PCRF-Ersatz für OSD-Compute UCS 240M4

Inhalt

Einführung Hintergrundinformationen Gesundheitskontrolle Sicherung Identifizieren der im OSD-Compute-Knoten gehosteten VMs **Graceful Power Aus** Migration von ESC in den Standby-Modus Löschung von Osd-Computing-Knoten Löschen aus der Overcloud Osd-Computing-Knoten aus der Dienstliste löschen Neutrale Agenten löschen Löschen aus der Nova- und Ironic-Datenbank Installation des neuen Computing-Knotens Hinzufügen des neuen OSD-Compute-Knotens zur Overcloud Stellen Sie die VMs wieder her Hinzufügen zur Nova Aggregate-Liste Wiederherstellung des ESC VM

Einführung

Dieses Dokument beschreibt die erforderlichen Schritte zum Ersetzen eines fehlerhaften Sd-Computing-Servers in einer Ultra-M-Konfiguration, der Cisco Policy Suite (CPS) Virtual Network Functions (VNFs) hostet.

Hintergrundinformationen

Dieses Dokument richtet sich an Mitarbeiter von Cisco, die mit der Cisco Ultra-M-Plattform vertraut sind. Es enthält eine Beschreibung der Schritte, die auf der Ebene von OpenStack und CPS VNF zum Zeitpunkt des Ersatzes des OSD-Compute-Servers erforderlich sind.

Hinweis: Ultra M 5.1.x wird zur Definition der Verfahren in diesem Dokument berücksichtigt.

Gesundheitskontrolle

Bevor Sie einen Osd-Compute-Knoten austauschen, ist es wichtig, den aktuellen Zustand Ihrer Red Hat OpenStack Platform-Umgebung zu überprüfen. Es wird empfohlen, den aktuellen Zustand zu überprüfen, um Komplikationen zu vermeiden, wenn der Computing-Ersetzungsprozess eingeschaltet ist.

Von OSPD

```
[root@director ~]$ su - stack
[stack@director ~]$ cd ansible
[stack@director ansible]$ ansible-playbook -i inventory-new openstack_verify.yml -e
platform=pcrf
```

Schritt 1: Überprüfen Sie den Zustand des Systems anhand des in 15 Minuten erstellten Berichts über die ultraviolette Gesundheit.

[stack@director ~]# cd /var/log/cisco/ultram-health Überprüfen Sie die Datei ultram_health_os.report.

Die einzigen Dienste sollten als XXX Status angezeigt werden sind **Neutron-sriov-nic-agent.service**.

Schritt 2: Prüfen Sie, ob **rabbitmq** für alle Controller ausgeführt wird, die wiederum von OSPD ausgehen.

[stack@director ~]# for i in \$(nova list| grep controller | awk '{print \$12}'| sed 's/ctlplane=//g') ; do (ssh -o StrictHostKeyChecking=no heat-admin@\$i "hostname;sudo rabbitmqctl eval 'rabbit_diagnostics:maybe_stuck().'") & done Schritt 3: Stellen Sie sicher, dass Stonith aktiviert ist.

[stack@director ~]# sudo pcs property show stonith-enabled Für alle Controller überprüfen den PCS-Status

- Alle Controller-Knoten werden unter dem Proxy-Klon gestartet.
- Alle Controller-Knoten sind Master unter galera
- Alle Controller-Knoten werden unter Rabbitmq gestartet.
- 1 Controller-Knoten ist Master und 2 Slaves unter Redundanzen

Von OSPD

```
[stack@director ~]$ for i in $(nova list| grep controller | awk '{print $12}'| sed
's/ctlplane=//g') ; do (ssh -o StrictHostKeyChecking=no heat-admin@$i "hostname;sudo pcs status"
) ;done
```

Schritt 4: Überprüfen Sie, ob alle OpenStack-Dienste aktiv sind. Führen Sie von OSPD den folgenden Befehl aus:

[stack@director ~]# sudo systemctl list-units "openstack*" "neutron*" "openvswitch*" Schritt 5: Überprüfen Sie, ob der CEPH-Status für Controller HEALTH_OK lautet.

Schritt 6: Überprüfen Sie die Protokolle der OpenStack-Komponente. Suchen Sie nach einem Fehler:

```
Neutron:
[stack@director ~]# sudo tail -n 20 /var/log/neutron/{dhcp-agent,13-agent,metadata-
agent,openvswitch-agent,server}.log
Cinder:
[stack@director ~]# sudo tail -n 20 /var/log/cinder/{api,scheduler,volume}.log
Glance:
[stack@director ~]# sudo tail -n 20 /var/log/glance/{api,registry}.log
Schritt 7: Führen Sie vom OSPD diese Überprüfungen für API durch.
[stack@director ~]$ source
```

[stack@director ~]\$ **nova list**

[stack@director ~]\$ glance image-list

```
[stack@director ~]$ cinder list
```

[stack@director ~]\$ neutron net-list Schritt 8: Überprüfen Sie den Zustand der Services.

Every service status should be "up": [stack@director ~]\$ **nova service-list**

Every service status should be " :-)":
[stack@director ~]\$ neutron agent-list

Every service status should be "up": [stack@director ~]\$ cinder service-list

Sicherung

Im Falle einer Wiederherstellung empfiehlt Cisco, eine Sicherung der OSPD-Datenbank mit diesen Schritten durchzuführen.

Schritt 1: Nehmen Sie Mysql dump.

[root@director ~]# mysqldump --opt --all-databases > /root/undercloud-all-databases.sql [root@director ~]# tar --xattrs -czf undercloud-backup-`date +%F`.tar.gz /root/undercloud-alldatabases.sql /etc/my.cnf.d/server.cnf /var/lib/glance/images /srv/node /home/stack tar: Removing leading `/' from member names Dieser Prozess stellt sicher, dass ein Knoten ausgetauscht werden kann, ohne dass die Verfügbarkeit von Instanzen beeinträchtigt wird.

Schritt 2: So sichern Sie CPS VMs von Cluster Manager VM:

[root@CM ~]# config_br.py -a export --mongo-all --svn --etc --grafanadb --auth-htpasswd -haproxy /mnt/backup/\$(hostname)_backup_all_\$(date +\%Y-\%m-\%d).tar.gz

Identifizieren der im OSD-Compute-Knoten gehosteten VMs

Identifizieren Sie die VMs, die auf dem Computing-Server gehostet werden:

Schritt 1: Der Computing-Server enthält den Elastic Services Controller (ESC).

[stack@director ~]\$ nova list --field name,host,networks | grep osd-compute-1
| 50fd1094-9c0a-4269-b27b-cab74708e40c | esc | pod1-osd-compute-0.localdomain
| tb1-orch=172.16.180.6; tb1-mgmt=172.16.181.3

Hinweis: In der hier gezeigten Ausgabe entspricht die erste Spalte dem Universally Unique Identifier (UUID), die zweite Spalte dem VM-Namen und die dritte Spalte dem Hostnamen, in dem das virtuelle System vorhanden ist. Die Parameter aus dieser Ausgabe werden in den nachfolgenden Abschnitten verwendet.

Hinweis: Wenn der zu ersetzende OSD-Computing-Knoten vollständig ausgefallen ist und nicht darauf zugegriffen werden kann, fahren Sie mit dem Abschnitt "Entfernen Sie den Osd-Compute-Knoten aus der Nova Aggregate List" fort. Fahren Sie andernfalls mit dem nächsten Abschnitt fort.

Schritt 2: Vergewissern Sie sich, dass CEPH über die verfügbare Kapazität verfügt, um das Entfernen eines einzigen OSD-Servers zu ermöglichen.

[ro	oot@pod1-oso	d-compu	df			
GL	DBAL:					
	SIZE	AVAIL	RAW	USED	%RAW USED	
	13393G	11804	G	1589G	11.87	
POO	DLS:					
	NAME	ID	USED	%USED	MAX AVAIL	OBJECTS
	rbd	0	0	0	3876G	0
	metrics	1	4157M	0.10	3876G	215385
	images	2	6731M	0.17	3876G	897
	backups	3	0	0	3876G	0
	volumes	4	399G	9.34	3876G	102373
	vms	5	122G	3.06	3876G	31863

Schritt 3: Stellen Sie sicher, dass der Status ceph osd tree auf dem osd-Computing-Server aktiv ist.

ID	WEIGHT	TYPE NAME	UP/DOWN	REWEIGHT	PRIMARY-AFFINITY
-1	13.07996	root default			
-2	4.35999	host podl-osd-compute-0			
0	1.09000	osd.0	up	1.00000	1.00000
3	1.09000	osd.3	up	1.00000	1.00000
6	1.09000	osd.6	up	1.00000	1.00000
9	1.09000	osd.9	up	1.00000	1.00000
-3	4.35999	host podl-osd-compute-2			
1	1.09000	osd.1	up	1.00000	1.00000
4	1.09000	osd.4	up	1.00000	1.00000
7	1.09000	osd.7	up	1.00000	1.00000
10	1.09000	osd.10	up	1.00000	1.00000
-4	4.35999	host podl-osd-compute-1			
2	1.09000	osd.2	up	1.00000	1.00000
5	1.09000	osd.5	up	1.00000	1.00000
8	1.09000	osd.8	up	1.00000	1.00000
11 S o	1.09000	osd.11	up Computin	1.00000	1.00000

Schritt 4: CEPH-Prozesse sind auf dem osd-Computing-Server aktiv.

[root@pod1-osd-compute-0 ~]# systemctl list-units *ceph*

[heat-admin@pod1-osd-compute-0 ~]\$ sudo ceph osd tree

UNITLOADACTIVESUBDESCRIPTIONvar-lib-ceph-osd-ceph\x2d11.mountloadedactivemounted/var/lib/ceph/osd/ceph-11var-lib-ceph-osd-ceph\x2d5.mountloadedactivemounted/var/lib/ceph/osd/ceph-5var-lib-ceph-osd-ceph\x2d8.mountloadedactivemounted/var/lib/ceph/osd/ceph-8ceph-osd@11.serviceloadedactiverunningCeph object storage daemonceph-osd@2.serviceloadedactiverunningCeph object storage daemonceph-osd@8.serviceloadedactiverunningCeph object storage daemon

```
system-ceph\x2ddisk.slice loaded active active system-ceph\x2ddisk.slice
system-ceph\x2dosd.slice loaded active active system-ceph\x2dosd.slice
ceph-mon.target loaded active active ceph target allowing to start/stop all
ceph-osd.target loaded active active ceph target allowing to start/stop all
ceph-radosgw.target loaded active active ceph target allowing to start/stop all
ceph-radosgw@.service instances at once
ceph.target loaded active active ceph target allowing to start/stop all
ceph.target loaded active active ceph target allowing to start/stop all
ceph.target loaded active active ceph target allowing to start/stop all
ceph.target loaded active active ceph target allowing to start/stop all
ceph.target loaded active active ceph target allowing to start/stop all
ceph.target loaded active active ceph target allowing to start/stop all
ceph.target loaded active active ceph target allowing to start/stop all
ceph.target loaded active active ceph target allowing to start/stop all
```

ceph*@.service instances at once

Schritt 5: Deaktivieren und beenden Sie jede ceph-Instanz, entfernen Sie jede Instanz aus SOD, und heben Sie die Bereitstellung des Verzeichnisses auf. Wiederholen Sie diese Schritte für jede ceph-Instanz.

```
[root@pod1-osd-compute-0 ~]# systemctl disable ceph-osd@11
[root@pod1-osd-compute-0 ~]# systemctl stop ceph-osd@11
[root@pod1-osd-compute-0 ~]# ceph osd out 11
marked out osd.11.
[root@pod1-osd-compute-0 ~]# ceph osd crush remove osd.11
removed item id 11 name 'osd.11' from crush map
[root@pod1-osd-compute-0 ~]# ceph auth del osd.11
updated
[root@pod1-osd-compute-0 ~]# ceph osd rm 11
removed osd.11
[root@pod1-osd-compute-0 ~]# umount /var/lib/ceph/osd/ceph-11
```

Schritt 6: Clean.sh-Skript kann für die oben genannte Aufgabe gleichzeitig verwendet werden.

```
[heat-admin@pod1-osd-compute-0 ~]$ sudo ls /var/lib/ceph/osd
ceph-11 ceph-3 ceph-6 ceph-8
[heat-admin@pod1-osd-compute-0 ~]$ /bin/sh clean.sh
[heat-admin@pod1-osd-compute-0 ~]$ cat clean.sh
#!/bin/sh
set -x
CEPH=`sudo ls /var/lib/ceph/osd`
for c in $CEPH
do
 i=`echo $c |cut -d'-' -f2`
 sudo systemctl disable ceph-osd@$i || (echo "error rc:$?"; exit 1)
 sleep 2
 sudo systemctl stop ceph-osd@$i || (echo "error rc:$?"; exit 1)
 sleep 2
 sudo ceph osd out $i || (echo "error rc:$?"; exit 1)
 sleep 2
 sudo ceph osd crush remove osd.$i || (echo "error rc:$?"; exit 1)
 sleep 2
 sudo ceph auth del osd.$i || (echo "error rc:$?"; exit 1)
 sleep 2
 sudo ceph osd rm $i || (echo "error rc:$?"; exit 1)
 sleep 2
 sudo umount /var/lib/ceph/osd/$c || (echo "error rc:$?"; exit 1)
 sleep 2
 sudo rm -rf /var/lib/ceph/osd/$c || (echo "error rc:$?"; exit 1)
 sleep 2
done
```

sudo ceph osd tree

Nachdem alle OSD-Prozesse migriert/gelöscht wurden, kann der Knoten aus der Overcloud entfernt werden.

Hinweis: Wenn CEPH entfernt wird, wechselt VNF HD RAID in den Zustand "Degraded"

(Heruntergestuft), aber die Festplatte muss weiterhin zugänglich sein.

Graceful Power Aus

Migration von ESC in den Standby-Modus

Schritt 1: Melden Sie sich beim im Computing-Knoten gehosteten ESC an, und prüfen Sie, ob er sich im Master-Status befindet. Wenn ja, schalten Sie den ESC in den Standby-Modus um.

```
[admin@esc esc-cli]$ escadm status
0 ESC status=0 ESC Master Healthy
[admin@esc ~]$ sudo service keepalived stop
Stopping keepalived: [ OK ]
[admin@esc ~]$ escadm status
1 ESC status=0 In SWITCHING_TO_STOP state. Please check status after a while.
[admin@esc ~]$ sudo reboot
Broadcast message from admin@vnf1-esc-esc-0.novalocal
        (/dev/pts/0) at 13:32 ...
The system is going down for reboot NOW!
Schritt 2: Entfernen Sie den Osd-Computing-Knoten aus der Nova Aggregate List.
```

 Listen Sie die nova-Aggregate auf, und identifizieren Sie die Aggregate, die dem von ihm gehosteten VNF-Server entsprechen. In der Regel sind dies die Formate
VNFNAME>-EM-MGMT<X> und
VNFNAME>-CF-MGMT<X>.

```
[stack@director ~]$ nova aggregate-list
+----+
| Id | Name | Availability Zone |
+---++
| 3 | esc1 | AZ-esc1 |
| 6 | esc2 | AZ-esc2 |
| 9 | aaa | AZ-aaa |
+---++
```

In unserem Fall gehört der osd-Computing-Server zu esc1. Die Aggregate, die entsprechen, sind esc1.

Schritt 3: Entfernen Sie den osd-Computing-Knoten aus der identifizierten Aggregatzuordnung.

nova aggregate-remove-host

[stack@director ~]\$ nova aggregate-remove-host esc1 pod1-osd-compute-0.localdomain Schritt 4: Überprüfen Sie, ob der Knoten für die Datenverarbeitung aus den Aggregaten entfernt wurde. Stellen Sie nun sicher, dass der Host nicht unter den Aggregaten aufgeführt ist.

```
[stack@director ~]$ nova aggregate-show esc1
[stack@director ~]$
```

Löschung von Osd-Computing-Knoten

Die in diesem Abschnitt beschriebenen Schritte sind unabhängig von den im Computing-Knoten gehosteten VMs häufig.

Löschen aus der Overcloud

Schritt 1: Erstellen Sie eine Skriptdatei mit dem Namen delete_node.sh, deren Inhalt wie gezeigt angezeigt wird. Stellen Sie sicher, dass die erwähnten Vorlagen mit den Vorlagen übereinstimmen, die im **deploy.sh-**Skript für die Stackbereitstellung verwendet wurden.

delete_node.sh

```
openstack overcloud node delete --templates -e /usr/share/openstack-tripleo-heat-
templates/environments/puppet-pacemaker.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/network-isolation.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/storage-environment.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/neutron-sriov.yaml -e /home/stack/custom-templates/network.yaml -e
/home/stack/custom-templates/ceph.yaml -e /home/stack/custom-templates/compute.yaml -e
/home/stack/custom-templates/layout.yaml -e /home/stack/custom-templates/layout.yaml --stack
```

[stack@director ~]\$ source stackrc

```
[stack@director ~]$ /bin/sh delete_node.sh
```

```
+ openstack overcloud node delete --templates -e /usr/share/openstack-tripleo-heat-
templates/environments/puppet-pacemaker.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/network-isolation.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/storage-environment.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/neutron-sriov.yaml -e /home/stack/custom-templates/network.yaml -e
/home/stack/custom-templates/ceph.yaml -e /home/stack/custom-templates/compute.yaml -e
/home/stack/custom-templates/layout.yaml -e /home/stack/custom-templates/layout.yaml --stack
pod1 49ac5f22-469e-4b84-badc-031083db0533
Deleting the following nodes from stack pod1:
- 49ac5f22-469e-4b84-badc-031083db0533
Started Mistral Workflow. Execution ID: 4ab4508a-c1d5-4e48-9b95-ad9a5baa20ae
```

real 0m52.078s user 0m0.383s sys 0m0.086s Schritt 2: Warten Sie, bis der OpenStack-Stapelvorgang in den VOLLSTÄNDIGEN Zustand wechselt.

Osd-Computing-Knoten aus der Dienstliste löschen

Löschen Sie den Computing-Service aus der Liste der Dienste.

```
[stack@director ~]$ source corerc
[stack@director ~]$ openstack compute service list | grep osd-compute-0
| 404 | nova-compute | podl-osd-compute-0.localdomain | nova | enabled | up |
2018-05-08T18:40:56.000000 |
```

openstack compute service delete

[stack@director ~]\$ openstack compute service delete 404

Neutrale Agenten löschen

Löschen Sie den alten zugeordneten Neutron-Agent und den offenen Switch-Agent für den Computing-Server.

```
[stack@director ~]$ openstack network agent list | grep osd-compute-0
| c3ee92ba-aa23-480c-ac81-d3d8d01dcc03 | Open vSwitch agent | pod1-osd-compute-0.localdomain
| None | False | UP | neutron-openvswitch-agent |
| ec19cb01-abbb-4773-8397-8739d9b0a349 | NIC Switch agent | pod1-osd-compute-0.localdomain
| None | False | UP | neutron-sriov-nic-agent |
```

```
openstack network agent delete
```

[stack@director ~]\$ openstack network agent delete c3ee92ba-aa23-480c-ac81-d3d8d01dcc03
[stack@director ~]\$ openstack network agent delete ec19cb01-abbb-4773-8397-8739d9b0a349

Löschen aus der Nova- und Ironic-Datenbank

Löschen Sie einen Knoten aus der Nova-Liste zusammen mit der ironischen Datenbank, und

überprüfen Sie ihn anschließend.

[stack@director ~]\$ source stackrc

```
[stack@al01-pod1-ospd ~]$ nova list | grep osd-compute-0
| c2cfa4d6-9c88-4ba0-9970-857d1a18d02c | pod1-osd-compute-0 | ACTIVE | - | Running
| ctlplane=192.200.0.114 |
```

[stack@al01-pod1-ospd ~]\$ nova delete c2cfa4d6-9c88-4ba0-9970-857d1a18d02c

```
nova show
```

```
[stack@director ~]$ nova show podl-osd-compute-0 | grep hypervisor
| OS-EXT-SRV-ATTR:hypervisor_hostname | 4ab21917-32fa-43a6-9260-02538b5c7a5a
```

ironic node-delete

[stack@director ~]\$ ironic node-delete 4ab21917-32fa-43a6-9260-02538b5c7a5a
[stack@director ~]\$ ironic node-list (node delete must not be listed now)

Installation des neuen Computing-Knotens

Die Schritte zur Installation eines neuen UCS C240 M4 Servers sowie die Schritte zur Ersteinrichtung finden Sie im <u>Cisco UCS C240 M4 Server Installations- und Serviceleitfaden.</u>

Schritt 1: Nach der Installation des Servers legen Sie die Festplatten in die entsprechenden Steckplätze als alten Server ein.

Schritt 2: Melden Sie sich mithilfe der CIMC IP beim Server an.

Schritt 3: Führen Sie ein BIOS-Upgrade durch, wenn die Firmware nicht der zuvor verwendeten empfohlenen Version entspricht. Schritte für BIOS-Upgrades finden Sie hier: <u>BIOS-Upgrade-</u> Leitfaden für Cisco UCS Rackmount-Server der C-Serie

Schritt 4: Überprüfen Sie den Status der physischen Laufwerke. Es muss unbeschränkt gut sein.

Schritt 5: Erstellen Sie eine virtuelle Festplatte von den physischen Laufwerken mit RAID Level 1.

	≆ ∘listo Cis	co Integrated Managemeni	t Controller		🕂 🗹 0 ad	lmin@10.65.33.67	- C240-FCH2114V1NW	
Chassis •	A / / Cisco 12 (SLOT-HBA) /	2G SAS Modular Raid Contr	roller	Refresh Host Power Launch KVM Ping Reboot Locator LED @				
Compute	Controller Info	Physical Drive Info Virtual Drive	e Info Battery Backup Unit	Storage Log				
Networking	Physical Driv	Physical Drives					Selected 0 / Total 2	
Storage 🔹	PD-1	Make Global Hot Spare Ma	move From Hot Spare Pools Prepare For Removal					
Cisco 12G SAS Modular Raid		Controller	Physical Drive Number	Status	Health	Boot Drive	Drive Firmware	
Cisco FlexFlash		SLOT-HBA	1	Unconfigured Good	Good	false	N003	
Admin +	co FlexFlash	SLOT-HBA	2	Unconfigured Good	Good	false	N003	

Schritt 6: Navigieren Sie zum Speicherbereich, wählen Sie den Cisco 12G SAS Modular RAID Controller aus, und überprüfen Sie den Status und die Integrität des RAID-Controllers, wie im Bild gezeigt.

Hinweis: Das obige Bild dient lediglich zur Veranschaulichung. Im OSD-Compute-CIMC werden sieben physische Laufwerke in Steckplätzen [1,2,3,7,8,9,10] im nicht konfigurierten "Good"-Zustand angezeigt, da aus ihnen keine virtuellen Laufwerke erstellt werden.

	🗄 diala Cis	co Integrated Mana	gement Controll	er		
	Create Virtual Drive	from Unused Physical	Drives			0 >
Chassis +	RAID	Level: 1	¥	Enable Full Disk Encr	yption:	
Compute						
Networking +	Create Drive Gro	oups				
	Physical Drives		Selected 2 / Total 2	¢	Drive Groups	Q -
Storage 🔹	ID Size	e(MB) Model	Interface Type		Name	
Cisco 12G SAS Modular Raid	✓ 1 1906	394 MB SEAGA	HDD SAS		No data available	
Cisco FlexFlash	2 1906	394 MB SEAGA	HDD SAS			
Admin +						
	Virtual Drive Pro	perties				
	Nar	me: RAID1		Disk Cache Policy:	Unchanged	Ŧ
	Access Pol	icy: Read Write	•	Write Policy:	Write Through	Ψ
	Read Pol	icy: No Read Ahead	•	Strip Size (MB):	64k	•
	Cache Pol	lcy: Direct IO	•	Size		мв

	-	B cisco	Cisco	Integrated	Manag	ement C	ontrolle	er -				
	- +	Create Virtual	Drive fro	m Unused P	hysical I	Drives		_		_		0
Chassis	•		RAID Lev	el: 1			¥	Enable Full Disk Encr	yption:			
Compute												
Networking		Create Driv	e Groups									
		Physical Dr	ives			Selected 0 /	iotal 0 🖏	F +	Driv	e Groups		<u>ې</u> ب
Storage	*	ID	Size(MB)	M	odel	Interface	Туре			Name		
Cisco 12G SAS M	Iodular Raid	No data availat	ble							DG [1.2]		
Cisco FlexFlash								>>				
Admin												
		Virtual Drive	Bronort	les								
		virtuai Driv	e Propert	les								
			Name:	BOOTOS				Disk Cache Policy:	Uncha	nged	•	
		Acce	ss Policy:	Read Write			•	Write Policy:	Write	Through	*	
		Re	ad Policy:	No Read Ahe	ad		•	Strip Size (MB):	64k		*	
		Cac	he Policy:	Direct IO			•	Size	19063	94		MB

Schritt 7: Erstellen Sie jetzt unter dem **Cisco 12G SAS Modular RAID Controller** eine virtuelle Festplatte aus einer nicht verwendeten physischen Festplatte über die Controller-Informationen.

	÷ dudu Ci	sco Integrated Manaç	gement Co	ntroller	-	+ 🗹 0	admin@10.65.33.67	- C240-FCH2114V1NV	v ≮
Chassis +	/ / Cisco 1 (SLOT-HBA)	2G SAS Modular Raid	d Controlle		Refre	esh Host Power Laun	ch KVM Ping Rebo	oot Locator LED	0
Compute	Controller Info	Physical Drive Info Vin	tual Drive Info	Battery Backup U	nit Storage Log				
Networking	Virtual Drives	Virtual Drives						Selected 1 / Total 1	¢ -
Storage 🔹	VD-0	Initialize Cancel	Initialization	Set as Boot Drive	Delete Virtual Drive	Edit Virtual Drive	Hide Drive	>>	
Cisco 12G SAS Modular Ra Storag	e	Virtual Drive Number	Nan	le	Status	Health	Size	RAID Level	Во
Cisco FlexFlash		J 0	BOO	TOS	Optimal	Good	1906394 MB	RAID 1	fals
Admin 🕨									

Schritt 8: Wählen Sie die VD aus, und konfigurieren Sie sie als Boot-Laufwerk.

	Cisco Integrated Management Controller	Cisco Integrated Management Controller							
		🐥 🔽 3 admin@10.65.33.67 - C240-FCH2141V113 🄅							
Chassis •	A / / Communication Services / Communications Services *								
Compute		Refresh Host Power Launch KVM Ping Reboot Locator LED 🔞							
	Communications Services SNMP Mail Alert								
Networking •									
Storage	HTTP Properties	 IPMI over LAN Properties 							
0.0.050	HTTP/S Enabled: Session Timeout(seconds): 1800	Enabled:							
Admin 🔹	Redirect HTTP to HTTPS Enabled: Max Sessions: 4	Privilege Level Limit: admin							
Hara Managaran d	HTTP Port: 80 Active Sessions: 1	Encryption Key: 000000000000000000000000000000000000							
User Management	HTTPS Port: 443	Randomize							
Networking									
Communication Services	XML API Properties								
	XML API Enabled: 🗸								

Schritt 9: Aktivieren Sie IPMI over LAN von Kommunikationsdiensten auf der Registerkarte "Admin".

	Ŧ	÷ duala C	isco Integrate	ed Management	Controller				
	<u>'</u>							🐥 🔽 3 admin@10.65.33.67 - C240	0-FCH2141V113
Chassis	•	A / Compute /	BIOS ★						
Compute								Refresh Host Power Launch KVM Ping Reboot Lo	ocator LED 🕐
Compare		BIOS Remot	e Management	Troubleshooting	Power Policies	PID Catalog			
Networking	•	Enter BIOS Setup	Clear BIOS CMOS	Restore Manufacturing	g Custom Settings				
Storage	•	Configure BIOS	Configure B	oot Order Configu	ure BIOS Profile				
Admin	Admin Main Advanced Server Management								
		Note: Default	values are shown in I	bold.					
			Reboot	Host Immediately:					
		▼ Proc	essor Configur	ration					
			Intel(R) Hy	per-Threading Technol	ogy Disabled		•	Number of Enabled Cores	All
				Execute Disa	able Enabled		•	Intel(R) VT	Enabled
				Intel(R) V	T-d Enabled		▼	Intel(R) Interrupt Remapping	Enabled
			1	ntel(R) Pass Through D	MA Disabled		▼	Intel(R) VT-d Coherency Support	Disabled
			Intel(R) Pass	Through DMA ATS Supp	Enabled		▼	CPU Performance	Enterprise

Schritt 10: Deaktivieren Sie Hyper-Threading in der erweiterten BIOS-Konfiguration unter dem Knoten Computing, wie im Bild gezeigt.

Schritt 11: Erstellen Sie ähnlich wie BOOTOS VD mit den physischen Laufwerken 1 und 2 vier weitere virtuelle Laufwerke wie

JOURNAL - Von physischer Laufwerksnummer 3

OSD1 - Von physischer Laufwerksnummer 7

OSD2 - Von der Nummer 8 des physischen Laufwerks

OSD3 - Von physischer Laufwerksnummer 9

OSD4 - Von physischer Laufwerksnummer 10

Schritt 7: Am Ende müssen die physischen und virtuellen Laufwerke ähnlich sein.

Hinweis: Das hier abgebildete Image und die in diesem Abschnitt beschriebenen Konfigurationsschritte beziehen sich auf die Firmware-Version 3.0(3e). Wenn Sie an anderen Versionen arbeiten, kann es zu geringfügigen Abweichungen kommen.

Hinzufügen des neuen OSD-Compute-Knotens zur Overcloud

Die in diesem Abschnitt beschriebenen Schritte sind unabhängig von der vom Computing-Knoten gehosteten VM identisch.

Schritt 1: Hinzufügen eines Compute-Servers mit einem anderen Index

Erstellen Sie eine Datei **add_node.json**, die nur die Details des neuen Computing-Servers enthält, der hinzugefügt werden soll. Stellen Sie sicher, dass die Indexnummer für den neuen osd-Computing-Server noch nicht verwendet wurde. Erhöhen Sie in der Regel den nächsthöchsten Rechenwert.

Beispiel: Höchste Vorgeschichte wurde sod-compute-0 so erstellt osd-compute-3 im Falle des 2vnf-Systems.

Hinweis: Achten Sie auf das Json-Format.

```
[stack@director ~]$ cat add_node.json
{
   "nodes":[
       {
           "mac":[
               "<MAC_ADDRESS>"
           ],
           "capabilities": "node:osd-compute-3,boot_option:local",
           "cpu":"24",
           "memory":"256000",
           "disk":"3000",
           "arch": "x86_64",
           "pm_type":"pxe_ipmitool",
           "pm_user":"admin",
           "pm_password": "<PASSWORD>",
           "pm_addr":"192.100.0.5"
       }
```

Schritt 2: Importieren Sie die Json-Datei.

]

}

```
[stack@director ~]$ openstack baremetal import --json add_node.json
Started Mistral Workflow. Execution ID: 78f3b22c-5c11-4d08-a00f-8553b09f497d
Successfully registered node UUID 7eddfa87-6ae6-4308-b1d2-78c98689a56e
Started Mistral Workflow. Execution ID: 33a68c16-c6fd-4f2a-9df9-926545f2127e
Successfully set all nodes to available.
Schritt 3: Führen Sie eine Knotenintrospektion mithilfe der UUID aus, die im vorherigen Schritt
angegeben wurde.
[stack@director ~]$ openstack baremetal node manage 7eddfa87-6ae6-4308-b1d2-78c98689a56e
[stack@director ~]$ ironic node-list |grep 7eddfa87
| 7eddfa87-6ae6-4308-b1d2-78c98689a56e | None | None
                                                                                      | power off
  manageable
                       | False
[stack@director ~]$ openstack overcloud node introspect 7eddfa87-6ae6-4308-b1d2-78c98689a56e --
provide
Started Mistral Workflow. Execution ID: e320298a-6562-42e3-8ba6-5ce6d8524e5c
Waiting for introspection to finish...
Successfully introspected all nodes.
Introspection completed.
Started Mistral Workflow. Execution ID: c4a90d7b-ebf2-4fcb-96bf-e3168aa69dc9
Successfully set all nodes to available.
[stack@director ~]$ ironic node-list |grep available
| 7eddfa87-6ae6-4308-b1d2-78c98689a56e | None | None
                                                                                      | power off
  available
                      False
```

Schritt 4: Fügen Sie unter OsdComputeIPs IP-Adressen zu custom-templates/layout.yml hinzu. Wenn Sie in diesem Fall osd-compute-0 ersetzen, fügen Sie diese Adresse zum Ende der Liste für jeden Typ hinzu.

OsdComputeIPs: internal_api: - 11.120.0.43 - 11.120.0.44 - 11.120.0.45 - 11.120.0.43 <<< take osd-compute-0 .43 and add here tenant: - 11.117.0.43 - 11.117.0.44 - 11.117.0.45 - 11.117.0.43 << and here storage:

- 11.118.0.43
- 11.118.0.44
- 11.118.0.45
- 11.118.0.43 << and here
storage_mgmt:
- 11.119.0.43
- 11.119.0.44
- 11.119.0.45
- 11.119.0.43 << and here</pre>

Schritt 5: Führen Sie **deploy.**sh-Skript aus, das zuvor für die Bereitstellung des Stacks verwendet wurde, um den neuen Computing-Knoten dem Overcloud-Stack hinzuzufügen.

```
[stack@director ~]$ ./deploy.sh
++ openstack overcloud deploy --templates -r /home/stack/custom-templates/custom-roles.yaml -e
/usr/share/openstack-tripleo-heat-templates/environments/puppet-pacemaker.yaml -e
/usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml -e
/usr/share/openstack-tripleo-heat-templates/environments/storage-environment.yaml -e
/usr/share/openstack-tripleo-heat-templates/environments/neutron-sriov.yaml -e
/home/stack/custom-templates/network.yaml -e /home/stack/custom-templates/ceph.yaml -e
/home/stack/custom-templates/compute.yaml -e /home/stack/custom-templates/layout.yaml --stack
ADN-ultram --debug --log-file overcloudDeploy_11_06_17__16_39_26.log --ntp-server 172.24.167.109
--neutron-flat-networks phys_pcie1_0,phys_pcie1_1,phys_pcie4_0,phys_pcie4_1 --neutron-network-
vlan-ranges datacentre:1001:1050 --neutron-disable-tunneling --verbose --timeout 180
Starting new HTTP connection (1): 192.200.0.1
"POST /v2/action_executions HTTP/1.1" 201 1695
HTTP POST <a href="http://192.200.0.1:8989/v2/action_executions">http://192.200.0.1:8989/v2/action_executions</a> 201
Overcloud Endpoint: http://10.1.2.5:5000/v2.0
Overcloud Deployed
clean_up DeployOvercloud:
END return value: 0
real
       38m38.971s
       0m3.605s
user
       0m0.466s
sys
Schritt 6: Warten Sie, bis der Status des OpenStack abgeschlossen ist.
```

[stack@director ~]\$	openstack stack li	st					
ID Updated Time	+	+	Name	Stack	Status	Creation Time	
5df68458-095d-43bd- 11-06T21:40:58Z	+ -a8c4-033e68ba79a0	pod1 +	' UPDAT	E_COMPI	LETE 2(017-11-02T21:30:06z	z 2017-
•		1				1	·

Schritt 7: Überprüfen Sie, ob sich der neue Knoten für die Datenverarbeitung im aktiven Zustand befindet.

```
[stack@director ~]$ source stackrc
[stack@director ~]$ nova list |grep osd-compute-3
| 0f2d88cd-d2b9-4f28-b2ca-13e305ad49ea | pod1-osd-compute-3 | ACTIVE | - | Running
| ctlplane=192.200.0.117 |
[stack@director ~]$ source corerc
[stack@director ~]$ openstack hypervisor list |grep osd-compute-3
| 63 | pod1-osd-compute-3.localdomain |
```

Schritt 8: Melden Sie sich beim neuen osd-Computing-Server an, und überprüfen Sie die ceph-Prozesse. Zunächst befindet sich der Status in HEALTH_WARN, wenn sich ceph erholt.

```
[heat-admin@pod1-osd-compute-3 ~]$ sudo ceph -s
   cluster eb2bb192-b1c9-11e6-9205-525400330666
   health HEALTH_WARN
           223 pgs backfill_wait
           4 pgs backfilling
           41 pgs degraded
           227 pgs stuck unclean
           41 pgs undersized
          recovery 45229/1300136 objects degraded (3.479%)
           recovery 525016/1300136 objects misplaced (40.382%)
   monmap e1: 3 mons at {Podl-controller-0=11.118.0.40:6789/0,Podl-controller-
1=11.118.0.41:6789/0, Pod1-controller-2=11.118.0.42:6789/0}
           election epoch 58, quorum 0,1,2 Podl-controller-0,Podl-controller-1,Podl-controller-2
    osdmap e986: 12 osds: 12 up, 12 in; 225 remapped pgs
           flags sortbitwise,require_jewel_osds
     pgmap v781746: 704 pgs, 6 pools, 533 GB data, 344 kobjects
           1553 GB used, 11840 GB / 13393 GB avail
           45229/1300136 objects degraded (3.479%)
           525016/1300136 objects misplaced (40.382%)
                477 active+clean
                186 active+remapped+wait_backfill
                 37 active+undersized+degraded+remapped+wait_backfill
                  4 active+undersized+degraded+remapped+backfilling
```

Schritt 9: Nach einem kurzen Zeitraum (20 Minuten) kehrt CEPH jedoch in den Zustand HEALTH_OK zurück.

[heat-admin@pod1-osd-compute-3 ~]\$ sudo ceph -s cluster eb2bb192-b1c9-11e6-9205-525400330666 health **HEALTH_OK** monmap e1: 3 mons at {Podl-controller-0=11.118.0.40:6789/0,Podl-controller-1=11.118.0.41:6789/0,Pod1-controller-2=11.118.0.42:6789/0} election epoch 58, quorum 0,1,2 Pod1-controller-0,Pod1-controller-1,Pod1-controller-2 osdmap e1398: 12 osds: 12 up, 12 in flags sortbitwise,require_jewel_osds pgmap v784311: 704 pgs, 6 pools, 533 GB data, 344 kobjects 1599 GB used, 11793 GB / 13393 GB avail 704 active+clean client io 8168 kB/s wr, 0 op/s rd, 32 op/s wr [heat-admin@pod1-osd-compute-3 ~]\$ sudo ceph osd tree ID WEIGHT TYPE NAME UP/DOWN REWEIGHT PRIMARY-AFFINITY -1 13.07996 root default -2 0 host pod1-osd-compute-0 -3 4.35999 host pod1-osd-compute-2 1 1.09000 osd.1 up 1.00000 1.00000 4 1.09000 osd.4 up 1.00000 1.00000 osd.7 7 1.09000 up 1.00000 1.00000 10 1.09000 osd.10 up 1.00000 1.00000 -4 4.35999 host pod1-osd-compute-1 2 1.09000 osd.2 up 1.00000 1.00000 5 1.09000 osd.5 up 1.00000 1.00000 8 1.09000 osd.8 up 1.00000 1.00000 11 1.09000 osd.11 up 1.00000 1.00000 -5 4.35999 host pod1-osd-compute-3

up 1.00000

up 1.00000

1.00000

1.00000

0 1.09000

3 1.09000

osd.0

osd.3

6	1.09000	osd.6

nova aggregate-add-host

9 1.09000

up	1.00000	1.00000
up	1.00000	1.00000

Stellen Sie die VMs wieder her

osd.9

Hinzufügen zur Nova Aggregate-Liste

Fügen Sie den Knoten osd-compute zu den Aggregat-Hosts hinzu, und überprüfen Sie, ob der Host hinzugefügt wird.

Wiederherstellung des ESC VM

----+

Schritt 1: Überprüfen Sie den Status des ESC VM in der Nova-Liste, und löschen Sie ihn.

If can not delete esc then use command: nova force-delete esc

Schritt 2: Navigieren Sie in OSPD zum Verzeichnis ECS-Image, und stellen Sie sicher, dass die **Dateien bootvm.py** und qcow2 für ESC vorhanden sind, wenn nicht in ein Verzeichnis verschoben werden.

total 30720136

-rw-rr	1	root	root	127724	Jan	23	12:51	bootvm-2_3_2_157a.py
-rw-rr	1	root	root	55	Jan	23	13:00	bootvm-2_3_2_157a.py.md5sum
-rw-rw-r	1	stack	stack	31457280000	Jan	24	11:35	esc-2.3.2.157.qcow2

Schritt 3: Erstellen Sie das Bild.

[stack@director ESC-image-157]\$ glance image-create --name ESC-2_3_2_157 --disk-format "qcow2" --container "bare" --file /home/stack/ECS-Image-157/ESC-2_3_2_157.qcow2 Schritt 4: Überprüfen Sie, ob das ESC-Bild vorhanden ist.

stack@director ~]\$ glance image-list

ID	Name
<pre>8f50acbe-b391-4433-aa21-98ac36011533 2f67f8e0-5473-467c-832b-e07760e8d1fa c5485c30-45db-43df-831d-61046c5cfd01 2f84b9ec-61fa-46a3-a4e6-45f14c93d9a9 25113ecf-8e63-4b81-a73f-63606781ef94 595673e8-c99c-40c2-82b1-7338325024a9 8bce3a60-b3b0-4386-9e9d-d99590dc9033 e5c835ad-654b-45b0-8d36-557e6c5fd6e9 879dfcde-d25c-4314-8da0-32e4e73ffc9f 7747dd59-c479-4c8a-9136-c90ec894569a</pre>	ESC-2_3_2_157 tmobile-pcrf-13.1.1.iso tmobile-pcrf-13.1.1.qcow2 tmobile-pcrf-13.1.1_cco_20170825.iso wscaaa01-sept072017 wscaaa02-sept072017 wscaaa03-sept072017 wscaaa04-sept072017 WSP1_cluman_12_07_2017 WSP2_cluman_12_07_2017

[stack@ ~]\$ openstack flavor list

+ ID Public	Name	RAM	Disk	Ephemeral	VCPUs	Is
++	+	++		+	+	+
1e4596d5-46f0-46ba-9534-cfdea788f734	pcrf-smb	100352	100	0	8	True
251225f3-64c9-4b19-a2fc-032a72bfe969	pcrf-oam	65536	100	0	10	True
4215d4c3-5b2a-419e-b69e-7941e2abe3bc	pcrf-pd	16384	100	0	12	True
 4c64a80a-4d19-4d52-b818-e904a13156ca 	pcrf-qns	14336	100	0	10	True
 8b4cbba7-40fd-49b9-ab21-93818c80a2e6 	esc-flavor	4096	0	0	4	True
 9c290b80-f80a-4850-b72f-d2d70d3d38ea 	pcrf-sm	100352	100	0	10	True
 e993fc2c-f3b2-4f4f-9cd9-3afc058b7ed1	pcrf-arb	16384	100	0	4	True
 f2b3b925-1bf8-4022-9f17-433d6d2c47b5 	pcrf-cm	14336	100	0	б	True
++	+	++		+	+	+

Schritt 5: Erstellen Sie diese Datei im Bildverzeichnis, und starten Sie die ESC-Instanz.

[root@director ESC-IMAGE]# cat esc_params.conf
openstack.endpoint = publicURL

[root@director ESC-IMAGE]./bootvm-2_3_2_157a.py esc --flavor esc-flavor --image ESC-2_3_2_157 -net tb1-mgmt --gateway_ip 172.16.181.1 --net tb1-orch --enable-http-rest --avail_zone AZ-esc1 -user_pass "admin:Cisco123" --user_confd_pass "admin:Cisco123" --bs_os_auth_url
http://10.250.246.137:5000/v2.0 --kad_vif eth0 --kad_vip 172.16.181.5 --ipaddr 172.16.181.4 dhcp
--ha_node_list 172.16.181.3 172.16.181.4 --esc_params_file esc_params.conf

Hinweis: Nachdem die problematische ESC VM mit dem gleichen **bootvm.py-**Befehl wie bei der Erstinstallation neu bereitgestellt wurde, führt ESC HA automatisch eine Synchronisierung ohne manuelle Schritte durch. Stellen Sie sicher, dass ESC Master aktiviert ist und ausgeführt wird.

Schritt 6: Melden Sie sich beim neuen ESC an, und überprüfen Sie den Backup-Zustand.

[admin@esc ~]\$ escadm status
0 ESC status=0 ESC Backup Healthy