Konfigurationsbeispiel für 1800 ISR Wireless-Router mit internem DHCP und offener Authentifizierung

Inhalt

EinführungVoraussetzungenAnforderungenVerwendete KomponentenKonventionenKonfigurierenNetzwerkdiagrammKonfigurationÜberprüfenFehlerbehebungTroubleshooting-BefehlFehlerbehebungsverfahrenZugehörige Informationen

Einführung

Dieses Dokument enthält eine Beispielkonfiguration eines WLANs auf einem Cisco Integrated Services Router (ISR) der Serie 1800.

Voraussetzungen

Anforderungen

Für dieses Dokument bestehen keine speziellen Anforderungen.

Verwendete Komponenten

Die Informationen in diesem Dokument basieren auf den folgenden Software- und Hardwareversionen:

- PC mit diesen Wireless-Netzwerkkarten:802.11a802.11b802.11b/g a/b/g

Die Informationen in diesem Dokument wurden von den Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen.

Konventionen

Weitere Informationen zu Dokumentkonventionen finden Sie unter Cisco Technical Tips <u>Conventions</u> (Technische Tipps zu Konventionen von Cisco).

Konfigurieren

In diesem Abschnitt erhalten Sie Informationen zum Konfigurieren der in diesem Dokument beschriebenen Funktionen.

Hinweis: Verwenden Sie das Command Lookup Tool (nur registrierte Kunden), um weitere Informationen zu den in diesem Dokument verwendeten Befehlen zu erhalten.

Netzwerkdiagramm

In diesem Dokument wird die folgende Netzwerkeinrichtung verwendet:

Wireless-Verbindung zum Router

Konfiguration

Schrittweise Anleitung

Gehen Sie wie folgt vor:

1. Richten Sie den DHCP-Bereich und die ausgeschlossenen Adressen ein. Hinweis:

Ausgeschlossene Adressen sind optional.Weitere Informationen zum DHCP-Server in der Cisco IOS-Software finden Sie unter <u>Cisco IOS DHCP Server</u>.

- 2. Aktivieren Sie integriertes Routing und Bridging, und richten Sie die Bridge-Gruppe ein.
- 3. Weisen Sie der Bridge-Group Virtual Interface 1 (BVI1) eine IP-Adresse zu.
- 4. Wireless-Netzwerke einrichtenWeisen Sie der Bridge-Gruppe 1 die Schnittstelle Dot11Radio0 oder Dot11Radio1 zu.Weisen Sie der Funkschnittstelle eine Service Set Identifier (SSID) zu, und definieren Sie dann die offene Authentifizierung.

Konfiguration

In diesem Dokument wird diese Konfiguration verwendet:

```
ISR Wireless- und DHCP-Konfiguration der Serie 1800
1800-ISR#show running-config
Building configuration...
Ţ
hostname 1800-ISR
1
!--- Output suppressed. ! ip subnet-zero ! ! ip dhcp
excluded-address 192.168.2.1 192.168.2.100 !--- This
sets up DHCP and excluded addresses. Excluded addresses
are optional. ! ip dhcp pool 1800-ISR network
192.168.2.0 255.255.255.0 ! ! bridge irb !--- Turn on
integrated routing and bridging. ! ! interface
Dot11Radio0 !--- This is the wireless radio interface
configuration. no ip address ! ssid Cisco !--- Here, the
SSID is given as "Cisco". authentication open !--- This
defines the authentication as open. ! speed basic-1.0
basic-2.0 basic-5.5 6.0 9.0 basic-11.0 12.0 18.0 24.0
36.0 48.0 54.0 station-role root bridge-group 1 bridge-
group 1 subscriber-loop-control bridge-group 1 spanning-
disabled bridge-group 1 block-unknown-source no bridge-
group 1 source-learning no bridge-group 1 unicast-
flooding ! ! interface BVI1 ip address 192.168.2.1
255.255.255.0 ! ip classless ! !--- Note: Configure the
bridge 1 protocol IEEE and the bridge 1 route IP !---
before you create interface BVI1 or add the radio
interface to bridge group 1.
bridge 1 protocol ieee
bridge 1 route ip
1
line con 0
line aux 0
line vty 0 4
!
no scheduler allocate
end
```

<u>Überprüfen</u>

In diesem Abschnitt überprüfen Sie, ob Ihre Konfiguration ordnungsgemäß funktioniert.

Das <u>Output Interpreter Tool</u> (nur <u>registrierte</u> Kunden) (OIT) unterstützt bestimmte **show**-Befehle. Verwenden Sie das OIT, um eine Analyse der **Ausgabe des** Befehls **show anzuzeigen**.

Verwenden Sie diese Befehle, um den ordnungsgemäßen DHCP- und Wireless-Betrieb zu überprüfen:

- dot11-Verbände anzeigen
- show ip dhcp-Bindung

Die MAC- und IP-Adressen müssen in der Ausgabe des Befehls **show dot1 associated** und der Ausgabe des Befehls **show ip dhcp binding** übereinstimmen. Hier ein Beispiel:

```
1800-ISR#show dot11 associations
802.11 Client Stations on Dot11Radio0:
SSID [Cisco] :
MAC Address IP address Device
                                             Name
                                                          Parent
                                                                         State
0040.96ac.345c 192.168.2.101 CB21AG/PI21AG
                                             WLCLIENT
                                                           self
                                                                         Associated
!
!--- Output suppressed. ! 1800-ISR#show ip dhcp binding
Bindings from all pools not associated with VRF:
IP address
                Client-ID/
                                        Lease expiration
                                                              Туре
                  Hardware address/
                  User name
                                       Dec 18 2005 05:07 PM
192.168.2.101
                 0100.4096.ac34.5c
                                                              Automatic
1800-ISR#
```

Fehlerbehebung

In diesem Abschnitt finden Sie eine Fehlerbehebung für Ihre Konfiguration.

Troubleshooting-Befehl

Hinweis: Beachten Sie <u>vor der</u> Verwendung von **Debug-**Befehlen die <u>Informationen</u> zu <u>Debug-</u><u>Befehlen</u>.

Geben Sie den Befehl **debug ip dhcp server paket** ein, um den IP-DHCP-Server zu debuggen. Mit einem unverschlüsselten WLAN mit offener Authentifizierung bietet dieser Befehl die schnellste und effektivste Methode zur Fehlerbehebung.

Der Befehl debug ip dhcp server paket zeigt folgende Datentransaktionen:

Diese Ausgabe des Befehls **debug ip dhcp server paket** ist ein Beispiel für eine erfolgreiche DHCP-Anforderung:

1800-ISR#debug ip dhcp server packet

*Dec 17 15:40:50.379: DHCPD: DHCPREQUEST received from client 0100.4096.ac34.5c. ! !--- This shows the client DHCP discover packet that is sent to the router. ! *Dec 17 15:40:50.379: DHCPD: No default domain to append - abort update *Dec 17 15:40:50.379: DHCPD: Sending DHCPACK to client 0100.4096.ac34.5c (192.168.2.101) ! !--- This shows the router DHCP acknowledgment (ACK) that is sent back to the client. ! *Dec 17 15:40:50.379: DHCPD: creating ARP entry (192.168.2.101, 0040.96ac.345c). *Dec 17 15:40:50.379: DHCPD: unicasting BOOTREPLY to client 0040.96ac.345c (192.168.2.101)

Fehlerbehebungsverfahren

Wenn das DHCP-Angebot in der Ausgabe des Befehls **debug ip dhcp server paket** nicht angezeigt wird, beginnen Sie mit der Fehlerbehebung für das 802.11-Protokoll. Gehen Sie wie folgt vor:

 Überprüfen Sie die Einstellungen für den Wireless-Client, die SSID und die Einstellung für "Keine Sicherheit/Verschlüsselung". Hinweis: Der SSID muss im ISR und den Clients identisch sein. In diesem Fall lautet die SSID "Cisco". <u>Abbildung 1</u> und <u>Abbildung 2</u> zeigen die SSID-Einstellungen im Cisco Aironet Desktop Utility (ADU) und Aironet Client Utility (ACU). Das Fenster, das Sie sehen, hängt von der Wireless-Client-Karte und den verwendeten Firmware-Versionen ab. <u>Abbildung 1: Einstellungen der Cisco ADU SSID</u>

Profile Name:	1800-ISR	
Client Name:	WLCLIENT	
Network Names		 _
SSID1: SSID2:	Lisco	 -
SSID3:		

Abbildung 2: Einstellungen der Cisco ACU SSID

350 Series Properties - [1800-ISR]				
System Parameters RF Network 4	Advanced (Infra	structure) Network Security	1	,
Client Name: SSID1: SSID2: SSID3:	WLCLIENT Cisco			
Power Save Mode: © <u>C</u> AM (Constantly Awal © <u>M</u> ax PSP (Max Power © <u>F</u> ast PSP (Power Save	ke Mode) Savings) e Mode)	Network Type: <u>A</u> d Hoc <u>Infrastructure</u>		
		OK	Cancel	Defaults Help

Abbildung 3: Null-Einstellungen für Windows-Wireless

- 2. Überprüfen der Wi-Fi-KompatibilitätAuf der Seite der <u>Wi-Fi Alliance</u> können Sie die Wi-Fi-Kompatibilität der verwendeten Wireless-Netzwerkschnittstellenkarte (NIC) überprüfen.
- 3. Wenden Sie sich an den <u>technischen Support</u> von<u>Cisco</u>, um weitere technische Unterstützung zu erhalten.

Zugehörige Informationen

- <u>Cisco IOS DHCP-Server</u>
- Konfigurationsleitfaden für Cisco Access Router Wireless
- <u>Technischer Support und Dokumentation Cisco Systems</u>