Konfigurieren der internen Paketerfassung in Wave 2 und WiFi 6 AP

Inhalt

Einführung Voraussetzungen Anforderungen Verwendete Komponenten Konfigurieren Netzwerkdiagramm Konfigurationen Überprüfen Fehlerbehebung

Einführung

In diesem Dokument wird beschrieben, wie die interne PCAP (kabelgebundene Paketerfassung) von der Befehlszeilenschnittstelle (CLI) des Access Point (AP) mit dem TFTP-Server (Trivial File Transfer Protocol) erfasst wird.

Unterstützt von Jasia Ahsan, Cisco TAC Engineer.

Voraussetzungen

Anforderungen

Cisco empfiehlt, über Kenntnisse in folgenden Bereichen zu verfügen:

- CLI-Zugriff auf AP mit Secure Shell (SSH) oder Konsolenzugriff.
- TFTP-Server
- .PCAP-Dateien

Verwendete Komponenten

- 5520 Wireless LAN Controller (WLC) mit Code 8.10.112.
- AP 9120AXI
- TFTP-Server

Die Informationen in diesem Dokument wurden von den Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen.

Konfigurieren

Netzwerkdiagramm

Konfigurationen

Die PCAP-Konfiguration wurde mit SSH zu AP durchgeführt. Es können drei Datenverkehrstypen ausgewählt werden: IP, TCP und UDP. In diesem Fall wurde IP-Datenverkehr ausgewählt.

Schritt 1: Melden Sie sich mit SSH bei der AP-CLI an.

Schritt 2: Starten Sie die PCAP für IP-Datenverkehr, und führen Sie den folgenden Befehl aus:

CLI:

CLI:

debug traffic wired ip capture % Writing packets to "/tmp/pcap/2802_capture.pcap0" #reading from file /dev/click_wired_log, link-type EN10MB (Ethernet)

Schritt 3: Beachten Sie, dass die Ausgabe in eine Datei im Ordner /tmp/pcap geschrieben wird, wobei der AP-Name der pcap-Datei hinzugefügt wird.

Schritt 4: Starten Sie einen Ping-Test, um den IP-Datenverkehr zu erfassen.

CLI: #ping 10.201.236.91 Sending 5, 100-byte ICMP Echos to 10.201.236.91, timeout is 2 seconds !!!!! Schritt 5: Stoppen Sie die Erfassung.

CLI: #no debug traffic wired ip capture Schritt 6: Kopieren Sie die Datei auf einen TFTP-Server. Hinweis: Vor der IP-Adresse des TFTP-Servers ist ein Leerzeichen vorhanden.

Überprüfen

Öffnen Sie die Datei mit einem Paketanalyse-Tool. Wireshark wird hier verwendet, um diese Datei zu öffnen.

Die Ping-Testergebnisse sind im Bild zu sehen.

Á.		ା 🧟 🔘 📕 🛅 🕺 🙆 🍳	******	📃 ः ः ः ः 🗄			
	icm	φ					\bowtie
No.		Source	Destination	Protocol	Length Sequer :	Info	
		10.201.236.81	10.201.236.91	ICMP	142	Echo (ping) request	id=0x6cdf, seq=1/256, ttl=64 (reply in 133)
		10.201.236.91	10.201.236.81	ICMP	142	Echo (ping) reply	id=0x6cdf, seq=1/256, ttl=255 (request in 131)
		10.201.236.81	10.201.236.91	ICMP	142	Echo (ping) request	id=0x6cdf, seq=2/512, ttl=64 (reply in 143)
		10.201.236.91	10.201.236.81	ICMP	142	Echo (ping) reply	id=0x6cdf, seq=2/512, ttl=255 (request in 141)
		10.201.236.81	10.201.236.91	ICMP	142	Echo (ping) request	id=0x6cdf, seq=3/768, ttl=64 (reply in 150)
		10.201.236.91	10.201.236.81	ICMP	142	Echo (ping) reply	id=0x6cdf, seq=3/768, ttl=255 (request in 148)
		10.201.236.81	10.201.236.91	ICMP	142	Echo (ping) request	id=0x6cdf, seq=4/1024, ttl=64 (reply in 159)
		10.201.236.91	10.201.236.81	ICMP	142	Echo (ping) reply	id=0x6cdf, seq=4/1024, ttl=255 (request in 157)
		10.201.236.81	10.201.236.91	ICMP	142	Echo (ping) request	id=0x6cdf, seq=5/1280, ttl=64 (reply in 166)
		10.201.236.91	10.201.236.81	ICMP	142	Echo (ping) reply	id=0x6cdf, seq=5/1280, ttl=255 (request in 164)
		10.201.236.81	10.201.236.65	ICMP	142	Echo (ping) request	id=0x6cf0, seq=1/256, ttl=64 (reply in 196)
		10.201.236.65	10.201.236.81	ICMP	142	Echo (ping) reply	id=0x6cf0, seq=1/256, ttl=255 (request in 194)

Fehlerbehebung

Für diese Konfiguration sind derzeit keine spezifischen Informationen zur Fehlerbehebung verfügbar.