Ultra-M UCS 240M4 Single-HDD-Fehler - Hot-Swap-Verfahren - vEPC

Inhalt

Einführung Hintergrundinformationen Abkürzungen Workflow des MoP Ausfall einer Festplatte Einzelner Festplattenfehler auf dem Computing-Server Single HDD Failure auf Controller-Server Single HDD Failure auf OSD-Compute-Server Single HDD Failure auf OSD-Server

Einführung

Dieses Dokument beschreibt die erforderlichen Schritte, um das fehlerhafte Festplattenlaufwerk (HDD) im Server in einer Ultra-M-Konfiguration zu ersetzen, die StarOS Virtual Network Functions (VNFs) hostet.

Hintergrundinformationen

Ultra-M ist eine vorkonfigurierte und validierte Kernlösung für virtualisierte mobile Pakete, die die Bereitstellung von VNFs vereinfacht. OpenStack ist der Virtualized Infrastructure Manager (VIM) für Ultra-M und besteht aus den folgenden Knotentypen:

- Computing
- Object Storage Disk Computing (OSD Computing)
- Controller
- OpenStack-Plattform Director (OSPD)

Die High-Level-Architektur von Ultra-M und die beteiligten Komponenten sind in diesem Bild dargestellt:

UltraM-ArchitekturDieses Dokument richtet sich an Mitarbeiter von Cisco, die mit der Cisco Ultra-M-Plattform vertraut sind. Es enthält eine Beschreibung der Schritte, die beim Austausch des OSPD-Servers auf OpenStack-Ebene durchgeführt werden müssen.

Hinweis: Ultra M 5.1.x wird zur Definition der Verfahren in diesem Dokument berücksichtigt.

Abkürzungen

- VNF Virtuelle Netzwerkfunktion
- CF Kontrollfunktion
- SF Servicefunktion
- WSA Elastic Service Controller
- MOP Verfahrensweise
- OSD Objektspeicherdatenträger
- HDD Festplattenlaufwerk
- SSD Solid-State-Laufwerk
- VIM Virtueller
- Infrastrukturmanager
- VM Virtuelles System
- EM Element Manager
- USA Ultra-
- Automatisierungsservices
- UUID Universeller Identifikator

Workflow des MoP

Ausfall einer Festplatte

1. Jeder Baremetal-Server wird mit zwei HDD-Laufwerken bereitgestellt, die in der RAID 1-

Konfiguration als BOOT-DISK fungieren. Bei Ausfall einer Festplatte kann die fehlerhafte Festplatte durch eine Hot-Swap-Funktion ersetzt werden, da die Redundanz auf RAID 1-Ebene vorliegt.

2. Verfahren zum Ersetzen einer fehlerhaften Komponente auf dem UCS C240 M4 Server können wie folgt aufgerufen werden: <u>Ersetzen der Serverkomponenten</u>.

3. Bei Ausfall einer einzelnen Festplatte wird nur die fehlerhafte Festplatte im laufenden Betrieb ausgetauscht, sodass nach dem Austausch neuer Festplatten kein BIOS-Upgrade erforderlich ist.

4. Warten Sie nach dem Ersetzen der Festplatten auf die Datensynchronisierung zwischen den Festplatten. Es kann Stunden dauern.

5. In einer OpenStack-basierten (Ultra-M) Lösung kann der UCS 240M4 Bare-Metal-Server eine der folgenden Rollen übernehmen: Computing, OSD-Computing, Controller und OSPD. Die Schritte, die für die Handhabung des einzelnen Festplattenausfalls in jeder dieser Serverrollen erforderlich sind, sind identisch. Dieser Abschnitt beschreibt die Integritätsprüfungen, die vor dem Hot-Swap der Festplatte durchzuführen sind.

Einzelner Festplattenfehler auf dem Computing-Server

1. Wenn beim UCS 240M4, das als Compute-Knoten fungiert, ein Ausfall der Festplattenlaufwerke festgestellt wird, führen Sie diese Statusprüfungen durch, bevor Sie die defekte Festplatte schließlich wieder austauschen.

2. Identifizieren Sie die VMs, die auf diesem Server ausgeführt werden, und überprüfen Sie, ob die Funktionen ordnungsgemäß funktionieren.

Identifizieren der im Compute-Knoten gehosteten VMs:

Identifizieren Sie die VMs, die auf dem Compute-Server gehostet werden, und überprüfen Sie, ob sie aktiv und aktiv sind. Es gibt zwei Möglichkeiten:

1. Der Compute-Server enthält nur SF VM.

```
[stack@director ~]$ nova list --field name,host | grep compute-10
| 49ac5f22-469e-4b84-badc-031083db0533 | VNF2-DEPLOYM_s8_0_8bc6cc60-15d6-4ead-8b6a-
10e75d0e134d |
pod1-compute-10.localdomain | ACTIVE|
```

2. Der Compute-Server enthält eine Kombination aus VMs (CF/ESC/EM/UAS).

```
[stack@director ~]$ nova list --field name,host | grep compute-8
| 507d67c2-1d00-4321-b9d1-da879af524f8 | VNF2-DEPLOYM_XXXX_0_c8d98f0f-d874-45d0-af75-
88a2d6fa82ea | pod1-compute-8.localdomain | ACTIVE |
| f9c0763a-4a4f-4bbd-af51-bc7545774be2 | VNF2-DEPLOYM_c2_0_df4be88d-b4bf-4456-945a-
3812653ee229 | pod1-compute-8.localdomain | ACTIVE |
| 75528898-ef4b-4d68-b05d-882014708694 | VNF2-ESC-ESC-
0 | pod1-compute-8.localdomain | ACTIVE |
| f5bd7b9c-476a-4679-83e5-303f0aae9309 | VNF2-UAS-uas-
0 | pod1-compute-8.localdomain | ACTIVE |
```

Hinweis: In der hier gezeigten Ausgabe entspricht die erste Spalte der UUID, die zweite Spalte dem VM-Namen und die dritte Spalte dem Hostnamen, in dem die VM vorhanden ist.

Statusprüfungen:

1. Melden Sie sich beim StarOS VNF an, und identifizieren Sie die Karte, die der SF- oder CF-VM entspricht. Verwenden Sie die UUID der SF oder CF VM, die im Abschnitt "Identifizieren der im Compute-Knoten gehosteten VMs" angegeben ist, und identifizieren Sie die Karte, die der UUID entspricht.

```
[local]VNF2# show card hardware
Tuesday might 08 16:49:42 UTC 2018
<snip>
Card 8:
Card Type: 4-Port Service Function Virtual CardCPU Packages: 26 [#0, #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13, #14,
#15, #16, #17, #18, #19, #20, #21, #22, #23, #24, #25]
CPU Nodes
                            : 2
CPU Cores/Threads
                          : 26
Memory
                             : 98304M (qvpc-di-large)
UUID/Serial Number : 49AC5F22-469E-4B84-BADC-031083DB0533
<snip>
[local]VNF2# show card hardware
Tuesday might 08 16:49:42 UTC 2018
<snip>

      Card Type
      : Control Function Virtual Card

      CPU Packages
      : 8 [#0, #1, #2, #3, #4, #5, #6, #7]

      CPU Nodes
      : 1

Card 2:
CPU Cores/Threads : 8
Memory: 16384M (qvpc-di-large)UUID/Serial Number: F9C0763A-4A4F-4BBD-AF51-BC7545774BE2
<snip>
```

2. Überprüfen Sie den Status der Karte.

[local]VNF Tuesday mi	2# show card table ght 08 16:52:53 UTC 2018		
Slot	Card Type	Oper State	SPOF Attach
1: CFC	Control Function Virtual Card	Active	 No
2: CFC	Control Function Virtual Card	Standby	-
3: FC	4-Port Service Function Virtual Card	Active	No
4: FC	4-Port Service Function Virtual Card	Active	No
5: FC	4-Port Service Function Virtual Card	Active	No
6: FC	4-Port Service Function Virtual Card	Active	No
7: FC	4-Port Service Function Virtual Card	Active	No
8: FC	4-Port Service Function Virtual Card	Active	No
9: FC	4-Port Service Function Virtual Card	Active	No
10: FC	4-Port Service Function Virtual Card	Standby	-

3. Melden Sie sich beim im Knoten Computing gehosteten ESC an, und überprüfen Sie den Status.

4. Melden Sie sich beim EM an, das im Knoten Computing gehostet wird, und überprüfen Sie den Status.

5. Melden Sie sich beim im Knoten Compute gehosteten UAS an, und prüfen Sie den Status.

ubuntu@autovnf2-uas-1:~\$ sudo su root@autovnf2-uas-1:/home/ubuntu# confd_cli -u admin -C Welcome to the ConfD CLI admin connected from 127.0.0.1 using console on autovnf2-uas-1 autovnf2-uas-1#show uas ha uas ha-vip 172.18.181.101 autovnf2-uas-1# autovnf2-uas-1# autovnf2-uas-1#show uas uas version 1.0.1-1 uas state ha-active uas ha-vip 172.18.181.101 INSTANCE IP STATE ROLE _____ 172.18.180.4 alive CONFD-SLAVE 172.18.180.5 alive CONFD-MASTER 172.18.180.8 alive NA

autovnf2-uas-1#show errors % No entries found.

6. Wenn die Integritätsprüfungen in Ordnung sind, fahren Sie mit dem fehlerhaften Hot-Swap-Vorgang für die Festplatte fort und warten Sie, bis die Datensynchronisierung abgeschlossen ist, da sie Stunden in Anspruch nimmt. Weitere Informationen finden Sie unter <u>Ersetzen der</u> <u>Serverkomponenten</u>.

7. Wiederholen Sie diese Integritätsprüfungsverfahren, um zu bestätigen, dass der Systemstatus der auf dem Computing-Knoten gehosteten VMs wiederhergestellt wird.

Single HDD Failure auf Controller-Server

1. Wenn beim UCS 240M4, der als Controller-Knoten fungiert, der Ausfall von HDD-Laufwerken beobachtet wird, befolgen Sie die Statusprüfungen, bevor Sie den defekten Datenträger Hot-Swap durchführen.

2. Überprüfen Sie den Status des Schrittmachers auf Controllern.

3. Melden Sie sich bei einem der aktiven Controller an, und überprüfen Sie den Status des Schrittmachers. Alle Dienste müssen auf den verfügbaren Controllern ausgeführt und auf dem ausgefallenen Controller gestoppt werden.

```
[heat-admin@pod1-controller-0 ~]$ sudo pcs status
Cluster name: tripleo_cluster
Stack: corosync
Current DC: pod1-controller-0 (version 1.1.15-11.el7_3.4-e174ec8) - partition with quorum
Last updated: Thu Jun 28 07:53:06 2018
                                               Last change: Wed Jan 17 11:38:00 2018 by root
via cibadmin on pod1-controller-0
3 nodes and 22 resources conimaged
Online: [ pod1-controller-0 pod1-controller-1 pod1-controller-2 ]
Full list of resources:
ip-10.2.2.2
                 (ocf::heartbeat:IPaddr2):
                                                  Started pod1-controller-0
 ip-11.120.0.42 (ocf::heartbeat:IPaddr2):
                                               Started pod1-controller-1
 ip-11.119.0.42 (ocf::heartbeat:IPaddr2):
                                               Started pod1-controller-2
 ip-11.120.0.50 (ocf::heartbeat:IPaddr2):
                                                Started pod1-controller-0
                                            Started pod1-controller-1
 ip-11.118.0.48 (ocf::heartbeat:IPaddr2):
 ip-192.200.0.102
                        (ocf::heartbeat:IPaddr2):
                                                        Started pod1-controller-2
Clone Set: haproxy-clone [haproxy]
   Started: [ pod1-controller-0 pod1-controller-1 pod1-controller-2 ]
Master/Slave Set: galera-master [galera]
   Masters: [ pod1-controller-0 pod1-controller-1 pod1-controller-2 ]
Clone Set: rabbitmq-clone [rabbitmq]
    Started: [ pod1-controller-0 pod1-controller-1 pod1-controller-2 ]
Master/Slave Set: redis-master [redis]
   Masters: [ pod1-controller-0 ]
    Slaves: [ pod1-controller-1 pod1-controller-2 ]
openstack-cinder-volume
                                (systemd:openstack-cinder-volume):
                                                                         Started pod1-controller-
0
my-ipmilan-for-controller-0 (stonith:fence_ipmilan):
my-ipmilan-for-controller-1 (stonith:fence_ipmilan):
                                                                 Started pod1-controller-1
                                                                Started pod1-controller-2
my-ipmilan-for-controller-2 (stonith:fence_ipmilan):
                                                                Started pod1-controller-0
Daemon Status:
```

```
corosync: active/enabled
pacemaker: active/enabled
pcsd: active/enabled
```

4. Uberprüfen Sie den MariaDB-Status in den aktiven Controllern.

```
[stack@director] nova list | grep control
| 4361358a-922f-49b5-89d4-247a50722f6d | pod1-controller-0 | ACTIVE | - | Running |
ctlplane=192.200.0.102 |
| d0f57f27-93a8-414f-b4d8-957de0d785fc | pod1-controller-1 | ACTIVE | - | Running |
ctlplane=192.200.0.110 |
```

[stack@director ~]\$ for i in 192.200.0.102 192.200.0.110 ; do echo "*** \$i ***" ; ssh heatadmin@\$i "sudo mysql --exec=\"SHOW STATUS LIKE 'wsrep_local_state_comment'\" ; sudo mysql -exec=\"SHOW STATUS LIKE 'wsrep_cluster_size'\""; done *** 192.200.0.152 *** Variable_name Value wsrep_local_state_comment Synced Variable_name Value wsrep_cluster_size 2 *** 192.200.0.154 *** Variable_name Value wsrep_local_state_comment Synced Variable_name Value 2 wsrep_cluster_size

5. Überprüfen Sie, ob diese Leitungen für jeden aktiven Controller vorhanden sind:

wsrep_local_state_comment: Synced

wsrep_cluster_size: 2

6. Überprüfen Sie den Rabbitmq-Status in den aktiven Controllern.

7. Wenn die Integritätsprüfungen in Ordnung sind, fahren Sie mit dem fehlerhaften Hot-Swap-Vorgang für die Festplatte fort und warten Sie, bis die Datensynchronisierung abgeschlossen ist, da sie Stunden in Anspruch nimmt. Weitere Informationen finden Sie unter <u>Ersetzen der</u> <u>Serverkomponenten</u>.

8. Wiederholen Sie diese Health Check-Verfahren, um den Status des Controllers zu bestätigen.

Single HDD Failure auf OSD-Compute-Server

Wenn beim UCS 240M4, der als OSD-Compute-Knoten fungiert, ein Ausfall der HDD-Laufwerke festgestellt wird, führen Sie diese Statusprüfungen durch, bevor Sie die defekte Festplatte im laufenden Betrieb austauschen.

Identifizieren der im OSD-Compute-Knoten gehosteten VMs:

Identifizieren Sie die VMs, die auf dem Compute-Server gehostet werden. Es gibt zwei Möglichkeiten:

1. Der OSD-Compute-Server enthält eine Kombination aus virtuellen Systemen (EM/UAS/Auto-Deploy/Auto-IT).

```
[stack@director ~]$ nova list --field name,host | grep osd-compute-0
| c6144778-9afd-4946-8453-78c817368f18 | AUTO-DEPLOY-VNF2-uas-0 | pod1-osd-compute-0.localdomain
| ACTIVE |
| 2d051522-bce2-4809-8d63-0c0e17f251dc | AUTO-IT-VNF2-uas-0 | pod1-osd-compute-0.localdomain |
ACTIVE |
| 507d67c2-1d00-4321-b9d1-da879af524f8 | VNF2-DEPLOYM_XXXX_0_c8d98f0f-d874-45d0-af75-
88a2d6fa82ea | pod1-osd-compute-0.localdomain | ACTIVE |
| f5bd7b9c-476a-4679-83e5-303f0aae9309 | VNF2-UAS-uas-0 | pod1-osd-compute-0.localdomain |
ACTIVE |
```

2. Der Compute-Server enthält eine Kombination aus VMs (CF/ESC/EM/UAS).

[stack@director ~]\$ nova list --field name,host | grep osd-compute-1 | 507d67c2-1d00-4321-b9d1-da879af524f8 | **VNF2-DEPLOYM_XXXX_0_c8d98f0f-d874-45d0-af75-**88a2d6fa82ea | pod1-compute-8.localdomain ACTIVE f9c0763a-4a4f-4bbd-af51-bc7545774be2 | **VNF2-DEPLOYM_c1_0_df4be88d-b4bf-4456-945a-**3812653ee229 | pod1-compute-8.localdomain | ACTIVE | 75528898-ef4b-4d68-b05d-882014708694 | VNF2-ESC-ESC-| pod1-compute-8.localdomain ACTIVE 0 f5bd7b9c-476a-4679-83e5-303f0aae9309 | VNF2-UAS-uas-ACTIVE 0 pod1-compute-8.localdomain

Hinweis: In der hier gezeigten Ausgabe entspricht die erste Spalte der UUID, die zweite Spalte dem VM-Namen und die dritte Spalte dem Hostnamen, in dem die VM vorhanden ist.

3. Ceph-Prozesse sind auf dem OSD-Compute-Server aktiv.

[root@pod1-osd-compute-1 ~]# systemctl list-units *ceph*

UNIT	LOAD	ACTIVE	SUB	DESCRIPTION
var-lib-ceph-osd-ceph\x2d11.mount	loaded	active	mounted	/var/lib/ceph/osd/ceph-11
var-lib-ceph-osd-ceph\x2d2.mount	loaded	active	mounted	/var/lib/ceph/osd/ceph-2
var-lib-ceph-osd-ceph\x2d5.mount	loaded	active	mounted	/var/lib/ceph/osd/ceph-5
var-lib-ceph-osd-ceph\x2d8.mount	loaded	active	mounted	/var/lib/ceph/osd/ceph-8
ceph-osd@11.service	loaded	active	running	Ceph object storage daemon
ceph-osd@2.service	loaded	active	running	Ceph object storage daemon
ceph-osd@5.service	loaded	active	running	Ceph object storage daemon
ceph-osd@8.service	loaded	active	running	Ceph object storage daemon
system-ceph\x2ddisk.slice	loaded	active	active	system-ceph\x2ddisk.slice
system-ceph\x2dosd.slice	loaded	active	active	system-ceph\x2dosd.slice
ceph-mon.target ceph-mon@.service instances at one	loaded ce	active	active	ceph target allowing to start/stop all
ceph-osd.target ceph-osd@.service instances at one	loaded ce	active	active	ceph target allowing to start/stop all
ceph-radosgw.target ceph-radosgw@.service instances at	loaded once	active	active	ceph target allowing to start/stop all
ceph.target ceph*@.service instances at once	loaded	active	active	ceph target allowing to start/stop all

4. Überprüfen Sie, ob die Zuordnung von OSD (HDD-Festplatte) zu Journal (SSD) funktioniert.

[heat-admin@pod1-osd-compute-3 ~]\$ sudo ceph-disk list /dev/sda : /dev/sda1 other, iso9660 /dev/sda2 other, xfs, mounted on /

```
/dev/sdb :
/dev/sdb1 ceph journal, for /dev/sdc1
/dev/sdb3 ceph journal, for /dev/sdd1
/dev/sdb2 ceph journal, for /dev/sde1
/dev/sdb4 ceph journal, for /dev/sdf1
/dev/sdc :
/dev/sdc1 ceph data, active, cluster ceph, osd.1, journal /dev/sdb1
/dev/sdd :
/dev/sdd1 ceph data, active, cluster ceph, osd.7, journal /dev/sdb3
/dev/sde :
/dev/sde1 ceph data, active, cluster ceph, osd.4, journal /dev/sdb2
/dev/sdf :
/dev/sdf1 ceph data, active, cluster ceph, osd.10, journal /dev/sdb4
```

5. Stellen Sie sicher, dass der Ceph-Zustand und die OSD-Baumstrukturzuordnung korrekt sind.

```
[heat-admin@pod1-osd-compute-3 ~]$ sudo ceph -s
  cluster eb2bb192-b1c9-11e6-9205-525400330666
   health HEALTH OK
         1 mons down, quorum 0,1 pod1-controller-0,pod1-controller-1
   monmap e1: 3 mons at {pod1-controller-0=11.118.0.10:6789/0,pod1-controller-
1=11.118.0.11:6789/0,pod1-controller-2=11.118.0.12:6789/0}
         election epoch 28, quorum 0,1 pod1-controller-0,pod1-controller-1
   osdmap e709: 12 osds: 12 up, 12 in
         flags sortbitwise, require_jewel_osds
    pgmap v941813: 704 pgs, 6 pools, 490 GB data, 163 kobjects
         1470 GB used, 11922 GB / 13393 GB avail
              704 active+clean
client io 58580 B/s wr, 0 op/s rd, 7 op/s wr
[heat-admin@pod1-osd-compute-3 ~]$ sudo ceph osd tree
ID WEIGHT TYPE NAME
                               UP/DOWN REWEIGHT PRIMARY-AFFINITY
-1 13.07996 root default
-2 4.35999 host pod1-osd-compute-0
             osd ?
                                                         1.00000
1.00000
0 1.09000
                                       up 1.00000
                                       up 1.00000
3 1.09000
                                       up 1.00000
up 1.00000
                                                         1.00000
                osd.6
6 1.09000
                osd.9
9 1.09000
-4 4.35999 host pod1-osd-compute-2
             osd.2
                                      up 1.00000 1.00000
2 1.09000
                                       up 1.00000
5 1.09000
                                                          1.00000
                osd.5
                                                          1.00000
8 1.09000
                                       up 1.00000
                osd.8
                                       up 1.00000
11 1.09000
                osd.11
                                                          1.00000
-5 4.35999 host pod1-osd-compute-3
             osd.1
1 1.09000
                                       up 1.00000
up 1.00000
                                                         1.00000
1.00000
4 1.09000
                osd.4
7 1.09000
                osd.7
                                        up 1.00000
                                                          1.00000
                                        up 1.00000
10 1.09000
                                                          1.00000
                 osd.10
```

6. Wenn die Integritätsprüfungen in Ordnung sind, fahren Sie mit dem fehlerhaften Hot-Swap-Vorgang für die Festplatte fort und warten Sie, bis die Datensynchronisierung abgeschlossen ist, da sie Stunden in Anspruch nimmt. Weitere Informationen finden Sie unter <u>Ersetzen der</u> <u>Serverkomponenten</u>.

7. Wiederholen Sie diese Health Check-Verfahren, um den Status der auf dem OSD-Compute-Knoten gehosteten VMs zu bestätigen.

Single HDD Failure auf OSPD-Server

1. Wenn beim UCS 240M4, der als OSPD-Knoten fungiert, ein Ausfall der Festplattenlaufwerke

festgestellt wird, führen Sie diese Statusprüfungen durch, bevor Sie den Hot-Swap der fehlerhaften Festplatte starten.

2. Überprüfen Sie den Status des OpenStack-Stacks und der Knotenliste.

[stack@director ~]\$ source stackrc [stack@director ~]\$ openstack stack list --nested [stack@director ~]\$ ironic node-list [stack@director ~]\$ nova list

3. Überprüfen Sie, ob alle Undercloud-Services über den OSP-D-Knoten den Status "geladen", "aktiv" und "aktiv" haben.

[stack@director ~]\$ systemctl list-units "openstack*" "neutron*" "openvswitch*"

UNIT	LOAD	ACTIVE	SUB	DESCRIPTION
neutron-dhcp-agent.service	loaded	active	running	OpenStack Neutron DHCP Agent
neutron-openvswitch-agent.service	loaded	active	running	OpenStack Neutron Open vSwitch
Agent				
neutron-ovs-cleanup.service	loaded	active	exited	OpenStack Neutron Open vSwitch
Cleanup Utility				
neutron-server.service	loaded	active	running	OpenStack Neutron Server
openstack-aodh-evaluator.service service	loaded	active	running	OpenStack Alarm evaluator
openstack-aodh-listener.service service	loaded	active	running	OpenStack Alarm listener
openstack-aodh-notifier.service	loaded	active	running	OpenStack Alarm notifier
service			5	-
openstack-ceilometer-central.service	loaded	active	running	OpenStack ceilometer central
agent	loodod	aatima	munning	OpenStack acilemeter collection
service	Ioaded	active	rumming	openstack ceriometer correction
openstack-ceilometer-notification.service notification agent	loaded	active	running	OpenStack ceilometer
openstack-glance-api.service named Glance) API server	loaded	active	running	OpenStack Image Service (code-
openstack-glance-registry.service named Glance) Registry server	loaded	active	running	OpenStack Image Service (code-
openstack-heat-api-cfn.service	loaded	active	running	Openstack Heat CFN-compatible
API Service			5	
openstack-heat-api.service	loaded	active	running	OpenStack Heat API Service
openstack-heat-engine.service	loaded	active	running	Openstack Heat Engine Service
openstack-ironic-api.service	loaded	active	running	OpenStack Ironic API service
openstack-ironic-conductor.service	loaded	active	running	OpenStack Ironic Conductor
service	1			
openstack-ironic-inspector-dnsmasq.service Ironic Inspector	loaded	active	running	PXE boot dnsmasq service for
openstack-ironic-inspector.service	loaded	active	running	Hardware introspection service
for OpenStack Ironic				
openstack-mistral-api.service	loaded	active	running	Mistral API Server
openstack-mistral-engine.service	loaded	active	running	Mistral Engine Server
openstack-mistral-executor.service	loaded	active	running	Mistral Executor Server
openstack-nova-api.service	loaded	active	running	OpenStack Nova API Server
openstack-nova-cert.service	loaded	active	running	OpenStack Nova Cert Server
openstack-nova-compute.service	loaded	active	running	OpenStack Nova Compute Server
openstack-nova-conductor.service	loaded	active	running	OpenStack Nova Conductor Server
openstack-nova-scheduler.service	loaded	active	running	OpenStack Nova Scheduler Server
openstack-swift-account-reaper.service	loaded	active	running	OpenStack Object Storage
(SWIII) - ACCOUNT Reaper	1	-		
openstack-swift-account.service	⊥oaded	active	runnıng	Openstack Object Storage

(swift) - Account Server openstack-swift-container-updater.service loaded active running OpenStack Object Storage (swift) - Container Updater openstack-swift-container.service loaded active running OpenStack Object Storage (swift) - Container Server openstack-swift-object-updater.service loaded active running OpenStack Object Storage (swift) - Object Updater openstack-swift-object.service loaded active running OpenStack Object Storage (swift) - Object Server loaded active running OpenStack Object Storage openstack-swift-proxy.service (swift) - Proxy Server openstack-zagar.service loaded active running OpenStack Message Queuing Service (code-named Zaqar) Server openstack-zagar@1.service loaded active running OpenStack Message Queuing Service (code-named Zaqar) Server Instance 1 openvswitch.service loaded active exited Open vSwitch

LOAD = Reflects whether the unit definition was properly loaded. ACTIVE = The high-level unit activation state, i.e. generalization of SUB. SUB = The low-level unit activation state, values depend on unit type.

37 loaded units listed. Pass --all to see loaded but inactive units, too. To show all installed unit files use 'systemctl list-unit-files'.

4. Wenn die Integritätsprüfungen in Ordnung sind, fahren Sie mit dem fehlerhaften Hot-Swap-Vorgang für die Festplatte fort und warten Sie, bis die Datensynchronisierung abgeschlossen ist, da sie Stunden in Anspruch nimmt. Weitere Informationen finden Sie unter <u>Ersetzen der</u> <u>Serverkomponenten</u>.

5. Wiederholen Sie diese Health Check-Verfahren, um sicherzustellen, dass der Gesundheitsstatus der OSPD-Knoten wiederhergestellt wird.