS XE releases, we've

included new Yet Another Next Generation (YANG) models to bring additional automation to wireless

technology. With the use of APIs, interacting with devices and retrieving data has gotten much easier. Back in

the day, we used many commands sent from command-line interfaces (CLIs) to communicate with the

software. In addition, the Simple Network Management Protocol (SNMP) was frequently used for network

management. Fast forward to today: We now have a new way to interact with software, commonly called an

application programming interface, or API. Even though CLIs and SNMP are widely used, they are not as

efficient and scalable as APIs.

This document dives into the different programmable interfaces used to communicate with the various Cisco

IOS XE devices, specifically the Cisco Catalyst 9300 Series Switches but also the Catalyst 9800 Series Wireless

Controllers and the Catalyst 8000 Edge Platforms Family. We discuss the pros and cons of using Network

Configuration Protocol (NETCONF), Representational State Transfer Configuration (RESTCONF), and the gRPC

network management interface/Google remote procedure call (gNMI/gRPC) protocols, and the main differences

between them.

 Figure 1.

Programmability and automation overview

© 2022 Cisco and/or its affiliates. All rights reserved. Page 4 of 91

Day 0: Provisioning automation

Day 0 provisioning automation features include zero-touch provisioning (ZTP) and the Pre-Boot Execution

Environment (PXE), as well as a variety of options for deployment of virtual machines. These day 0 features can

be used with a variety of other day 1, day 2, or day N features to achieve provisioning automation in order to

successfully configure and deploy new network devices in various campus and enterprise environments.

Day 1: Model-driven programmability

Cisco IOS XE for the Catalyst hardware has several options for programmatic configuration. Traditional methods

for configuring include the CLI, SNMP, or the WebUI, but these have now been expanded to include the

programmatic interfaces, such as NETCONF, RESTCONF, and the gNMI programmatic interfaces and protocols.

YANG data models define what data is accessible over the programmatic interfaces, and they come in several

varieties, including Cisco IOS XE features. They are defined within the native data models, while standard and

vendor-agnostic features are defined within the open data models. Either model can be used for many tasks.

However, features specific to Cisco IOS XE are available only in the native models, which are models created by

Cisco specifically for devices and software. The native data models provide the most comprehensive and

operational coverage for device functionality.

 Figure 2.

Model-driven programmable interfaces

© 2022 Cisco and/or its affiliates. All rights reserved. Page 5 of 91

Day 2: Model-driven telemetry

Model-driven telemetry or “streaming telemetry” is a day 2 feature using NETCONF and gNMI “dial-in” and

gRPC “dial-out” telemetry interfaces. These telemetry interfaces provide a variety of options for publishing

network telemetry data to third-party collectors for event processing, analysis, and alerting.

 Figure 3.

Model-driven telemetry interfaces

Day N: Device optimization

The day N device optimization features help with operational efficiency, including support for third-party

services and integrations within the embedded Guest Shell Linux operating system, the On-Box Python

interpreter, and API to Cisco IOS XE. Additionally, device optimization features provide a variety of gNOI

workflow APIs that support single call operations for certificate management, operating system software

management, and factory reset operations.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 6 of 91

Cisco IOS XE operational consistency

Cisco IOS XE software runs on a large variety of hardware solutions, including virtual machines, and the cross-

reference of which feature is supported on which platform and the version supported are detailed in the chart

below. Additional details for each feature, including the supported hardware and software platforms, are also

described in the Programmability Configuration Guide listed in the resources at the end of this document.

 Figure 4.

Cisco IOS XE operational consistency

Yet Another Next Generation (YANG) data modeling language (RFC 6020, RFC 7950)

YANG is a standards-based data modeling language used to create device configuration requests and retrieve

operational (show command) data. It has a structured format similar to that of a human-readable computer

program. Several applications are available that can be run on a centralized management platform (for example,

a laptop) to create these configuration and operational data requests.

There are both standard (common) YANG data models that apply to all vendors (for example, a request to

disable or shut down an Ethernet interface should be identical for both Cisco and third-party devices) as well as

device (native, vendor-specific) data models that facilitate configuring or collecting operational data associated

with proprietary vendor features.

YANG is a data modelling language for NETCONF, RESTCONF, and gNMI. YANG models within a Cisco IOS XE

device have been defined to describe how to structure the data to send or receive. The YANG standard was

defined in RFC 6020 and has been updated in RFC 7950. Two main types of YANG models are in use: native

and open. The models are further categorized as either configuration or operational models. The configuration

models can be used for programmatic configuration, while the operational models can be used with telemetry

to show real-time operational data.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 7 of 91

 Figure 5.

Who defines the YANG models?

There are a variety of YANG modules that can be used for different configuration, operational, and RPC

operations, for both programmability and telemetry use cases. The Cisco native data models are the most

feature-rich and include support for Cisco features and configurations. IETF and IEEE data models are RFC-

defined and ratified YANG standards that have also been implemented. These RFC models support a variety of

use cases, from the base streaming telemetry implementation to the listing of support data models, datastores,

and streams. OpenConfig is a network operator-driven YANG data model group that also has support for

configuration and telemetry use cases.

Deviations to YANG are allowed when the server is not able or designed to implement a model as written, and

these are specified in the “-deviation.YANG” files provided by the YANG interfaces. These deviations allow the

network management station to easily understand which nodes within a particular YANG module are not

supported.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 8 of 91

YANG on GitHub

The data models are published for each Cisco IOS XE release in the Yang Models repository on GitHub.com at

https://github.com/YangModels/yang/tree/master/vendor/cisco/xe. The supported YANG modules or

capabilities for each of the Cisco IOS XE hardware platforms are also published on GitHub, along with an

extensive README, notes on backward-incompatible changes or breaking changes, and a variety of other

resources, including both YANG version 1.0 and YANG 1.1 version definitions.

The data models can also be retrieved from the running device over any of the programmatic interfaces by

retrieving the contents of the IETF-YANG-Library data model. This will list only the data models supported on

the device and can be used programmatically by tooling and systems and network controllers to understand

which YANG models are supported on the network device.

 Figure 6.

YANG on GitHub

https://github.com/YangModels/yang/tree/master/vendor/cisco/xe

© 2022 Cisco and/or its affiliates. All rights reserved. Page 9 of 91

YANG version 1.1 transition

When initially connecting to NETCONF, the “hello” operation returns all supported YANG 1.0 capabilities.

However, a GET operation for a data model lists the YANG library or list of supported YANG data models. If the

desired application previously parsed the NETCONF "hello" message to retrieve the supported YANG models,

the parsing must be modified to reflect how version 1.1 advertises via "ietf-yang-library" instead of the

NETCONF "hello" message. This is similar to how RESTCONF behaves, where an HTTP GET to the YANG

library data model URI is made to retrieve the list of supported data models.

Cisco native YANG will use YANG 1.0 until Release 17.10, when it will change to YANG 1.1. Customers using

YANG 1.0 tooling will need to upgrade to YANG 1.1-compliant tooling—YANG Suite, pyATS, Python, Ansible,

and more have a long history of YANG 1.1 support. A simple script has been provided in GitHub to convert

models to YANG 1.1 for testing and validation within third-party tooling and integrations. YANG 1.1 is backward

compatible with YANG 1.0. (Learn more from IETF here: https://datatracker.ietf.org/doc/html/rfc7950)

YANG Suite tooling

YANG Suite is a tool to easily visualize data models. It can be used to read operational data and configure

devices using NETCONF, RESTCONF, gNxI, gRPC, etc.

https://datatracker.ietf.org/doc/html/rfc7950
https://github.com/CiscoDevNet/yangsuite

© 2022 Cisco and/or its affiliates. All rights reserved. Page 10 of 91

Cisco native YANG

The Cisco native models are grouped into two main categories: configuration and operational. The configuration

modules contain configuration information for the related features, while the operational models provide run-

time and operational data about the feature.

 Figure 7.

Cisco native YANG: Configuration and operational models

Cisco native configuration YANG

The Cisco-IOS-XE-native.YANG module is the main native data model for the Cisco IOS XE configuration. This

data model has the majority of the “show running configuration” mapped within it. The most commonly used

features will have their configuration mapped and modeled here. Common examples include interfaces, VLANs,

lines, AAA, and crypto, to name just a few.

The device’s running configuration can be retrieved using this data model, via any of the supported

programmable interfaces of NETCONF, RESTCONF, or gNMI. Model-driven telemetry use cases also support

this data model, so a subscription to all or some part of this data model results in any changes being streamed

or pushed to the remote receiver to support third-party analytics and alerting use cases.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 11 of 91

 Figure 8.

Native YANG examples

Cisco native operational YANG

Nearly 150 operational or “oper” YANG modules are currently defined, and more are being added with each

release, to align with new features and new data that is being mapped and exposed.

The operational models are equivalent to the “show <feature>” command. These do not have configuration data

and instead have only operational or run-time data about the feature.

 Figure 9.

Cisco-IOS-XE-feature-oper.YANG examples

© 2022 Cisco and/or its affiliates. All rights reserved. Page 12 of 91

Cisco native RPC actions YANG

The Cisco-IOS-XE-rpc.yang is one of the data models that can be used with “Other RPC” action within YANG

Suite for RPC operations. This data model supports operations for managing files on the flash with “copy” and

“delete,” supports license operations, enables reload to be called, and supports release for Dynamic Host

Configuration Protocol (DHCP) addresses, among other support actions. These RPC actions are supported on

the RFC API interfaces of NETCONF and RESTCONF but are implemented differently on the gRPC interfaces, as

described next with gNOI.

Operations supported by the YANG RPCs are similar to those described within the gNOI section: Installing and

upgrading operating system software, performing crypto management operations, and doing a factory reset of

the device are just a few of the RPC actions that have been modeled. Working with files, the file system,

clearing and defaulting features, and debugging and monitoring are also possible with these powerful YANG

data models.

 Figure 10.

RPC data model examples

© 2022 Cisco and/or its affiliates. All rights reserved. Page 13 of 91

Cisco native “cisco-ia” YANG

Another notable YANG model is “cisco-ia.yang,” short for “Cisco Interface Application,” which enables

common RPCs for managing device configuration, specifically “save-config,” which is the programmatic

equivalent of the “write memory” or “wr mem” command. Working with NETCONF, time, status of the

datastores sync, and actions for configuration revert and rollback are also modeled here.

 Figure 11.

Cisco IA YANG examples

SNMP MIBs and syslog

The legacy SNMP service and the associated MIBs have been extended to be accessible within the YANG-

based APIs. This enables seamless migration from SNMP to YANG by allowing legacy data points to be

instrumented using the current YANG APIs. This approach still processes the legacy SNMP objects through the

SNMP service and is susceptible to the limitations of this service; therefore, it is not recommended to consume

MIBs via YANG interfaces unless necessary. Instead, the YANG data models should be used, which provide

more data points and more granular updates.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 14 of 91

 Figure 12.

Programmatic interfaces including SNMP

The syslog extension to SNMP can also be leveraged, which enables syslog messages to be collected from the

YANG interfaces. Ensure that the netconf-yang services have the correct SNMP community string so that they

can query the SNMP service correctly, as seen in the example below. Creating a subscription using the ietf-

event-notifications.YANG model and specifying the stream of “snmpevents” will enable publication of the

syslog and other configured events within the NETCONF session.

snmp-server community <string> RW

snmp-server enable traps syslog

snmp-server manager

logging history debugging

logging snmp-trap debugging

netconf-yang cisco-ia snmp-community-string <string>

© 2022 Cisco and/or its affiliates. All rights reserved. Page 15 of 91

 Figure 13.

ietf-event-notifications.YANG tree

Standards-based and third-party YANG

In addition to the Cisco native configuration and operational models, several additional YANG models are

supported on the device. The capabilities exchange can be accessed via the YANG interface. There are models

for SNMP MIBs, IETF, and OpenConfig. These models can be used in the same way as the native models;

however, they offer a limited or subset of the capabilities available on the device.

OpenConfig

OpenConfig is a network operator-driven YANG data model ecosystem that also has support for configuration

and telemetry use cases. Unlike the IETF and Cisco native YANG, the OpenConfig (OC) YANG is defined

primarily by a working group of network operators and does not include representation from network vendors.

As such there are typically no vendor-specific configurations or extensions modeled within OpenConfig, in an

effort to make the data model consumable regardless of networking equipment vendor.

The gNMI model-driven programmability and telemetry interface and OpenConfig have a long history, and many

network operators who consume OpenConfig YANG may also prefer to leverage the gNMI interface. However,

since all YANG data models are advertised for each of the API interfaces of NETCONF, RESTCONF, and gRPC

dial-out, the OpenConfig YANG can be used here as well.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 16 of 91

IETF

The Internet Engineering Task Force (IETF) YANG data models are the RFC standards that been ratified and

implemented. These include the IETF-yang-push.YANG that is used for telemetry, as well as all other options of

NETCONF, such as edit-config; these are defined within the IETF data models as well. There are also some

user-facing data models for interface configuration and operational data. While the IETF-interfaces data model

can be used to configure and monitor interfaces, Cisco native YANG provides more options and insight into the

configuration.

There are also IETF data models related to the NETCONF Access Control Module (NACM), which performs role-

and model-based access control (RBAC), and a variety of other RFC standards that are available for use.

YANG summary

YANG data models provide a variety of options to configure, manage, and understand the operational state of

the network device. A variety of YANG modules are available, and there is also overlap in coverage between

Cisco native, IETF, and OpenConfig, depending on the complexity of the features in use. Cisco native YANG

offers the complete range of Cisco IOS XE features that can be managed, while OpenConfig offers a subset of

that configuration and contains nothing specific to the vendor or features available in Cisco IOS XE, so it is more

of a vendor-neutral model. Regardless of the YANG modules in use, it is common to see a wide variety of

YANG types, including Cisco native, OpenConfig, and IETF, all being leveraged as needed to fulfill use cases

and business requirements.

Day 1: Model-driven programmability

Day 1 model-driven programmability (MDP or just “programmability”) consists of the various APIs that are

available for configuration management, device actions, and operational data retrieval. These APIs use the

YANG data modeling language and support a variety of encoding and transportation options, some of which are

RFC standards, like NETCONF and RESTCONF, but they also include gNMI.

Security and authentication

There are many considerations when leveraging APIs, and security and authentication are often a major factor in

deciding which interface to use and how to securely communicate with it. The Cisco IOS XE APIs support a

variety of security and authentication options, including the public key infrastructure (PKI) and SSL/TLS

certificates, a combination of username/password and certificate or key-based authentication, and they also

support options such as mutual authentication for zero-trust environments where both the client and the server

are untrusted and must be validated both ways using certificates.

Support for role-based access control (RBAC), as well as for the RFC6536 NETCONF Access Control Module,

enables network operators to secure access to the APIs based on username and user role, and can even be

extended to define which YANG data models and which API operations are permitted or denied. This capability

gives the API very extensible and granular controls when needed.

Authentication and authorization from upstream TACACS or RADIUS authentication, authorization, and

accounting (AAA) services are also supported so that organizations can more centrally manage the users,

groups, and roles that are permitted to use the APIs.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 17 of 91

NETCONF is the most mature of the programmatic interfaces as it, like RESTCONF, is standards based and has

a long history of feature innovation that has been implemented since as early as Cisco IOS XE Release 16.6.

NETCONF is the only interface to support the concept of “sessions” that permit the notion of networkwide

transactions, including lock/unlock, confirm commit, validate, and a variety of other useful features to ensure

that networks are programmed and configured as intended.

 Figure 14.

Model-driven programmability interface comparison

AAA configuration example

The most basic and common example, in which the default locally defined users are used for authentication and

authorization, is given below. Extending this to RADIUS or TACACS is also a common configuration when a

remote authentication and authorization service is used.

configure terminal

aaa new-model

aaa authentication login default local

aaa authorization exec default local

exit

© 2022 Cisco and/or its affiliates. All rights reserved. Page 18 of 91

Username requirements

A user account is required to access the programmatic interfaces. This could take the form of an existing or

preconfigured “username” account because a dedicated NETCONF or RESTCONF account is not required.

Alternatively, an existing or preconfigured “admin” account can be used. Authentication via TACACS+ or

RADIUS is also supported if the user is granted full or privilege Level 15 rights upon login. To create an

additional user account with username “netconf” or “restconf” and password “netconf” or “restconf,” use the

following commands when using local authentication:

Device(config)# username netconf privilege 15 password 0 netconf

Device(config)# username restconf privilege 15 password 0 restconf

NETCONF Access Control Module (NACM) and model-based AAA

The programmatic interfaces support NACM, which is a form of RBAC that is defined in RFC6536. This is

commonly referred to as model-based AAA. Use this feature to create rules for users that are logging in over

the programmatic interfaces so that access to certain models or functions can be permitted or denied as

needed. The YANG-based NACM rules are used instead of how TACACS is used with CLI command

authorization.

More details can be found in the “Model-Based AAA” chapter of the Cisco IOS XE Programmability User Guide,

here:https://www.cisco.com/c/en/us/td/docs/iosxml/ios/prog/configuration/179/b_179_programmability_cg/

m_178_prog_model_based_aaa.html

Read-only RBAC example

Prior to Release 17.5, a user with privilege Level 15 was required for any NETCONF operation. Releases 17.5

and later introduced support for lower-privileged and read-only users. Whenever a lower-privileged user

attempts to access information such as username or password, that sensitive data gets masked and is not

visible to the user.

To enable the API RBAC, enter the following commands:

C9300# configure terminal

C9300(config)# username priv1 privilege 1 password netconf

C9300(config)# end

C9300# request platform software yang-management nacm populate-read-rules privilege 1

https://www.cisco.com/c/en/us/td/docs/iosxml/ios/prog/configuration/179/b_179_programmability_cg/m_178_prog_model_based_aaa.html
https://www.cisco.com/c/en/us/td/docs/iosxml/ios/prog/configuration/179/b_179_programmability_cg/m_178_prog_model_based_aaa.html

© 2022 Cisco and/or its affiliates. All rights reserved. Page 19 of 91

To get configurations as a priv1 user when the NACM rules are populated, use the following command:

netconf-console --host 10.0.0.237 --port 830 -u priv1 -p netconf --get-config

When specifying the NETCONF read-only privilege level:

● Allowed RPCs are set as: get, get-config, get-schema.

● Sensitive information is masked: Native/enable, native/aaa, native/username.

● Read-only access to all models is provided.

NETCONF protocol (RFC 6241)

NETCONF is a protocol defined by the IETF to “install, manipulate, and delete the configuration of network

devices.” NETCONF operations are realized on top of a remote procedure call (RPC) layer using XML encoding

and provide a basic set of operations to edit and query the configuration and operational state on a network

device.

NETCONF-YANG uses the Cisco IOS Secure Shell (SSH) and can be configured to use Rivest, Shamir, and

Adelman (RSA) public keys to authenticate users as an alternative to password-based authentication.

For public-key authentication to work on NETCONF-YANG, the Cisco IOS SSH server must be configured. To

authenticate users to the SSH server, use one of the RSA keys configured, by using the “ip ssh pubkey-chain”

and user commands.

NACM is a group-based access control mechanism. When users are authenticated, they are automatically

placed in an NACM privilege group based on their configured privilege level. Users can also be manually placed

in other user-defined groups. The default privilege level is 1. There are 16 privilege levels, PRIV00 to PRIV15.

If a user authenticates via the public key but does not have a corresponding AAA configuration, the user is

rejected. If a user authenticates via a public key but the AAA configuration for NETCONF is using an AAA source

other than the local one, the user is also rejected. Local and TACACS+ AAA authorization is supported.

An example of how to allow local login in the console line, and to allow NETCONF to authenticate and get

authorization from TACACS, can be found here: https://github.com/jeremycohoe/netconf-tacacs-aaa

https://github.com/jeremycohoe/netconf-tacacs-aaa

© 2022 Cisco and/or its affiliates. All rights reserved. Page 20 of 91

NETCONF feature enablement

To enable the NETCONF interface, enter the following commands:

C9300# configure terminal

Device(config)# netconf-yang

Device(config)# exit

NETCONF feature status

To verify that the NETCONF interface is operational, the following commands can be used:

C9300# show netconf-yang status

C9300# show platform software yang-management process

Ensure that the NETCONF SSHD “ncsshd” process is running.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 21 of 91

NETCONF API verification and capabilities exchange

Use SSH to verify that the NETCONF-YANG SSH service is operational when connecting with a SSH client. The

capabilities exchange is returned with a list of all supported YANG data models and API capabilities when YANG

1.0 is used. The YANG library is upgraded to version 1.1 starting with Release 17.10.

ssh admin@c9300 -p 830

The NETCONF capabilities exchange can be retrieved by connecting to the device on the default port TCP 830

using SSH. The capabilities exchange lists all available YANG data models supported by the device. Using tools

such as YANG Suite, which is detailed in later sections, these YANG modules can be downloaded from the

device and analyzed further.

In addition to the capabilities exchange, the ietf-yang-library can be used to retrieve the list of supported YANG

version 1.0 and YANG version 1.1 data models.

NETCONF datastores

NETCONF has three datastores: running, start, and candidate. The running datastore is the only one required

because it contains the current configuration for the device. The start datastore contains the configurations that

will be applied to a device on startup. The candidate datastore acts as a sandbox to create configurations

before committing them to the running datastore. These datastores follow RFC 8526.

 Figure 15.

NETCONF datastore

https://datatracker.ietf.org/doc/html/rfc8526

© 2022 Cisco and/or its affiliates. All rights reserved. Page 22 of 91

NETCONF XML RPC payload examples

The XML RPC payloads below can be generated, modified, and sent from within the Cisco YANG Suite or any

other tool that can send XML payloads over the NETCONF interface, such as a Python script. Examples for

creating, verifying, and removing a model-driven telemetry (MDT) subscription are listed below. These can be

used to create, verify, and remove a WLAN over the NETCONF interface quickly and easily.

Add MDT subscription using XML:

<mdt-config-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-cfg">

 <mdt-subscription>

 <subscription-id>501</subscription-id>

 <base>

 <stream>yang-push</stream>

 <encoding>encode-kvgpb</encoding>

 <source-address>10.60.0.19</source-address>

 <source-vrf>Mgmt-vrf</source-vrf>

 <period>2000</period>

 <xpath>/process-cpu-ios-xe-oper:cpu-usage/cpu-utilization/five-seconds</xpath>

 </base>

 <mdt-receivers>

 <address>10.12.252.224</address>

 <port>57500</port>

 <protocol>grpc-tcp</protocol>

 </mdt-receivers>

 </mdt-subscription>

</mdt-config-data>

Get MDT subscription using XML:

<mdt-config-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-cfg">

 <mdt-subscription>

 <subscription-id>501</subscription-id>

 </mdt-subscription>

</mdt-config-data>

Delete MDT subscription using XML:

<mdt-config-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-cfg">

 <mdt-subscription xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"

nc:operation="delete">

 <subscription-id>501</subscription-id>

 </mdt-subscription>

</mdt-config-data>

© 2022 Cisco and/or its affiliates. All rights reserved. Page 23 of 91

RESTCONF (RFC 8040)

RESTCONF stands for the HTTP-based Representational State Configuration Protocol (RFC 8040). It is a

stateless protocol that uses the secure HTTP method. RESTCONF uses structured XML or JavaScript Object

Notation (JSON) and YANG data models to provide a REST-like API that enables programmatic access to the

network device. The RESTCONF API uses the HTTP method and commands such as PUT and GET to send

information to and from the Cisco devices. The Catalyst Cisco IOS XE implementation supports the following

RESTCONF operations: GET, PATCH, PUT, POST, DELETE, and HEAD.

RESTCONF feature enablement

To enable the RESTCONF interface on the device, enter the following commands:

C9300# configure terminal

Device(config)# ip http secure-server

Device(config)# restconf

Device(config)# exit

RESTCONF feature status

To verify that the RESTCONF interface is operational, run the command:

C9300# show platform software yang-management process

Ensure that the “nginx” process is running:

https://datatracker.ietf.org/doc/html/rfc8040

© 2022 Cisco and/or its affiliates. All rights reserved. Page 24 of 91

RESTCONF verification and encoding

Verify that RESTCONF is running by sending a GET request to the device:

auto@pod21-xelab:~$ curl -k -u "developer:C1sco12345" https://sandbox-iosxe-latest-

1/restconf/

The result will list details from the RESTCONF API in the default encoding of XML. JSON can also be returned

by specifying “Accept: application/yang-data+json” in the HTTP headers.

The following example uses the publicly available Cisco IOS XE sandbox:

curl -k -u "developer:C1sco12345" https://sandbox-iosxe-latest-1/restconf/

<restconf xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf">

 <data/>

 <operations/>

 <yang-library-version>2016-06-21</yang-library-version>

</restconf>

RESTCONF feature verification with JSON

curl -H “Accept: application/yang-data+json” -k -u "developer:C1sco12345" https://sandbox-

iosxe-latest-1/restconf/

Results in JSON:

{"ietf-restconf:restconf":{"data":{},"operations":{},"yang-library-version":"2016-06-21"}}

© 2022 Cisco and/or its affiliates. All rights reserved. Page 25 of 91

gNMI

gNMI is a gRPC network management interface. gNMI provides a mechanism to install, manipulate, and delete

the configuration of network devices, and to view operational data. The content provided through gNMI can be

modeled using YANG. gRPC is a remote procedure call developed by Google for low-latency, scalable

distributions with mobile clients communicating to a cloud server. gRPC carries gNMI and provides the means

to formulate and transmit data and operation requests.

gNMI feature enablement

To enable the gNMI interface, enter the following commands:

configure terminal

gnxi

gnxi server

gnxi port 50052

exit

write memory

gNMI feature enablement: secure

The following example shows how to enable the gNxI server secure mode.

configure terminal

gnxi

gnxi secure-trustpoint trustpoint1

gnxi secure-server

gnxi secure-client-auth

gnxi secure-port 9339

exit

write memory

gNMI process status

To verify that the gNMI interface is operational, run the following command:

C9300# show gnxi state

Ensure that the state is Enabled and the status is Up.

More details are available with the “show gnxi state detail” command:

C9300# show gnxi state detail

© 2022 Cisco and/or its affiliates. All rights reserved. Page 26 of 91

Full details of the various gNxI microservices are listed with the detail command:

© 2022 Cisco and/or its affiliates. All rights reserved. Page 27 of 91

gNMI verification

The YANG Suite tooling can be used to verify and test the gNMI API. This tooling has a gNMI plugin that

supports all gNMI operations, including capabilities, get, set, and subscribe. An example of the capabilities

operation from the YANG Suite shows that JSON-IETF is supported and provides the gNMI version and a list of

the YANG modules that are supported.

 Figure 16.

gNMI capabilities

gNMI operations

The following operations are supported by the gNMI interface:

● Capabilities

● gNMI GetRequest

● gNMI SetRequest

● gNMI Subscribe

Also, there are gNOI and gRPC network operations interface workflows that are supported within the gNMI

interface and defined in protobuf. These are the certificate management service, the operating system install

and upgrade service, and the factory reset service.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 28 of 91

 Figure 17.

gRPC network operations interface (gNOI)

gNMI encoding

JSON-IETF is the supported encoding for the gNMI interface, and RFC 7951 defines JSON encoding for YANG

data trees and their subtrees. gNMI uses JSON for encoding data in its content layer. The JSON type indicates

that the value is encoded as a JSON string. JSON-encoded data must conform to the rules for JSON

serialization described in RFC 7951. Both the client and target must support JSON encoding.

Instances of YANG data nodes (leaves, containers, leaf-lists, lists, anydata nodes, and anyxml nodes) are

encoded as members of a JSON object or name/value pairs. Encoding rules are identical for all types of data

trees, such as configuration data, state data, parameters of RPC operations, actions, and notifications. Every

data node instance is encoded as a name/value pair, where the name is formed from the data node identifier.

The value depends on the category of the data node. A leaf node has a value, but no children, in a data tree. A

leaf instance is encoded as a name/value pair. The value can be a string, number, literal true or false, or the

special array [null], depending on the type of the leaf. When the data item at the specified path is a leaf node

(which means it has no children and has an associated value), the value of that leaf is encoded directly. (A bare

JSON value is included; it does not require a JSON object.) The following example shows a leaf node definition:

leaf foo {

 type uint8;

}

The following is a valid JSON-encoded instance:

"foo": 123

https://datatracker.ietf.org/doc/html/rfc7951

© 2022 Cisco and/or its affiliates. All rights reserved. Page 29 of 91

gNMI wildcard

A gNMI wildcard has been introduced in Release 17.5. Wildcarding is the ability to use a star or wildcard

character in a path to match multiple elements. Now it is easier to know which variables are used, instead of

having to perform a separate GET request.

There are two types of wildcards, implicit and explicit, and both are supported. GET paths support all types and

combinations of path wildcards.

Implicit wildcards: These expand a list of elements in an element tree. An implicit wildcard occurs when a key

value is not provided for elements of a list.

Explicit wildcards: These wildcards are directly defined.

Tooling: Cisco YANG Suite

YANG Suite is a tool used for testing and validating the YANG-based APIs on Cisco IOS XE, XR, and NX-OS.

YANG Suite was publicly released on GitHub in 2020, and it can be used to generate and send XML payloads to

the device over NETCONF, with JSON and RESTCONF, or with gNMI, as well as act as the dial-in and dial-out

telemetry receiver. YANG Suite is used extensively by Cisco feature engineering teams and internal and external

testing, development and is also widely deployed within campus and enterprise networks as customer tooling.

 Figure 18.

Example of NETCONF operation in Cisco YANG Suite

© 2022 Cisco and/or its affiliates. All rights reserved. Page 30 of 91

YANG Suite installation

Follow the instructions from the GitHub site at https://github.com/CiscoDevNet/yangsuite to complete the

installation. Detailed instructions are available for Mac, Windows, and Linux. YANG Suite can be installed as a

Docker container or through Python package management. Installing YANG Suite as a Docker container is the

recommended method. Additionally, YANG Suite can be installed using pip install.

YANG Suite resources

DevNet landing page: developer.cisco.com/yangsuite

Documentation: developer.cisco.com/docs/yangsuite

Quick start

1. Clone the repository: https://github.com/CiscoDevNet/yangsuite

2. Run start_yang_suite.sh, or

Run docker-compose up if you have already run start_yang_suite.sh

3. Access the YANG Suite tool at https://localhost:8443

git clone https://github.com/CiscoDevNet/yangsuite

cd yangsuite/docker/ ; ./start_yang_suite.sh

or

cd yangsuite/docker/ ; docker compose up

When the YANG Suite is ready for use, you will see the following:

https://github.com/CiscoDevNet/yangsuite
https://developer.cisco.com/yangsuite
https://developer.cisco.com/docs/yangsuite
https://github.com/CiscoDevNet/yangsuite
https://localhost:8443/

© 2022 Cisco and/or its affiliates. All rights reserved. Page 31 of 91

YANG Suite day 0 configuration

When YANG Suite is installed and running, you must complete a few tasks before interacting with the device.

Navigate to the Google/Firefox web browser and access YANG Suite at http://localhost:8443. Log in using the

credentials configured during the installation process. Once logged in, you’ll end up at the main YANG Suite

application window.

Navigate to the Setup > Device profiles menu. Click “Create new device.”

http://localhost:8443/

© 2022 Cisco and/or its affiliates. All rights reserved. Page 32 of 91

The New Device Profile window will pop up, where you must add information about the device. Enter the profile

name, address, username, and password. Since YANG Suite now supports gNMI, check the Device supports

gNMI box. Check the “Device supports NETCONF,” “Skip SSH key validation for this device,” and “Device

supports RESTCONF” boxes. Make sure to enter a username and password for both NETCONF and RESTCONF,

if you have configured a separate authentication. Click “Create Profile” to add the device to YANG Suite.

Once the device is added, check the device reachability by clicking “Check selected device’s reachability.”

Make sure you see the green checkmark for ping, gNMI, NETCONF, and RESTCONF.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 33 of 91

Creating default repository and YANG set

From within YANG Suite, the YANG modules can be downloaded from the device. The YANG repository can be

created automatically from the Manage Device Profiles page. The YANG set is a subset of a YANG repository

that consists of a set of modules and any other necessary dependencies. A YANG set could store an entire

repository, but it’s more efficient to narrow the set down to only the models we are interested in. A YANG set

needs to be created to build and run RPC(s).

Follow the steps to download the models

On the Manage Device Profiles page, click “Create default Repository and Yangset.” This option will

automatically create a default repository and YANG set.

When the download is completed, the desired modules will appear in the repository and set boxes.

Explore YANG models

1. With the created YANG set, we can easily explore the YANG data models. From the menu on the left

side of the page, select Explore > YANG.

2. From the “Select a YANG set” drop-down menu, select a newly created set.

3. In the “Select YANG module(s)” box, enter any data model of choice. In this example, we explore

the Cisco-IOS-XE-interfaces-oper module. To find this in the drop-down list, you can start typing

keywords such as “native” or “interfaces” to quickly find the correct YANG module.

4. Click the “Load module(s)” button. After a moment, the left column will be populated with a tree

view of the contents of the module. Initially the tree view shows only the module itself, but you can

click the triangle icon next to it to expand the tree.

5. Refer to the screenshot to examine the structure of the model and its contents.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 34 of 91

Two important pieces of YANG model metadata are the xpath and the prefix. These fields are used with

streaming telemetry to retrieve information. If a telemetry subscription was to be created based on the Cisco

IOS XE interfaces YANG data model, the xpath of “/interfaces/interface/interface-type” and “interfaces-ios-xe-

oper” would be used to retrieve and publish information from those models. Learn more about streaming

telemetry in the MDT section below.

Note: For Cisco IOS XE native models, we can simply use the xpath, in this case “/cpu-usage/cpu-

utilization”.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 35 of 91

YANG Suite: NETCONF

YANG Suite enables interaction with the devices using most of the programmatic interfaces: NETCONF,

RESTCONF, gNMI, and gRPC. With the help of the NETCONF operation get-config, it is easy to retrieve all or

part of the specified configuration datastore as seen in the screenshot below. Also, the NETCONF operation

edit-config loads a specified configuration to a specified target configuration.

Steps to access the NETCONF plugin using YANG Suite

Set hostname on Catalyst 9300 Series switch

1. Protocol: NETCONF

2. YANG set: c9300-default-yangset

3. Modules: Cisco-IOS-XE-native (Note: Start typing "native" to filter through the options in the drop-

down menu.)

4. Click the blue “Load Modules” button.

5. NETCONF operation: edit-config

6. Device: C9300

7. Wait for the tree to appear in the gray box on the left. (Note: If you get an Error 500 popup, just

ignore it and close the popup.)

8. Once the YANG tree is created, select "hostname." (Note: Select CONTROL + F or COMMAND + F

to find “hostname” on the page.)

9. Select the word “hostname” and add a string to the text field such as “configured-by-a-panda-

pro.”

10. Click the red “Clear RPCs” button for a fresh start for the next NETCONF payload.

11. Click the blue “Build RPC” button to generate the XML RPC that is based on the YANG model and

inputs provided. The XML can be reviewed, edited, or used in other tooling or orchestration systems

as needed.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 36 of 91

12. Click the blue “Run RPC(s)” button to send the XML RPC to the switch’s NETCONF interface in

order to retrieve the configuration as requested.

13. In the new tab that opens, notice the hostname in the response. The device will respond with

“<ok/>” if the configuration was applied properly and there were no errors. (Note: You may need to

scroll to the bottom of the page.)

© 2022 Cisco and/or its affiliates. All rights reserved. Page 37 of 91

Get hostname on Catalyst 9300 Series switch

1. Protocol: NETCONF

2. YANG set: c9300-default-yangset

3. Modules: Cisco-IOS-XE-native (Note: Start typing “native” to filter through the options in the drop-

down menu.)

4. Click the blue “Load Modules” button.

5. NETCONF operation: get-config

6. Device: C9300

7. Wait for the tree to appear in the gray box on the left. (Note: If you get an Error 500 popup, just

ignore it and close the popup.)

8. Once the YANG tree is created, select "hostname." (Note: Select CONTROL + F or COMMAND + F

to find "hostname" on the page.)

9. Select the word "hostname," but there’s no need to add anything to the text box (leave it blank for

the “get” request).

10. Click the blue “Run RPC(s)” button to send the XML RPC to the switch’s NETCONF interface in

order to retrieve the configuration as requested.

11. In the new tab that opens, notice the hostname in the response. (Note: You may need to scroll to

the bottom of the page.)

© 2022 Cisco and/or its affiliates. All rights reserved. Page 38 of 91

Download a Python script

YANG Suite offers the option to download a Python script to replay a specific operation to view or set

configurations on the device. To download a script, build a payload (see examples in “Get Hostname on

Catalyst 9300 Series Switch” or “Set Hostname on Catalyst 9300 Series Switch” above). Then click the

“Replays” button. In the drop-down menu, select “Generate Python script” and the file will automatically

download on the device running YANG Suite, as in the example below.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 39 of 91

YANG Suite: RESTCONF

To access the RESTCONF plugin using YANG Suite, navigate to Protocols > RESTCONF in the left pane of the

YANG Suite application. Make sure to fill out all the necessary fields to load the YANG modules from the device

and generate API(s). For the YANG module, we used the Cisco-IOS-XE-native to get all the information about

the configured features on the Catalyst 9300 device.

Get hostname on Catalyst 9300 Series switch

1. Protocol: RESTCONF

2. Select a YANG set: c9300-default-yangset

3. Select a device: C9300

4. Select YANG modules: Cisco-IOS-XE-native

5. Select depth limit: 2

6. Click the “Load Module(s)” button.

7. Once the tree loads, close the popup that says “Tree generated, please select node(s) to generate

API(s).”

© 2022 Cisco and/or its affiliates. All rights reserved. Page 40 of 91

8. Expand the tree by selecting the arrow next to “Cisco-IOS-XE-native.”

9. Search for “interface” in the expanded tree. (Note: Select CONTROL + F to find "interface" on the

page.)

10. Expand “interface” and search for “Loopback." (Note: Select CONTROL + F to find “Loopback” on

the page.)

© 2022 Cisco and/or its affiliates. All rights reserved. Page 41 of 91

11. Click the blue “Generate API(s)” button. (Note: It may take a few moments to load the APIs)

12. Click the blue “Show API(s)” button.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 42 of 91

13. Select the link next to the GET operation corresponding to the API call “/data/Cisco-IOS-XE-

native:native/interface/Loopback.”

14. Click the "Try it out" button.

15. Click the “Execute” button to send the RESTCONF payload and view the reply, including the

Loopback netmask.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 43 of 91

16. Find the response within YANG Suite. If the request is successful, a response of 200 will be returned

with the JSON response body. If the response body doesn’t contain any information, a response of

204 will be returned, indicating a successful request with no data for that request found.

YANG Suite: gNMI

The gNMI tooling can be used to retrieve information from the device. With the help of programmatic interfaces

and YANG Suite, it has become easier to retrieve operational information from Cisco IOS XE devices. YANG

Suite provides a YANG API testing and validation environment that supports gNMI. The gNMI tooling uses

JSON_IETF to encode data in its content layer. In this example, we run RPC for one of the wireless modules,

Cisco-IOS-XE-wireless-access-point-oper.

Steps to access the gNMI plugin using YANG Suite

1. From the left navigation pane, select Protocols > gNMI.

2. Select the created YANG set.

3. Select the Module(s): ieft-interfaces.

4. Click “Load Modules.”

5. From the drop-down list, select the device.

6. For Origin, select RFC7951.

7. In the Nodes section, make sure to expand the loaded YANG data model. Click the Value column

next to the interfaces row. To narrow down the search, each individual node can be selected from

the list.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 44 of 91

8. To generate the payload, click the blue “Build RPC” button.

9. Once the payload is generated, it is ready to run by clicking “Run RPC(s).”

The gNMI GET, gNMI GET Response, and gNMI Response values decoded will show up in a separate browser

window.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 45 of 91

Tooling: Cisco pyATS

 Figure 19.

Cisco pyATS structure

pyATS (pronounced “pie” and the individual letters “A,” “T,” “S”) is an end-to-end DevOps automation

ecosystem publicly introduced in 2017. pyATS is agnostic by design, and it enables network engineers to

automate their day-to-day DevOps activities, perform stateful validation of their device operational status, build

a safety net of scalable, data-driven, reusable tests around their network, and visualize everything in a modern,

easy-to-use dashboard. pyATS has a long history within Cisco, where it has been used as a consolidated test

harness to run hundreds of thousands of tests against a variety of hardware and software features. It supports

thousands of parsers and is customizable in the sense that new parsers can be submitted in addition to the

currently available parsers. It is a consistent test harness for multiplatform and multivendor test activities and

pyATS has integrations for Cisco IOS XE’s programmatic interfaces as well as the legacy SSH CLI, which

enables a very powerful combination of tooling options. pyATS works with the CLI and REST APIs using the

REST connector. One common misconception about pyATS is that it is limited to just testing; actually, it also

supports device configuration. Blitz is the pyATS YAML-abstracted implementation, which does not require

Python.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 46 of 91

 Figure 20.

Benefits of Cisco pyATS

Learn more about pyATS:

● Explore pyATS: https://developer.cisco.com/pyats

● Read the docs: https://developer.cisco.com/docs/pyats/api/

Tooling: Cisco Network Services Orchestrator (NSO)

The Cisco NSO is another powerful controller solution that abstracts network intent and maintains configuration

state. Additional details are available from developer.cisco.com/site/nso/.

https://developer.cisco.com/pyats
https://developer.cisco.com/docs/pyats/api/
https://developer.cisco.com/site/nso/

© 2022 Cisco and/or its affiliates. All rights reserved. Page 47 of 91

Tooling: Ansible

Ansible is a popular and easy-to-use open-source software suite that automates software provisioning,

configuration, and management. It connects to and controls devices via SSH, NETCONF, and a variety of other

protocols as well. Ansible is agentless, meaning there is no installation and no requirements on the target

device, other than having an accessible API or interface. It is minimal in nature and provides a secure and

reliable way to interact with remote devices. Ansible is highly adaptable and commonly used with other

automation tools to accomplish complex workflows. Below are some examples of using Ansible to complete

basic day 0 configuration tasks.

 Figure 21.

Ansible taxonomy

Ansible has several components that work together to provide a holistic solution. Modules are reusable,

standalone scripts. Tasks call upon modules to perform an action. When there are multiple tasks, a play can be

used to call the tasks in a particular order. A playbook is then used when there are multiple plays. Finally, a role

is a set of playbooks.

CLI example to enable APIs

The hosts file has connection details and device-specific information, including credentials. In this example, it is

assumed that the device has already been configured to allow SSH logins, and the enable password has been

set. The hosts files and YAML file are used together to accomplish a task. In this case, the tasks are to connect

to the CLI over SSH, enter enable mode, and execute the required Cisco IOS commands to enable netconf-

yang and set up the AAA requirements.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 48 of 91

Ansible hosts file for day 0 configuration

Create the default config file ansible.cfg

#ansible.cfg

[defaults]

inventory = ./host

host_key_checking = False

remote_user = admin

This example hosts file contains the variables needed to successfully establish a connection to the device.

Note: In the example below, replace “admin” with the device’s SSH username and “<DEVICE_PASSWORD>”

with the device’s SSH password.

host

hosts

[C9300]

10.1.1.5

[all:vars]

ansible_connection=network_cli

ansible_network_os=ios

ansible_ssh_user=admin

ansible_ssh_pass=<DEVICE PASSWORD>

Ansible YAML configuration file to enable NETCONF and RESTCONF

The following example YAML file enable_netconf_yang.yaml can be used to enable the NETCONF interface on

the device and configure the authentication prerequisites, including adding a user.

- hosts: C9300

 gather_facts: no

 tasks:

 - ios_config:

 commands:

 - aaa new-model

 - aaa authorization exec default local

 - aaa authentication login default local

 - username netconf privilege 15 password 0 netconf

 - netconf-yang

 - ip http secure-server

 - restconf

 save_when: modified

CLI example to show API status

© 2022 Cisco and/or its affiliates. All rights reserved. Page 49 of 91

This example cat9300_verify.yaml YAML file will run two Cisco IOS XE show commands to verify that netconf-

yang and restconf are enabled, and the output will be registered and displayed on the screen when executed.

- hosts: C9300

 gather_facts: no

 tasks:

 - ios_command:

 commands:

 - show run | i netconf-yang

 - show run | i restconf

 register: show

 - debug: var=show.stdout_lines

Executing the task to enable and verify NETCONF and RESTCONF

The ansible-playbook command can be used to execute the task that we define above to enable the

NETCONF-YANG interface on the device. In this example, we define a variable to set Host Key Checking to

false, so that the SSH host key is not validated. In production environments, it is important to verify the

authenticity of the device being accessed. However, in this example, the check is set to false for ease of use.

From the command line, execute the following command to run the enable_netconf_yang.yaml configuration:

$ ansible-playbook enable_netconf_yang.yaml

From the command line, execute the following command to run the cat9300_verify.yaml configuration:

$ ansible-playbook cat9300_verify.yaml

© 2022 Cisco and/or its affiliates. All rights reserved. Page 50 of 91

NETCONF XML example

Create a subscription to CPU utilization on our device using Ansible plus NETCONF. This example sends XML

into the NETCONF interface to add the subscription. Create three files in a “day1” folder: host, ansible.cfg, and

add_sub.yaml. The content for each file is listed below. Make sure to change the IP address, username, and

password.

Modify the host file from the example above to the following:

[c9300]

10.1.1.5

[all:vars]

ansible_connection=netconf

ansible_network_os=ios

ansible_password=<DEVICE_PASSWORD>

ansible.cfg

[defaults]

inventory = ./host

host_key_checking = False

remote_user = <USERNAME>

© 2022 Cisco and/or its affiliates. All rights reserved. Page 51 of 91

add_sub.yaml

- hosts: c9300

 gather_facts: no

 connection: netconf

 remote_user: admin

 tasks:

 - name: establish subscription

 netconf_config:

 xml: |

 <nc:config xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

 <mdt-config-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-cfg">

 <mdt-subscription>

 <subscription-id>501</subscription-id>

 <base>

 <stream>yang-push</stream>

 <encoding>encode-kvgpb</encoding>

 <source-address>10.60.0.19</source-address>

 <source-vrf>Mgmt-vrf</source-vrf>

 <period>2000</period>

 <xpath>/process-cpu-ios-xe-oper:cpu-usage/cpu-utilization/five-

seconds</xpath>

 </base>

 <mdt-receivers>

 <address>10.12.252.224</address>

 <port>57500</port>

 <protocol>grpc-tcp</protocol>

 </mdt-receivers>

 </mdt-subscription>

 </mdt-config-data>

 </nc:config>

From the command line, execute the following command to run the add_sub.yaml configuration:

$ ansible-playbook add_sub.yaml

© 2022 Cisco and/or its affiliates. All rights reserved. Page 52 of 91

Additional examples and resources for Ansible can be found at https://github.com/jeremycohoe/ansible-

config-samples.

RESTCONF JSON example

Ansible also has a rich history of integration with REST, which includes the RESTCONF interface. YANG Suite

can be used to work with the RESTCONF interface and has optional features to export an Ansible playbook

based on the YANG payload that was built within YANG Suite.

https://github.com/jeremycohoe/ansible-config-samples
https://github.com/jeremycohoe/ansible-config-samples

© 2022 Cisco and/or its affiliates. All rights reserved. Page 53 of 91

A YAML payload is generated that can be run directly within Ansible after ensuring that the hosts, inventory, and

configuration defaults are set accordingly:

Example of basic ansible_host file referred to in

ansible.cfg inventory:

#[HOST_NAME_HERE]

#IP_ADDRESS_HERE

#[HOST_NAME_HERE:vars]

ansible_connection: httpapi

ansible_network_os: restconf

ansible_httpapi_use_ssl: true

ansible_httpapi_validate_certs: false

ansible_httpapi_port: 443

ansible_httpapi_restconf_root: /restconf/data/

ansible_user: USERNAME_HERE

ansible_password: PASSWORD_HERE

- name: REST

 hosts: HOST_NAME_HERE

 gather_facts: no

 tasks:

 - name: Task 1

 ansible.netcommon.restconf_get:

 # Output can either be json or xml

 output: json

 path: Cisco-IOS-XE-interfaces-oper:interfaces

© 2022 Cisco and/or its affiliates. All rights reserved. Page 54 of 91

Tooling: Terraform

Terraform is an Infrastructure-as-Code (IaC) tooling that allows network operators to easily view operational

data, configure devices, and manage network resources. Since Terraform is cloud native, it works well with

Cisco IOS XE cloud-native solutions for routing, switching, and wireless platforms, including the Cisco Catalyst

9000 switch family, the Cisco Catalyst 8000V (virtual) router, and the Cisco Catalyst 9800-CL Wireless

Controller for Cloud. In addition to easily managing cloud-native solutions, Terraform can configure campus

solutions. With Cisco IOS XE, we can automate with any tooling on any interface.

 Figure 22.

Terraform terminology

Getting started with the Terraform Cisco IOS XE provider

1. Install Terraform: https://learn.hashicorp.com/tutorials/terraform/install-cli.

2. Clone the Cisco IOS XE Terraform provider: https://github.com/CiscoDevNet/terraform-provider-

iosxe/.

3. Create a. tf file.

4. Run Terraform using “terraform init; terraform apply.”

https://developer.cisco.com/iac/?utm_source=devblog&utm_medium=jeremycohoe&utm_campaign=networkautomation-page&utm_term=fy22-q3-0000&utm_content=terraformiosxe01-ww
https://learn.hashicorp.com/tutorials/terraform/install-cli
https://github.com/CiscoDevNet/terraform-provider-iosxe/
https://github.com/CiscoDevNet/terraform-provider-iosxe/

© 2022 Cisco and/or its affiliates. All rights reserved. Page 55 of 91

Add an ACL to a Catalyst 9300X using Terraform

Create a Terraform file using the CiscoDevNet/iosxe Terraform provider as in the following example.

add_acl.tf

terraform {

 required_providers {

 iosxe = {

 version = "0.1.1"

 source = "CiscoDevNet/iosxe"

 }

 }

}

provider "iosxe" {

 request_timeout = 30

 insecure = true

}

Adding extended ACL

resource "iosxe_rest" "acl_example_post" {

 method = "POST"

 path = "/data/Cisco-IOS-XE-native:native/ip/access-list"

 payload = jsonencode(

 {

 "Cisco-IOS-XE-acl:extended": [

 {

 "name": 102,

 "access-list-seq-rule": [

 {

 "sequence": "10",

 "ace-rule": {

 "action": "permit",

 "protocol": "ip",

 "host-address": "10.1.1.3",

 "dst-any": [

 null

],

 "precedence": "routine",

 "tos": "normal",

 "log": [

 null

https://registry.terraform.io/providers/CiscoDevNet/iosxe/latest

© 2022 Cisco and/or its affiliates. All rights reserved. Page 56 of 91

]

 }

 },

 {

 "sequence": "20",

 "ace-rule": {

 "action": "permit",

 "protocol": "tcp",

 "any": [

 null

],

 "dst-any": [

 null

],

 "dst-eq": 600

 }

 },

 {

 "sequence": "30",

 "ace-rule": {

 "action": "permit",

 "protocol": "udp",

 "any": [

 null

],

 "dst-any": [

 null

],

 "dst-eq": 200

 }

 },

 {

 "sequence": "40",

 "ace-rule": {

 "action": "permit",

 "protocol": "icmp",

 "any": [

 null

],

 "dst-any": [

 null

],

© 2022 Cisco and/or its affiliates. All rights reserved. Page 57 of 91

 "dst-eq-port2": 250

 }

 },

 {

 "sequence": "50",

 "ace-rule": {

 "action": "permit",

 "protocol": "igmp",

 "any": [

 null

],

 "dst-any": [

 null

],

 "dst-eq-port2": 15

 }

 }

]

 }

]

 }

)

}

Next, run the Terraform file using the following commands:

terraform init

terraform apply -auto-approve

The device is now configured with an ACL as specified in the add_acl.tf file.

Learn more about Terraform

● GitHub provider examples: https://github.com/CiscoDevNet/terraform-provider-iosxe/

● Provider binary: https://registry.terraform.io/search/providers?namespace=CiscoDevNet

● Go client: https://github.com/CiscoDevNet/iosxe-go-client

● Blogs: https://blogs.cisco.com/tag/terraform

● Intro to Terraform video: https://www.youtube.com/watch?v=GEY_hyXimbA

● Configure an IPsec tunnel with Terraform: https://www.youtube.com/watch?v=bPS0bhPacDw

● Now that the go client has been released, individuals are contributing their own Terraform providers, such

as this BGP EVPN provider: https://github.com/robertcsapo/terraform-provider-ciscoevpn

https://github.com/CiscoDevNet/terraform-provider-iosxe/
https://registry.terraform.io/search/providers?namespace=CiscoDevNet
https://github.com/CiscoDevNet/iosxe-go-client
https://blogs.cisco.com/tag/terraform
https://www.youtube.com/watch?v=GEY_hyXimbA
https://www.youtube.com/watch?v=bPS0bhPacDw
https://github.com/robertcsapo/terraform-provider-ciscoevpn

© 2022 Cisco and/or its affiliates. All rights reserved. Page 58 of 91

Day 2: Model-driven telemetry

The ietf-yang-push model is used for NETCONF streaming telemetry. In the following example, a NETCONF

subscription is created using NETCONF in YANG Suite. To create this subscription, the stream is set to

“ys:yang-push,” the encoding is “notif-bis:encode-xml,” the filter is a specific xpath “/process-cpu-ios-xe-

oper:cpu-usage/cpu-utilization/five-seconds,” and yp:periodic updates every 1000 centiseconds (10 seconds).

Once each of the leaves is created in YANG Suite, click the blue “Build RPC” button and then click the blue

“Run RPC(s)” button.

NETCONF and SNMP event streams

Two main event streams are used for model-driven telemetry, “yang-push” and “yang-notif-native," which

handle publication of the periodic as well as the event-based telemetry. In addition to the NETCONF streams,

there is also a stream from the SNMP events. This stream is used when collecting SNMP traps or events over

the NETCONF interface.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 59 of 91

SNMP and screen scraping from the CLI have been used as traditional network monitoring interfaces for years.

Since the technology is widely popular in network management for network monitoring, network engineers still

actively use it. The SNMP messages are transported via User Datagram Protocol (UDP) and always require

active polling by the collector, which is not always reliable. The read-write mode can make a network

vulnerable to attacks. Other limitations include the security concerns of SNMP, lack of information about the

source IP address, what type of traffic is sent, and information about the destination IP address. In other words,

the data is mainly unstructured, and the format frequently changes between software releases. Nevertheless,

more recent versions of SNMP bring improvements in security, performance, and flexibility.

In contrast to SNMP, NetFlow was designed for network monitoring. It brings more visibility into the network

and explicitly gives information about the source IP address, application protocol, and destination IP address,

which SNMP lacks. NetFlow works in the same way as SNMP: It sends records from a cache to a collector, and

all the records are being pushed to the collector without being requested each time. However, NetFlow is not

used for collecting information about bandwidth, CPU utilization, memory, and/or the temperature of the device.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 60 of 91

 Figure 23.

Telemetry standards timeline

Over the past couple of years, we have adopted new technologies that have helped us solve some, but not all

of the predecessors’ flaws in the modern world. Cisco IOS XE supports the YANG data modeling language,

which can be used with NETCONF to deliver the desired programmable and automated network operations.

NETCONF is an XML-based protocol used to install, manipulate, and delete the configuration of network

devices via SSH as the transport layer. It is based on an RPC mechanism to provide communication between a

client and a server. In our case, the server is the network device and the controller is the client.

The web is progressing at an exponential speed, and we’ve started seeing quick adoption of RESTCONF in the

web-based monitoring stack. RESTCONF uses HTTP methods to implement similar NETCONF operations for

accessing data defined in YANG. In comparison to NETCONF, RESTCONF supports both XML and JSON

encodings. But it’s important to clarify that RESTCONF is not a NETCONF replacement and was never intended

to be one. From a capabilities standpoint, RESTCONF has its limitations, like any other network automation tool.

It lacks any type of validation and also lacks the “lock” concept found in NETCONF.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 61 of 91

 Figure 24.

Comparison chart: CLI, polling, and telemetry monitoring

In addition, we have gRPC, a modern open-source RPC using HTTP for APIs. Model-driven telemetry with

gRPC addresses many of the shortfalls of the legacy monitoring capabilities and provides an additional interface

from which telemetry is now available to be published. gRPC is a YANG model using JSON and protobuf

encodings. Unlike the NETCONF telemetry interface, which is “dial-in” and session-based, the gRPC interface

is “dial out” and based on configuration within the device. gRPC is push-based, meaning that once it is

configured, it will send the requested telemetry data regularly to the provided recipient(s) without them needing

to request the data. Now you can decide what data is needed, how often, and where to send it. Once the

configuration is in place, the Cisco IOS XE device easily publishes the telemetry data to third-party collectors,

your monitoring tools, extensive data search and visualization engines such as Splunk and Elastic, or even a

simple text file.

Finally, while the CLI and SNMP aren’t going away anytime soon, automation is a big part of where networks are

headed. Protocols such as YANG, NETCONF, RESTCONF, and gRPC were designed with this in mind. That's

why Cisco uses them within its platforms.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 62 of 91

NETCONF dial-in model-driven telemetry

NETCONF can also be used as a dial-in model-driven telemetry interface that uses dynamic telemetry

subscriptions.

Dynamic telemetry subscription with Python NCC

Dial-in telemetry subscriptions can be easily created by using the NCC tools available from CiscoDevNet at

https://github.com/CiscoDevNet/ncc. The repository can simply be cloned from GitHub with the “git clone”

command. An additional requirement is to use a patched ncclient tool that works with the ncc-establish-

subscription.py tool. This can be installed by following the directions on the ncc GitHub page or by executing

the two commands below:

git clone https://github.com/CiscoDevNet/ncc

sudo pip install --upgrade git+https://github.com/CiscoDevNet/ncclient.git

Once downloaded, a subscription can be established by running the following command:

python3 ncc-establish-subscription.py --host 10.1.1.5 --port 830 -u admin -p Cisco123 --

period 1000 -x "/ios:native"

https://github.com/CiscoDevNet/ncc

© 2022 Cisco and/or its affiliates. All rights reserved. Page 63 of 91

In the example above, a telemetry subscription has been created using the Cisco-IOS-XE-native YANG model,

which has a prefix of “IOS” and an xpath of “native.” YANG Suite is used to determine the correct xpath filter for

this YANG model, as seen in the screenshot below:

© 2022 Cisco and/or its affiliates. All rights reserved. Page 64 of 91

gNMI dial-in model-driven telemetry

gNMI is a gRPC network management interface. It provides the mechanism to install, manipulate, and delete the

configuration of network devices, and to view operational data. The content provided through gNMI can be

modeled using YANG. gRPC is an RPC developed by Google for low-latency, scalable distributions with mobile

clients communicating to a cloud server. It carries gNMI and provides the means to formulate and transmit data

and operation requests.

gRPC dial-out model-driven telemetry

gRPC is an RPC dial-out model-driven telemetry interface. gRPC dial-out telemetry is an automated

communications process by which measurements and other data are collected and transmitted to the remote

receiving equipment for monitoring. Model-driven telemetry provides a mechanism to stream YANG-modeled

data to a data collector over the network.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 65 of 91

Dial-in dynamic vs. dial-out configured MDT subscriptions

With a dial-in or “dynamic” subscription, the subscriber must first establish a session with a connection to the

device and then subscribe to the data models. The NETCONF session must remain established for telemetry

data to continue streaming. If the session is disconnected, the telemetry subscription must be manually

reestablished.

With dial-out or “configured” subscriptions, once the configuration is set up by the user, the device will

maintain the subscription configuration and send telemetry to the subscriber without needing an active session

to the collector.

 Figure 25.

Model-driven telemetry interfaces

© 2022 Cisco and/or its affiliates. All rights reserved. Page 66 of 91

gRPC dial-out model-driven telemetry configuration

gRPC dial-out subscriptions support encoding with key-value Google protocol buffers (kv-gpb) over a TCP

connection. The following configuration can be used to establish a gRPC dial-out with FQDN DNS support

telemetry subscription. Additionally, gRPC can be configured with TLS and mTLS to support high security and

geographically dispersed collection use cases.

The following is an example of a dial-out configuration using the DNS named receiver to publish telemetry data

about interface utilization every 10 seconds:

telemetry ietf subscription 101

 encoding encode-kvgpb

 filter xpath /interfaces-ios-xe-oper:interfaces/interface

 source-address 10.85.134.65

 stream yang-push

 update-policy periodic 1000

 receiver-type protocol

 receiver name yangsuite

telemetry receiver protocol yangsuite

 host name yangsuite-telemetry.cisco.com 57500

 protocol grpc-tcp

This configuration creates a new subscription with an ID of 101. The encoding is set to kv-gpb, and the xpath

filter defines the API to subscribe to, in this case dot11-oper-data. The xpath filter is defined within the YANG

model, and YANG Suite is used to determine the exact xpath and prefix for this model. The source address and

Virtual Routing and Forwarding (VRF) to use from the device is set, as well as the receiver IP, port, and protocol.

The yang-push stream defines how often to publish data in centiseconds. In this case it is set to 2000, which

means data will be published every 20 seconds.

Receiving gRPC model-driven telemetry with Telegraf

The kv-gpb telemetry data that is sent over the gRPC interface can be received with many tools and in many

different configurations, depending on the business needs and use cases. Telegraf is an open-source tool that

can be used to receive the data and is available on GitHub at https://github.com/influxdata/telegraf. Telegraf

works by acting as the gRPC server and receiver, where it processes the Google protocol buffers’ encoded

data and sends the text data into the time series database InfluxDB. From there, Grafana can be used to

visualize the data. Telegraf and Grafana are highly configurable and can receive and visualize a variety of

telemetry sources as well as output data to a variety of data sources, including Kafka, InfluxDB, Elasticsearch,

and Prometheus.

https://github.com/influxdata/telegraf

© 2022 Cisco and/or its affiliates. All rights reserved. Page 67 of 91

 Figure 26.

gRPC workflow example

Verify telemetry subscriptions

Several show commands are available to verify the status of the telemetry subscription configurations.

Examples of each are below:

show telemetry ietf subscription all

show telemetry ietf subscription <ID> detail

© 2022 Cisco and/or its affiliates. All rights reserved. Page 68 of 91

show telemetry ietf subscription <ID> receiver

© 2022 Cisco and/or its affiliates. All rights reserved. Page 69 of 91

Tooling: Cisco YANG Suite

YANG Suite can be used for streaming telemetry using NETCONF, gNMI, or gRPC.

NETCONF dial-in telemetry plugin

YANG Suite can be used to dial in to the NETCONF interface and to configure the dynamic telemetry

subscription against the “ietf-event-notifications" YANG data model. Once the required fields and settings are

set for the stream, encoding type, xpath, and update period, the XML payload can be sent to the device, which

will start sending the requested telemetry data within the NETCONF session.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 70 of 91

gNMI dial-in telemetry plugin

Similar to NETCONF, the gNMI plugin to YANG Suite can be used to create and receive the telemetry data

within the gNMI session.

Once the JSON RPC has been sent, the device window shows the requested telemetry.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 71 of 91

© 2022 Cisco and/or its affiliates. All rights reserved. Page 72 of 91

gRPC dial-out telemetry receiver plugin

YANG Suite also has a gRPC receiver plugin that can be used to receive the telemetry data and display it in the

GUI. The data can also be sent to a log file on the disk as well as to the Elasticsearch database, where it can be

stored and later used for visualizations and alerting.

Tooling: Cisco Crosswork

Cisco Crosswork Suite

Cisco Crosswork is designed with modern low-touch and no-touch operations in mind. It is multivendor and

multidomain, centered on both programmatic infrastructure control and access to operational and state data,

and spans both cloud/SaaS and on-premises tooling. The tools in the portfolio encompass the full-service

lifecycle and deliver a closed operational loop that includes planning and design, implementation, and ongoing

monitoring and assurance.

While elements of the Crosswork portfolio can be licensed individually, Crosswork is also available packaged in

two suite options. These suites group tools that share a common purpose and also provide the advantage of

lower licensing costs than if you purchased the tools individually.

Learn more about the entire Crosswork Suite options here:

https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/crosswork-network-

automation/crosswork-essentials-adv-suites-ds.html

https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/crosswork-network-automation/crosswork-essentials-adv-suites-ds.html
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/crosswork-network-automation/crosswork-essentials-adv-suites-ds.html

© 2022 Cisco and/or its affiliates. All rights reserved. Page 73 of 91

Cisco Crosswork Data Gateway

Cisco Crosswork Data Gateway has been developed for real-time data collection from multivendor network

devices. This application simplifies the collection challenges of all this network traffic.

Cisco Crosswork Data Gateway is an on-premises application deployed close to network devices, enabling

multiple data collection methods—model-driven telemetry, SNMP, CLI, etc. The collected data is delivered

securely and consumed by on-premises and cloud analytics applications. Cisco Crosswork Data Gateway

enables a critical and important tenet of data collection: the collection process should be an efficient and

centralized step.

Cisco Crosswork Data Gateway assumes the job of connecting to devices, collecting the data, and publishing it.

Pushing a first-stage processing function closer to the source data, Crosswork Data Gateway can reduce the

amount of data sent to the application and the stress on the devices, abstracting the network complexity and

reducing application vendor dependencies. If the use case dictates, Cisco Crosswork Data Gateway can send

the raw data for direct consumption by the registered application.

Instances of Cisco Crosswork Data Gateway can be distributed to support large-scale networks. Crosswork

applications scale better by offloading data collection and processing to distributed Data Gateway instances

closer to the devices.

Learn more about Cisco Crosswork Data Gateway here:

https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/crosswork-network-

automation/datasheet-c78-743287.html

Tooling: Cisco Telemetry Broker

Cisco Telemetry Broker has roots in the Stealthwatch UDP Director (UDPD), which simply replicated UDP traffic

to multiple destinations. The Cisco Telemetry Broker builds upon the successes of the UDPD while also creating

a new Telemetry Broker market. Cisco Telemetry Broker optimizes telemetry pipelines for the hybrid cloud. It

vastly simplifies the consumption of telemetry data for customers’ business-critical tools by brokering hybrid

cloud data, filtering unneeded data, and transforming data to a usable format.

The benefits of Cisco Telemetry Broker include brokering, filtering, and transforming data. This provides the

ability to route and replicate telemetry data from a source location to multiple destination consumers, to filter

data that is being replicated to consumers for fine-grained control over what consumers are able to see and

analyze, and to transform data protocols from the exporter to the consumer’s protocol of choice.

Learn more about Cisco Telemetry Broker here:

● Cisco Telemetry Broker https://cs.co/telemetrybroker

● Read more in the blog: https://blogs.cisco.com/security/taking-full-control-of-your-telemetry-with-the-

intelligent-telemetry-plane

https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/crosswork-network-automation/datasheet-c78-743287.html
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/crosswork-network-automation/datasheet-c78-743287.html
https://cs.co/telemetrybroker
https://blogs.cisco.com/security/taking-full-control-of-your-telemetry-with-the-intelligent-telemetry-plane
https://blogs.cisco.com/security/taking-full-control-of-your-telemetry-with-the-intelligent-telemetry-plane

© 2022 Cisco and/or its affiliates. All rights reserved. Page 74 of 91

Tooling: The TIG stack

Telegraf, InfluxDB, and Grafana (TIG) make up the TIG stack, which is an open-source set of software that can

be used to receive, store, and visualize model-driven telemetry data. Each software component can scale

horizontally to enable distributed collection and storage as well as centralized analysis, processing, and alerting.

Many integrations and plugins are available with this set of software for flexible deployments and unique use

cases and requirements.

Telegraf, InfluxDB, and Grafana stack

Telegraf is tooling that handles data collection and processing. It is responsible for dialing into or receiving data

from the model-driven telemetry interfaces on Cisco IOS XE. Telegraf has a rich ecosystem of plugins that allow

it to receive and process data from a variety of places, as well as to send the data out to an equally rich

ecosystem of plugins.

InfluxDB is used as the data storage or database layer. Telegraf pushes the telemetry data it receives into the

API of Influx, where the data eventually resides. Once the data is within InfluxDB, it can be queried, visualized,

and made sense of by network analysts and operators.

Grafana is used for data visualizations—it makes API calls into Influx where the data is in order to visualize some

of the time series data into charts, graphs, panels, and other visually pleasing methods of representing complex

or raw data points.

Together Telegraf, InfluxDB, and Grafana make a simple yet powerful stack of software components that is

used to receive, process, store, and visualize telemetry data. TIG is just one example; there are many other

tools, both commercial and open source, that can be leveraged for the same purposes. Often Telegraf is

integrated into existing telemetry and data lake collection systems to receive network telemetry and pass it into

existing systems like Splunk or PowerBI.

TIG stack with Docker

In production scenarios, the components of the TIG stack are deployed in a custom configuration tailored to the

use cases and requirements of the business and network. An example configuration has been provided within

the Docker container. This container is easy to deploy to get started with the TIG stack components using the

various model-driven telemetry interfaces.

● TIG Stack with Docker example: https://github.com/jeremycohoe/cisco-ios-xe-mdt

https://github.com/jeremycohoe/cisco-ios-xe-mdt

© 2022 Cisco and/or its affiliates. All rights reserved. Page 75 of 91

Grafana dashboard examples

The example Grafana dashboards are available to show end-to-end use cases for visualizing the telemetry data

over time.

Device health monitoring: https://grafana.com/grafana/dashboards/13462

Wireless client stats: https://grafana.com/grafana/dashboards/12468

https://grafana.com/grafana/dashboards/13462
https://grafana.com/grafana/dashboards/12468

© 2022 Cisco and/or its affiliates. All rights reserved. Page 76 of 91

Splunk integration

While YANG Suite is often used for validation of telemetry, when it becomes time to move into production,

several options are available to process, store, and act on the telemetry data that is received. Splunk is

software that is commonly used for this purpose and is seen in many environments for many different use

cases, from applications to networks.

Examples for integrating model-driven telemetry with Splunk are available from the GitHub and Splunk links:

● https://github.com/jeremycohoe/cisco-ios-xe-mdt/blob/master/telegraf-splunk.conf

● https://www.splunk.com/en_us/blog/it/the-daily-telegraf-getting-started-with-telegraf-and-splunk.html

Day N: Device optimization

There are many features as part of the device optimization capabilities, including Guest Shell and gNOI

integrations to ensure that day N device optimization can be completed as needed, which ensures that the

various customizations and optimizations can be performed.

Guest Shell is a virtualized CentOS Linux-based environment that is designed to run custom scripts and

applications, including Python, for increased automation, control, and management capabilities. It can be used

to install, update, and operate third-party Linux applications and custom scripts. Guest Shell is bundled with the

system image and can be enabled and configured as required. It has integrations to the Cisco IOS XE CLI and

NETCONF/YANG API and can also be used programmatically and automatically when integrated with the Cisco

IOS Embedded Event Manager (EEM) feature.

https://github.com/jeremycohoe/cisco-ios-xe-mdt/blob/master/telegraf-splunk.conf
https://www.splunk.com/en_us/blog/it/the-daily-telegraf-getting-started-with-telegraf-and-splunk.html

© 2022 Cisco and/or its affiliates. All rights reserved. Page 77 of 91

gNOI is a workflow API that is part of the gNMI programmatic interface. It uses protocol buffers, or protobuf for

short, and there are several “.proto” definitions for various workflows that have been defined within the

openconfig/gnoi repository on GitHub. Several of these.proto workflows have been implemented, including the

certificate management API service (cert.proto), the operating system software management API service

(OS.proto), and the reset to factory API service (reset.proto), and several more are being considered. Tooling

for each of these gNOI implementations is available from the google/gnxi repository on GitHub and include

gnoi_cert for cert.proto, gnoi_os for os.proto, and gnoi_reset for reset.proto, among others.

Learn more:

● https://github.com/openconfig/gnoi

● https://github.com/google/gnxi

The CLI to YANG feature helps convert the running config command into YANG format for the programmatic

interfaces. In addition to reading the Cisco-IOS-XE-native.yang configuration from the API, this command can

be used to easily retrieve the running config in either XML for NETCONF or for RESTCONF formatted in JSON.

This is an easy way, when on the command line, to see the YANG configuration that is in the show running

config command. This XML or JSON formatted code can more easily be used within third-party automation and

orchestration tooling systems and controllers.

gNOI

gNOI is a workflow API that is part of the gNMI programmatic interface. Once gNMI is enabled, the gNOI

workflows also become available and are accessed through the same API service. Protobufs are an encoding

technique used to structure the data. Several protobufs are implemented and many more defined within the

OpenConfig/gnoi Github repository. Refer to the section “Cisco Native RPC Actions YANG” for additional

information about operations and workflows.

The. proto workflows that have been implemented include:

● The certificate management API service (cert.proto)

● The operating system software management API service (OS.proto)

● The reset to factory API service (reset.proto)

Tooling for each of these gNOI implementations includes:

● gnoi_cert for cert.proto

● gnoi_os for os.proto

● gnoi_reset for reset.proto

https://github.com/openconfig/gnoi
https://github.com/google/gnxi

© 2022 Cisco and/or its affiliates. All rights reserved. Page 78 of 91

gNOI certificate management service

The gNOI cert.proto certificate management service can be used to install cryptographic certificates into the

trustpoint for use within services and applications on Cisco IOS XE. The trustpoint is an abstract container that

is used to store certificates used for secure communications between a client and a server. The gnoi_cert client

tooling is used to install or revoke certificates on Cisco IOS XE from third-party controllers, scripts, and

orchestration systems.

gNOI certificate bootstrapping is a feature within cert.proto for when a target device does not have any

preexisting certificates. The certificate bootstrapping feature allows the installation of certificates for the

purpose of establishing subsequent secure gNMI and thus secure gNOI connections.

Essentially, when gNMI is enabled with the bootstrapping “secure-init” command, the first certificate that gNOI

cert.proto receives is installed into the trustpoint and is also applied to the gNMI service. As part of this

operation, the gNMI service is restarted with the newly installed certificate to accept subsequent secure

connections with signed certificates.

The following gNOI cert.proto operations allow complete certificate management services:

● Install

● Rotate

● Revoke

● Get

● GenerateCSR

 Figure 27.

gNOI cert.proto operations

The certificate management service has been defined in the OpenConfig consortium’s gNOI repository in

GitHub at https://github.com/openconfig/gnoi/blob/master/cert/cert. proto and has tooling available from

Google’s gNxI repository on GitHub at https://github.com/google/gnxi/tree/master/gnoi_cert

https://github.com/openconfig/gnoi/blob/master/cert/cert
https://github.com/google/gnxi/tree/master/gnoi_cert

© 2022 Cisco and/or its affiliates. All rights reserved. Page 79 of 91

gNOI operating system installation service

The gNOI OS.proto operating system service is used to manage the currently running operating system version

and has operations that include install, activate, and verify. Together these operations are used to

programmatically upgrade or downgrade the Cisco IOS XE between releases, for example, to upgrade from

17.5 to 17.6, from 17.6.1 to 17.6.2, or even downgrades such as moving from 17.8 to 16.8 if needed.

Bundle mode or install mode can be configured when booting software images, and OS.proto works regardless

of which boot mode was configured. However, when the Cisco IOS XE device is booted in bundle mode, it will

be converted to install mode as part of the programmatic gNOI OS install and activate operations. Install mode

has several advantages over bundle mode for high availability, device boot, and reload times.

The operating system installation service has been defined in the OpenConfig consortium’s gNOI repository in

GitHub at https://github.com/openconfig/gnoi/blob/master/os/os. proto and has tooling available from Google’s

gNxI repository on GitHub at https://github.com/google/gnxi/tree/master/gnoi_os.

Details about the gNOI operating system installation service can be retrieved using the verify operation, but are

also available from a traditional show command.

gNOI factory reset service

The gNOI reset.proto factory reset service is used to perform factory reset operations to bring devices back to

a new state as if just received from the factory. The primary operation is the “start” RPC, which starts the

“factory-reset all” or “factory-reset switch all all” operations against the target device. There is one additional

option as part of this RPC, which is zero fill.

The factory reset service is supported in install mode but not in bundle mode. If bundle mode is in use, the start

API call will be rejected and will not complete. The gNOI OS.proto operating system installation service can be

used in this case when bundle mode is used to upgrade and reboot into install mode.

The factory reset service has been defined in the OpenConfig consortium’s gNOI repository at

https://github.com/openconfig/gnoi/blob/master/factory_reset/factory_reset.proto. and has tooling available

from Google gNxI repository on GitHub at https://github.com/google/gnxi/tree/master/gnoi_reset.

Details about the gNOI factory reset service can be retrieved with the show gNxI command.

https://github.com/openconfig/gnoi/blob/master/os/os
https://github.com/google/gnxi/tree/master/gnoi_os
https://github.com/openconfig/gnoi/blob/master/factory_reset/factory_reset.proto
https://github.com/google/gnxi/tree/master/gnoi_reset

© 2022 Cisco and/or its affiliates. All rights reserved. Page 80 of 91

The gNOI microservices enable much easier management of certificates, operating systems, and the factory

reset process.

CLI to YANG

The CLI to YANG feature helps convert the running config command into YANG format, either for NETCONF with

XML or RESTCONF with JSON. CLI to YANG requires the netconf-yang data model interfaces to be enabled

starting with Release 17.7. Commands with corresponding native YANG and modeled in show run are returned.

Format for NETCONF with XML encoding

Convert commands to NETCONF XML as well as for RESTCONF with XML encoding.

show run | format netconf-xml

© 2022 Cisco and/or its affiliates. All rights reserved. Page 81 of 91

Format for RESTCONF with JSON encoding

Convert commands to RESTCONF JSON:

show run | format restconf-json

Additionally, we can filter for specific portions of the running config using either Netconf-xml or restconf-json:

Guest Shell

Guest Shell is a virtualized Linux-based environment, designed to run custom Linux applications, including

Python, for automated control and management of Cisco devices. Using Guest Shell, you can also install,

update, and operate third-party Linux applications. Guest Shell is bundled with the system image and can be

installed using the “guestshell enable” Cisco IOS command. This container shell provides a secure environment,

decoupled from the host device, in which users can install scripts or software packages and run them. The

existing network hardware is used to deliver the scalability, high availability, and flexibility required, with no

requirements for dedicated or separate compute. The Guest Shell environment is intended for tools, Linux

utilities, and manageability rather than networking.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 82 of 91

Guest Shell and application hosting

Guest Shell is a built-in CentOS container that has APIs into Cisco IOS XE via Python and NETCONF, which uses

the Cisco IOx infrastructure. The same IOx infrastructure is used for Docker-based application hosting, which

enables an even wider range of Linux features that can be used. Application hosting, like Guest Shell, can be

completely managed with the YANG APIs. The configuration of the feature and the operational state of the

containers can be managed with the YANG model. Controller solutions with Cisco DNA Center also enable

management and integration of the ThousandEyes performance monitoring solution. Refer to the Application

Hosting White Paper and DevNet resources at https://developer.cisco.com/docs/app-hosting/ for more details

on application hosting.

Guest Shell feature enablement

Before enabling Guest Shell, IOx must be configured. If IOx is not configured, a message to configure IOx is

displayed. Removing IOx removes access to Guest Shell. To enable and operate Guest Shell, the management

interface needs to be configured on the device. To enable IOx, enter the following commands:

configure terminal

iox

exit

Enabling Guest Shell on the management interface:

configure terminal

app-hosting appid <name>

app-vnic management guest-interface <interface number>

end

show app-hosting list

Once the prerequisite configuration is set up, enable and enter the Guest Shell container:

guestshell enable

The output will look like the following:

C9300# conf t

Enter configuration commands, one per line. End with CNTL/Z.

Device(config)# app-hosting appid guestshell

Device(config-app-hosting)# app-vnic management guest-interface 1

Device(config-app-hosting-mgmt-gateway)# end

C9300# show app-hosting list

App id State

guestshell DEPLOYED

C9300# guestshell enable

Interface will be selected if configured in app-hosting

Please wait for completion

https://www.cisco.com/c/dam/en/us/products/collateral/switches/catalyst-9300-series-switches/white-paper-c87-742415.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/switches/catalyst-9300-series-switches/white-paper-c87-742415.pdf
https://developer.cisco.com/docs/app-hosting/

© 2022 Cisco and/or its affiliates. All rights reserved. Page 83 of 91

guestshell activated successfully

Current state is: ACTIVATED

guestshell started successfully

Current state is: RUNNING

Guestshell enabled successfully

C9300#show app-hosting list

App id State

guestshell RUNNING

Guest Shell resources

Resources used by the Guest Shell container can be checked with the following CLI command. The hardware

resource allocations for CPU, memory, and disk are displayed. Persistent disk space can also be increased as

needed.

C9300# show app-hosting utilization appid guestshell

© 2022 Cisco and/or its affiliates. All rights reserved. Page 84 of 91

Verifying Guest Shell

To confirm that the IOx service has been enabled, enter the show iox-service command and ensure that the IOx

Cisco application hosting framework (CAF), IOx service (IOxman), and Libvirtd are in the running state.

C9300# show iox-service

IOx Infrastructure Summary:

IOx service (CAF) : Running

IOx service (HA) : Running

IOx service (IOxman) : Running

IOx service (Sec storage) : Running

Libvirtd 5.5.0 : Running

Dockerd v19.03.13-ce : Running

Sync Status : Disabled

C9300# show app-hosting list

App id State

guestshell RUNNING

Accessing and using Guest Shell

Linux commands can be run directly from the IOS CLI. The guestshell run Bash command opens the Guest Shell

Bash prompt. To log into Guest Shell, run the following command:

© 2022 Cisco and/or its affiliates. All rights reserved. Page 85 of 91

C9300# guestshell

[guestshell@guestshell ~]$ pwd

/home/guestshell

[guestshell@guestshell ~]$ whoami

guestshell

[guestshell@guestshell ~]$ uname -a

Linux guestshell 5.4.69 #1 SMP Fri Mar 19 21:47:56 UTC 2021 x86_64 x86_64 x86_64 GNU/Linux

Guest Shell with Python API

Python scripts can be run in Guest Shell. The “guestshell run python3” commands launch the Python interpreter.

C9300# guestshell run python3

Once the interactive shell is entered, the “clip” Python module can be used to execute commands as needed.

Cisco IOS CLI commands:

>>> from cli import clip

>>> clip(“show ip int brief | exclude unassigned”)

Noninteractive Python

Guest Shell can execute Python scripts in a noninteractive environment. Files can be placed on the device

bootflash at day 0 during ZTP provisioning or at any other time during the device lifecycle. Scripts can be

copied from a network TFTP service or created manually when required using common tooling and editors like

“vi.” The script can be executed using the “guestshell run python3 show.py” command, which can be used in

other integrations, including EEM, the Embedded Event Manager.

© 2022 Cisco and/or its affiliates. All rights reserved. Page 86 of 91

#!/usr/bin/python

from cli import clip

clip("show ip int brief | exclude unassigned")

exit()

The command to execute the Python script is:

guestshell run python3 /home/guestshell/show.py

Guest Shell with the Cisco IOS CLI

The dohost command is built into Guest Shell and will send the command directly to the device. The command

is limited to exec privilege mode and is not for the config mode.

Guest Shell with NETCONF API

Guest Shell Python runs in an LXC container. This container is managed by IOx, which is a container, similar in

function to Docker, managed specifically for Cisco IOS XE.

Before using Guest Shell, enable IOx and then enable Guest Shell. Additionally, ensure that the following is

configured to open the bridge between Guest Shell and Cisco IOS XE:

netconf-yang ssh local-vrf guestshell enable

© 2022 Cisco and/or its affiliates. All rights reserved. Page 87 of 91

Passwordless authentication using keys can easily be set up using the following Bash commands or the Python

API "netconf_enable_guestshell”

[guestshell@guestshell iosp_client -f netconf_enable guestshell 830

[guestshell@guestshell iosp_client -f netconf_enable_passwordless guestshell guestshell

The following Python script was generated using YANG Suite and returns the hostname of the given device.

get_hostname.py

#! /usr/bin/env python

from ncclient import manager

import sys

import xml.dom.minidom

HOST = '127.0.0.1'

use the NETCONF port for your device

PORT = 830

use the user credentials for your device

USER = 'guestshell'

PASS = 'it will use the key specified and does not use this one here ok'

FILTER = '''

 <filter xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

© 2022 Cisco and/or its affiliates. All rights reserved. Page 88 of 91

 <native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">

 <hostname></hostname>

 </native>

 </filter>

 '''

def main():

 """

 Main method that prints netconf capabilities of remote device.

 """

 # Create a NETCONF session to the router with ncclient

 with manager.connect(host=HOST, port=PORT, username=USER,

 password=PASS, hostkey_verify=False,

 device_params={'name': 'default'},

 key_filename="/home/guestshell/.ssh/id_rsa_netconf",

 allow_agent=False, look_for_keys=True) as m:

 # Retrieve the configuration

 results = m.get_config('running', FILTER)

 # Print the output in a readable format

 print(xml.dom.minidom.parseString(results.xml).toprettyxml())

if __name__ == '__main__':

 sys.exit(main())

print("\n\n *** Finished NETCONF example... *** \n\n")

Run this script from Guest Shell using the following command. Any block of XML that is generated from YANG

Suite can easily be used in place of the simple “get hostname” example above.

c9300-pod21# guestshell run python3 netconf.py

© 2022 Cisco and/or its affiliates. All rights reserved. Page 89 of 91

The above example shows that Guest Shell has made a connection to the localhost 127.0.0.1 on port 830,

which is connected to Cisco IOS XE’s NETCONF interface for management and operation data use cases.

Guest Shell integration with EEM

Embedded Event Manager (EEM) is a distributed and customized approach to event detection and recovery

offered directly in a Cisco IOS device. EEM offers the ability to monitor events and take informational,

corrective, or any desired EEM action when the monitored events occur or when a threshold is reached. An EEM

policy is an entity that defines an event and the actions to be taken when that event occurs.

EEM can be used to execute Python scripts within the Guest Shell environment. In this example, whenever a

syslog message is generated indicating that an interface has changed state from up to down or into a disabled

state, the guestshell_script.py Python script will run. This script runs some CLI commands and saves the output

to a log file.

The example EEM applet below is used to log messages from the CLI and YANG interfaces to syslog. This helps

in debugging and logging and can be shipped off-box if necessary for security and auditing use cases.

enable

configure terminal

event manager applet catchall

event cli pattern ".*" sync no skip no

action 1 syslog msg "$_cli_msg"

end

© 2022 Cisco and/or its affiliates. All rights reserved. Page 90 of 91

Disabling and destroying Guest Shell

The “guestshell disable” command shuts down and disables Guest Shell.

The “guestshell destroy” command removes the rootfs from the flash filesystem.

Guest Shell conclusion

As described in this section, Guest Shell is a very powerful integration option when used in conjunction with

other features and technologies like EEM, Python3, the CLI, NETCONF APIs, and more.

Conclusion

The Cisco IOS XE network OS delivers an innovative level of programmability and automation, decreasing the

complexity of the business and network. This white paper has described the need for programmable interfaces

and the differences between them for the full device lifecycle, including device onboarding, configuring,

monitoring and optimization. The programmatic interfaces NETCONF, RESTCONF, and gRPC can be enabled

and configured for communicating with Cisco devices. Configured and dynamic telemetry subscriptions can be

established using open-source tools. Example payloads can be used to create, verify, and remove a feature

programmatically using the YANG Suite, Ansible, and Terraform tooling. We have learned the various ways to

work with Cisco IOS XE YANG models programmatically. We can automate any Cisco IOS XE device using any

interface. As the needs of network engineers are ever evolving, we at Cisco will also continue to provide the

cutting-edge technologies needed to shape the future.

Additional resources

© 2022 Cisco and/or its affiliates. All rights reserved. Page 91 of 91

● Cisco IOS XE Programmability Book:https://www.cisco.com/c/dam/en/us/products/collateral/enterprise-

networks/nb-06-ios-xe-prog-ebook-cte-en.pdf

● Cisco IOS XE Programmability Configuration Guide: https://www.cisco.com/c/en/us/td/docs/ios-

xml/ios/prog/configuration/176/b_176_programmability_cg.html?dtid=osscdc000283

● YANG Suite: https://developer.cisco.com/yangsuite/

● NCC: https://github.com/CiscoDevNet/ncc

● Embedded Event Manager: https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/eem/configuration/xe-

17/eem-xe-17-book.html?dtid=osscdc000283

● NETCONG YANG Configuration and Validation: https://www.cisco.com/c/en/us/support/docs/storage-

networking/management/200933-YANG-NETCONF-Configuration-Validation.html

Developer community and feedback

● Cisco DevNet: https://developer.cisco.com/

● Cisco Communities: https://community.cisco.com

● Cisco DevNet for Cisco IOS XE: https://developer.cisco.com/site/ios-xe/

● Cisco IOS XE model-based management docs: https://developer.cisco.com/docs/ios-xe/#!model-

based-management-introduction

● MDT Learning Lab: https://developer.cisco.com/learning/modules/iosxe_telemetryMDT Learning Lab:

https://developer.cisco.com/learning/modules/iosxe_telemetry

● Automation Exchange: https://developer.cisco.com/network-automation/

Blogs

● Zero-touch provisioning: https://blogs.cisco.com/developer/device-provisioning-with-ios-xe-zero-

touch-provisioning

● Model-driven telemetry: https://blogs.cisco.com/developer/getting-started-with-model-driven-

telemetry

● Cisco IOS XE automation: https://blogs.cisco.com/ciscoit/b-en-04162014-look-ma-no-

hands?dtid=osscdc000283

● SNMP to model-driven telemetry: https://blogs.cisco.com/developer/its-time-to-move-away-from-

snmp-and-cli-and-use-model-driven-telemetry

● Terraform Cisco IOS XE provider: https://blogs.cisco.com/developer/terraformiosxe01

Printed in USA C11-3181165-00 09/23

https://www.cisco.com/c/dam/en/us/products/collateral/enterprise-networks/nb-06-ios-xe-prog-ebook-cte-en.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/enterprise-networks/nb-06-ios-xe-prog-ebook-cte-en.pdf
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/176/b_176_programmability_cg.html?dtid=osscdc000283
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/176/b_176_programmability_cg.html?dtid=osscdc000283
https://developer.cisco.com/yangsuite/
https://github.com/CiscoDevNet/ncc
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/eem/configuration/xe-17/eem-xe-17-book.html?dtid=osscdc000283
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/eem/configuration/xe-17/eem-xe-17-book.html?dtid=osscdc000283
https://www.cisco.com/c/en/us/support/docs/storage-networking/management/200933-YANG-NETCONF-Configuration-Validation.html
https://www.cisco.com/c/en/us/support/docs/storage-networking/management/200933-YANG-NETCONF-Configuration-Validation.html
https://developer.cisco.com/
https://community.cisco.com/
https://developer.cisco.com/site/ios-xe/
https://developer.cisco.com/docs/ios-xe/#!model-based-management-introduction
https://developer.cisco.com/docs/ios-xe/#!model-based-management-introduction
https://developer.cisco.com/learning/modules/iosxe_telemetry
https://developer.cisco.com/network-automation/
https://blogs.cisco.com/developer/device-provisioning-with-ios-xe-zero-touch-provisioning
https://blogs.cisco.com/developer/device-provisioning-with-ios-xe-zero-touch-provisioning
https://blogs.cisco.com/developer/getting-started-with-model-driven-telemetry
https://blogs.cisco.com/developer/getting-started-with-model-driven-telemetry
https://blogs.cisco.com/ciscoit/b-en-04162014-look-ma-no-hands?dtid=osscdc000283
https://blogs.cisco.com/ciscoit/b-en-04162014-look-ma-no-hands?dtid=osscdc000283
https://blogs.cisco.com/developer/its-time-to-move-away-from-snmp-and-cli-and-use-model-driven-telemetry
https://blogs.cisco.com/developer/its-time-to-move-away-from-snmp-and-cli-and-use-model-driven-telemetry
https://blogs.cisco.com/developer/terraformiosxe01

