Konfigurieren von Class-Based Weighted Fair Queueing mit FRTS

Inhalt

Einführung Voraussetzungen Anforderungen Verwendete Komponenten Konventionen Warum CBWFQ mit FRTS verwenden? Warum CBWFQ mit FRTS verwenden? Verbindliches Verfahren Verbindliches Verfahren Netzwerkdiagramm Konfigurationen Überprüfen Fehlerbehebung Zugehörige Informationen

Einführung

Dieses Dokument enthält eine Beispielkonfiguration für Class-Based Weighted Fair Queueing (CBWFQ) mit Frame Relay Traffic Shaping (FRTS).

CBWFQ erweitert die WFQ-Standardfunktionen (Weighted Fair Queueing), um benutzerdefinierte Datenverkehrsklassen zu unterstützen. FRTS verwendet Warteschlangen in einem Frame-Relay-Netzwerk, um Überlastungen zu begrenzen, die zu Überlastungen führen können. Die Daten werden gepuffert und dann in regulierten Mengen an das Netzwerk gesendet, um sicherzustellen, dass der Datenverkehr innerhalb der zugesagten Datenumschlagsmenge für die jeweilige Verbindung passt.

Voraussetzungen

Anforderungen

Für dieses Dokument bestehen keine speziellen Anforderungen.

Verwendete Komponenten

CBWFQ wird je nach Plattform von den folgenden Cisco IOS[®] Softwareversionen unterstützt:

Cisco Serie 7500 mit VIP (Versatile Interface Processors) (verteilte CBWFQ) - Cisco IOS

Softwareversion 12.1(5)T

 Cisco Serien 7200, 2600/3600 und andere Plattformen der Serie 7500 - Cisco IOS Softwareversion 12.1(2)T

Auf beiden Routern, die für dieses Konfigurationsdokument verwendet wurden, wurde jedoch Cisco IOS Software Release 12.2(2) ausgeführt.

Die Informationen in diesem Dokument wurden von den Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen.

Konventionen

Weitere Informationen zu Dokumentkonventionen finden Sie in den <u>Cisco Technical Tips</u> <u>Conventions</u>.

Warum CBWFQ mit FRTS verwenden?

Wenn Sie spezifische Daten schützen möchten, bietet CBWFQ eine Möglichkeit, diese Daten mithilfe bestimmter Klassen genauer anzugeben. Mit CBWFQ wird das für eine Klasse angegebene Gewicht zum Gewicht jedes Pakets, das den Klassenkriterien entspricht. Dieses Gewicht wird von der Bandbreite abgeleitet, die Sie der Klasse zuweisen. WFQ wird dann auf diese Klassen angewendet, statt auf die Flüsse selbst angewendet zu werden, und die Klassen können mehrere Flüsse enthalten.

Konfigurieren

In diesem Abschnitt erhalten Sie Informationen zum Konfigurieren der in diesem Dokument beschriebenen Funktionen.

Hinweis: Um weitere Informationen zu den in diesem Dokument verwendeten Befehlen zu erhalten, verwenden Sie das <u>Command Lookup Tool</u> (<u>nur registrierte</u> Kunden).

Die nachfolgende Tabelle bietet eine Kurzreferenz zu Einträgen, die in Konfigurationen angezeigt werden können:

Feld	Beschreibung				
FR-					
Schnittste	Ausgabeschnittstelle				
lle					
Subschnitt	Logische Schnittstelle				
stelle					
dlci	Verbindungskennung für Datenverbindungen. Der Wert, der einen permanenten Virtual Circuit (PVC) oder einen Switch Virtual Circuit (SVC) in einem Frame Relay-Netzwerk angibt.				
Klasse XXX	Wendet das Frame-Relay der Map-Klasse XXX an.				
map-class	FRTS-Parameter.				

frame-					
relais XXX					
Service					
Policy ZZZ					
Richtlinie					
nzuweisung	Benannte Richtlinie.				
ZZZ					
Klasse JJJ	Benennt die Klasse.				
Bandbreite					
,					
Richtlinie	Details zu diesem Fluss.				
n,					
Priorität					
	Syntax und Rechtschreibung sind beim				
Klassensta	Erstellen der Standardklassen von				
ndard	Bedeutung.				
class-map	Leat Annassungskriterien fest, nach denen				
match-all	dee Deket übererüft wird				
YYYY	uas Paket überprüft wird.				
match	Bindet die Klassenzuordnung in eine				
access-					
group 101					
access-					
list 101	Normale Zugriffsliste.				
permit ip					
any					

Hinweis: *Cisco Serie 7500:* Ab der Cisco IOS Software, Version 12.1(5)T, müssen QoS-Richtlinien (Quality of Service) auf dem VIP (Versatile Interface Processor) im verteilten Modus ausgeführt werden, da eine auf Route/Switch Processor (RSP) basierende QoS nicht mehr unterstützt wird. Verwenden Sie daher den **shape-**Befehl und andere Befehle für die modulare QoS-Befehlszeilenschnittstelle (CLI), um Distributed Traffic Shaping (DTS) für Frame Relay-Schnittstellen auf VIPs der Cisco 7500-Serie zu implementieren. DTS kombiniert Generic Traffic Shaping (GTS) und FRTS.

Verbindliches Verfahren

Die Konfiguration von CBWFQ mit FRTS umfasst die folgenden drei obligatorischen Schritte:

- 1. Definieren von Klassenzuordnungen (Klassenzuordnung).Legen Sie die Anpassungskriterien fest, anhand derer ein Paket überprüft wird, um festzustellen, ob es zu einer Klasse gehört.
- 2. Konfigurieren Sie die Richtlinienzuordnung (Richtlinienzuweisung) und die Defining Classes (Klasse).Gibt den Namen der Richtlinienzuordnung an. Verknüpft Spezifikationen für Bandbreitengarantien, Richtlinien und Priorität für jede Datenverkehrsklasse. Dieser Prozess umfasst die Konfiguration der Bandbreite usw., die auf Pakete angewendet werden soll, die zu einer der zuvor definierten Klassenzuordnungen gehören. Konfigurieren Sie für diesen Prozess eine Richtlinienzuordnung, die die Richtlinie für jede Datenverkehrsklasse angibt.
- Fügen Sie die Service Policy der FRTS-Zuordnungsklasse (Service-Richtlinie) hinzu.Verknüpfen Sie die mit der spezifischen Service-Richtlinie identifizierten Richtlinien mit der Map-Class (und damit mit dem DLCI oder der Subschnittstelle, auf die das Map-Class Frame-Relay angewendet wird).

Netzwerkdiagramm

In diesem Dokument wird die im Diagramm unten dargestellte Netzwerkeinrichtung verwendet.

Im Netzwerkdiagramm oben werden folgende Werte verwendet:

- HUB = physische Rate = 192 Kbit/s, garantierte Rate = 32 Kbit/s
- REMOTE Physical Rate = 64 Kbit/s, garantierte Rate = 32 Kbit/s

Konfigurationen

In diesem Dokument werden die unten angegebenen Konfigurationen verwendet.

- Hub mit konfigurierter CBWFQ
- <u>Remote</u>

Hub mit konfigurierter CBWFQ					
<snip></snip>					
!					
class-map match-all YYY					
match access-group 101					
!					
!					
policy-map ZZZ					
class YYY					
bandwidth percent 50					
<snip></snip>					
interface Serial0/0					
no ip address					
encapsulation frame-relay					
no fair-queue					
frame-relay traffic-shaping					
interface Serial0/0.1 point-to-point					
ip address 10.1.1.1 255.255.255.0					
frame-relay interface-dlci 16					
frame-relay class XXX					
1					
map-class frame-relay XXX					
frame-relay cir 64000					
frame-relay mincir 32000					
frame-relay adaptive-shaping becn					
frame-relay bc 8000					
service-policy output ZZZ					
<snip></snip>					
1					

<u>Überprüfen</u>

Dieser Abschnitt enthält Informationen, mit denen Sie überprüfen können, ob Ihre Konfiguration ordnungsgemäß funktioniert.

Bestimmte **show**-Befehle werden vom <u>Output Interpreter Tool</u> unterstützt (nur <u>registrierte</u> Kunden), mit dem Sie eine Analyse der **show**-Befehlsausgabe anzeigen können.

- show frame-relais pvc Zeigt Statistiken über PVCs für Frame Relay-Schnittstellen an.
- show policy-map: Zeigt die Konfiguration aller Klassen an, die die angegebene Dienstrichtlinienzuordnung oder alle Klassen f
 ür alle vorhandenen Richtlinienzuordnungen enthalten.
- show policy-map [interface] Zeigt die Konfiguration aller Klassen an, die f
 ür alle Dienstrichtlinien auf der angegebenen Schnittstelle konfiguriert sind, oder die Klassen f
 ür die Dienstrichtlinie f
 ür eine bestimmte PVC auf der Schnittstelle an.

Im Folgenden sehen Sie eine Beispielausgabe des Befehls show frame-relais pvc:

Hubrouter# sho	w frame-rela	y pvc [inter	face interface][dlci]				
PVC Statistics for interface Serial0/0 (Frame Relay DTE)								
	Active	Inactive	Deleted	Static				
Local	0	1	0	0				
Switched	0	0	0	0				
Unused	0	0	0	0				
DLCI = 16, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = Serial0/0.1								
input pkts 0		output pkt	s 0	in bytes 0				
out bytes 0		dropped pk	ts O	in pkts dropped 0				
out pkts dropped 0		out bytes dropped 0						
in FECN pkts 0		in BECN pk	ts O	out FECN pkts 0				
out BECN pkts 0		in DE pkts	0	out DE pkts 0				
out bcast pkts 0		out bcast	out bcast bytes 0					
pvc create time 00:01:12, last time pvc status changed 00:01:12								

Hubrouter#

Mit diesem Befehl können Sie die folgende Syntax verwenden:

- interface (Optional) gibt eine spezifische Schnittstelle an, für die PVC-Informationen angezeigt werden.
- interface (Optional) Schnittstellennummer, die die DLCIs enthält, f
 ür die PVC-Informationen angezeigt werden sollen.
- dlci (Optional) Eine spezifische DLCI-Nummer, die auf der Schnittstelle verwendet wird.
 Statistiken f
 ür die angegebene PVC werden angezeigt, wenn auch ein DLCI angegeben wird.

Im Folgenden sehen Sie eine Beispielausgabe des Befehls show policy-map:

```
Hubrouter#show policy-map

Policy Map ZZZ

Class YYY

Weighted Fair Queueing

Bandwidth 50 (%) Max Threshold 64 (packets)

Class WWW

Weighted Fair Queueing

Bandwidth 25 (%) Max Threshold 64 (packets)
```

Im Folgenden sehen Sie eine Beispielausgabe der show policy-map [interface].

```
Hubrouter#show policy-map interface s0/0.1
 Serial 0/0.1: DLCI 16
 Service-policy output: ZZZ (1057)
   Class-map: YYY (match-all) (1059/2)
     0 packets, 0 bytes
     30 second offered rate 0 bps, drop rate 0 bps
     Match: access-group 101 (1063)
     Weighted Fair Queueing
       Output Queue: Conversation 73
       Bandwidth 50 (%) Max Threshold 64 (packets)
       (pkts matched/bytes matched) 0/0
       (depth/total drops/no-buffer drops) 0/0/0
   Class-map: WWW (match-all) (1067/3)
     0 packets, 0 bytes
     30 second offered rate 0 bps, drop rate 0 bps
     Match: access-group 102 (1071)
     Weighted Fair Queueing
       Output Queue: Conversation 74
       Bandwidth 25 (%) Max Threshold 64 (packets)
       (pkts matched/bytes matched) 0/0
       (depth/total drops/no-buffer drops) 0/0/0
   Class-map: class-default (match-any) (1075/0)
        2 packets, 706 bytes
        30 second offered rate 0 bps, drop rate 0 bps
        Match: any (1079)
```

Weitere Begriffe, die Sie möglicherweise auch in ähnlichen Konfigurationen sehen, werden nachfolgend erläutert:

- CIR Committed Information Rate (Committed Information Rate). Rate, mit der ein Frame-Relay-Netzwerk die Übertragung von Informationen unter normalen Bedingungen akzeptiert, gemittelt über eine minimale Zeitspanne.
- FIFO Queueing First-In, First-Out Queueing. FIFO beinhaltet die Pufferung und Weiterleitung von Paketen in der Reihenfolge ihrer Ankunft. FIFO verkörpert kein Konzept von Priorität oder Verkehrsklassen. Es gibt nur eine Warteschlange, und alle Pakete werden gleich behandelt.

Pakete werden in der Reihenfolge, in der sie ankommen, über eine Schnittstelle gesendet.

Fehlerbehebung

Für diese Konfiguration sind derzeit keine spezifischen Informationen zur Fehlerbehebung verfügbar.

Zugehörige Informationen

- Konfigurieren von Frame-Relay- und Frame-Relay-Traffic-Shaping
- Konfiguration und Fehlerbehebung von Frame Relay
- Klassenbasiertes Weighted Fair Queueing
- <u>Technischer Support und Dokumentation Cisco Systems</u>