Konfigurieren der erweiterten VPN-Einrichtung (Virtual Private Network) auf der RV110W-Firewall

Ziel

Virtual Private Network (VPN) verwendet das öffentliche Netzwerk oder das Internet, um ein privates Netzwerk für eine sichere Kommunikation einzurichten. Ein Internet Key Exchange (IKE) ist ein Protokoll, das eine sichere Kommunikation zwischen zwei Netzwerken herstellt. Sie wird verwendet, um einen Schlüssel vor dem Datenverkehrsfluss auszutauschen, wodurch die Authentizität für beide Enden des VPN-Tunnels sichergestellt wird.

Beide Enden des VPNs sollten dieselbe VPN-Richtlinie verwenden, um erfolgreich miteinander zu kommunizieren.

In diesem Dokument wird erläutert, wie Sie ein IKE-Profil hinzufügen und die VPN-Richtlinie auf dem RV110W Wireless Router konfigurieren.

Anwendbare Geräte

·RV110W

Softwareversion

·1.2.0.9

IKE-Richtlinieneinstellungen

Internet Key Exchange (IKE) ist ein Protokoll, das verwendet wird, um eine sichere Verbindung für die Kommunikation in einem VPN herzustellen. Diese etablierte, sichere Verbindung wird als Security Association (SA) bezeichnet. In diesem Verfahren wird erläutert, wie Sie eine IKE-Richtlinie für die VPN-Verbindung konfigurieren, die für die Sicherheit verwendet wird. Damit ein VPN ordnungsgemäß funktioniert, müssen die IKE-Richtlinien für beide Endpunkte identisch sein.

Schritt 1: Melden Sie sich beim Webkonfigurationsprogramm an, und wählen Sie VPN > Advanced VPN Setup aus. Die Seite Advanced VPN Setup wird geöffnet:

Advance	d VPN Setup							
IKE Policy	Table							
	Name	Mode	Local	Remote		Encryption	Authentication	DH
	No data to display							
Add Rov	v Edit	Delete						
VPN Policy	y Table							
	Status	Name		Туре	Local	Remote	Authentication	Encryption
	No data to display							
Add Rov	v Edit	Enable	Disable Delete					
Save IPSec Cor	Cancel							

KE Policy	y Table			-		
	Name	Mode	Local		Remote	
	No data to display				ion.	
Add Ro	edit	Delete				
PN Polic	cy Table					
	Status	Name		T	/na	0.000
	Status No data to display	Name		Tj	/pe	Local
Add Ro	Status No data to display w Edit	Name Enable	Disable Delete		/pe	Local

Schritt 2: Klicken Sie auf **Zeile hinzufügen**, um eine neue IKE-Richtlinie zu erstellen. Die Seite Advanced VPN Setup wird geöffnet:

Advanced VPN Setup)	
Add / Edit IKE Policy Configu	ration	
Policy Name:	policy1]
Exchange Mode:	Main 🗸	
IKE SA Parameters		
Encryption Algorithm:	AES-128 🗸	
Authentication Algorithm:	SHA-1	
Pre-Shared Key:]
Diffie-Hellman (DH) Group:	Group1 (768 bit) 🗸	
SA-Lifetime:	3600	Seconds (Range: 30 - 86400, Default: 3600)
Dead Peer Detection:	Enable	
DPD Delay:	10	(Range: 10 - 999, Default: 10)
DPD Timeout:	30	(Range: 30 - 1000, Default: 30)
Save Cancel	Back	

Schritt 3: Geben Sie im Feld *Policy Name (Richtlinienname)* einen Namen für die IKE-Richtlinie ein, um diese leicht zu identifizieren.

Advanced VPN Setup	
Add / Edit IKE Policy Configu	ration
Policy Name:	policy1
Exchange Mode:	Main
IKE SA Parameters	Main Aggressive
Encryption Algorithm:	AES-128 V
Authentication Algorithm:	SHA-1 V
Pre-Shared Key:	
Diffie-Hellman (DH) Group:	Group1 (768 bit) 🗸
SA-Lifetime:	3600 Seconds (Range: 30 - 86400, Default: 3600)
Dead Peer Detection:	✓ Enable
DPD Delay:	10 (Range: 10 - 999, Default: 10)
DPD Timeout:	30 (Range: 30 - 1000, Default: 30)
Save Cancel	Back

Schritt 4: Wählen Sie eine Option aus der Dropdown-Liste Exchange Mode:

·Main (Hauptmodus): Ermöglicht den sicheren, aber langsameren Betrieb der IKE-Richtlinie als der Modus "Aggressive" (Aggressive Modus). Wählen Sie diese Option aus, wenn eine sicherere VPN-Verbindung erforderlich ist.

·Aggressive (Aggressiv): Ermöglicht den schnelleren, aber weniger sicheren Betrieb der IKE-Richtlinie als im Hauptmodus. Wählen Sie diese Option aus, wenn eine schnellere VPN-Verbindung erforderlich ist.

Advanced VPN Setu	0	
Add / Edit IKE Policy Configu	iration	
Policy Name:	policy1	
Exchange Mode:	Aggressive 🗸	
IKE SA Parameters		
Encryption Algorithm:	AES-128 V	
Authentication Algorithm:	DES 3DES AES-128	
Pre-Shared Key:	AES-192 AES-256]
Diffie-Hellman (DH) Group:	Group1 (768 bit) 🗸	
SA-Lifetime:	3600	Seconds (Range: 30 - 86400, Default: 3600)
Dead Peer Detection:	🗹 Enable	
DPD Delay:	10	(Range: 10 - 999, Default: 10)
DPD Timeout:	30	(Range: 30 - 1000, Default: 30)
Save Cancel	Back	

Schritt 5: Wählen Sie aus der Dropdown-Liste *Encryption Algorithm* einen Algorithmus aus:

·DES - Data Encryption Standard (DES) verwendet eine 56-Bit-Schlüsselgröße für die Datenverschlüsselung. DES ist veraltet und sollte nur verwendet werden, wenn ein Endpunkt nur DES unterstützt.

·3DES - Der Triple Data Encryption Standard (3DES) führt DES dreimal durch, variiert jedoch die Schlüssellänge zwischen 168 Bit und 112 Bit und zwischen 112 Bit und 56 Bit, je nach der DES-Runde. 3DES ist sicherer als DES und AES.

·AES-128 - Advanced Encryption Standard mit 128-Bit-Schlüssel (AES-128) verwendet einen 128-Bit-Schlüssel für AES-Verschlüsselung. AES ist schneller und sicherer als DES. Im Allgemeinen ist AES auch schneller, aber weniger sicher als 3DES, aber einige Hardwaretypen ermöglichen eine schnellere Ausführung von 3DES. AES-128 ist schneller, aber weniger sicher als AES-192 und AES-256.

·AES-192 - AES-192 verwendet einen 192-Bit-Schlüssel für die AES-Verschlüsselung. AES-192 ist langsamer, aber sicherer als AES-128, und AES-192 ist schneller, aber weniger sicher als AES-256.

·AES-256 - AES-256 verwendet einen 256-Bit-Schlüssel für die AES-Verschlüsselung. AES-256 ist langsamer, aber sicherer als AES-128 und AES-192.

Advanced VPN Setu	p	
Add / Edit IKE Policy Configu	Iration	
Policy Name:	policy1	
Exchange Mode:	Aggressive 🖌	
IKE SA Parameters		
Encryption Algorithm:	3DES 🗸	
Authentication Algorithm:	SHA-1	
Pre-Shared Key:	SHA-1 SHA2-256	
Diffie-Hellman (DH) Group:	Group1 (768 bit) 🗸	
SA-Lifetime:	3600	Seconds (Range: 30 - 86400, Default: 3600)
Dead Peer Detection:	Enable	
DPD Delay:	10	(Range: 10 - 999, Default: 10)
DPD Timeout:	30	(Range: 30 - 1000, Default: 30)
Save Cancel	Back	

Schritt 6: Wählen Sie die gewünschte Authentifizierung aus der Dropdown-Liste *Authentication Algorithm*:

·MD5 — Message-Digest Algorithm 5 (MD5) verwendet einen 128-Bit-Hashwert für die Authentifizierung. MD5 ist weniger sicher, aber schneller als SHA-1 und SHA2-256.

·SHA-1 - Secure Hash Function 1 (SHA-1) verwendet einen 160-Bit-Hashwert für die Authentifizierung. SHA-1 ist langsamer, aber sicherer als MD5, und SHA-1 ist schneller, aber weniger sicher als SHA2-256.

·SHA2-256 - Secure Hash Algorithm 2 mit einem Hashwert von 256 Bit (SHA2-256) verwendet einen Hashwert von 256 Bit für die Authentifizierung. SHA2-256 ist langsamer, aber sicher als MD5 und SHA-1.

Advanced VPN Setup)	
Add / Edit IKE Policy Configu	ration	
Policy Name:	policy1]
Exchange Mode:	Aggressive 🗸	
IKE SA Parameters		
Encryption Algorithm:	3DES 🗸	
Authentication Algorithm:	MD5 ¥	
Pre-Shared Key:	abcd1234	
Diffie-Hellman (DH) Group:	Group1 (768 bit) 🗸	
SA-Lifetime:	3600	Seconds (Range: 30 - 86400, Default: 3600)
Dead Peer Detection:	Enable	
DPD Delay:	10	(Range: 10 - 999, Default: 10)
DPD Timeout:	30	(Range: 30 - 1000, Default: 30)
Save Cancel	Back	

Schritt 7: Geben Sie im Feld *Vorinstallierter Schlüssel* einen vorinstallierten Schlüssel ein, den die IKE-Richtlinie verwendet.

Advanced VPN Setu	
Add / Edit IKE Policy Configu	ration
Policy Name:	policy1
Exchange Mode:	Aggressive V
IKE SA Parameters	
Encryption Algorithm:	3DES V
Authentication Algorithm:	MD5 v
Pre-Shared Key:	abcd1234
Diffie-Hellman (DH) Group:	Group1 (768 bit)
SA-Lifetime:	Group1 (768 bit) Group2 (1024 bit) Group5 (1536 bit) Group5 (1536 bit)
Dead Peer Detection:	✓ Enable
DPD Delay:	10 (Range: 10 - 999, Default: 10)
DPD Timeout:	30 (Range: 30 - 1000, Default: 30)
Save Cancel	Back

Schritt 8: Wählen Sie aus der Dropdown-Liste *Diffie-Hellman (DH) Group (DH-Gruppe*) aus, welche DH-Gruppe von IKE verwendet wird. Hosts in einer DH-Gruppe können Schlüssel austauschen, ohne einander zu kennen. Je höher die Bitnummer der Gruppe ist, desto sicherer ist die Gruppe.

·Gruppe 1 - 768 Bit - Der niedrigste Stärke-Schlüssel und die unsicherste Authentifizierungsgruppe. Die Berechnung der IKE-Schlüssel nimmt jedoch weniger Zeit in Anspruch. Diese Option wird empfohlen, wenn die Netzwerkgeschwindigkeit niedrig ist.

·Gruppe 2 - 1024 Bit - Der höhere Schlüssel und eine sicherere Authentifizierungsgruppe. Die IKE-Schlüssel müssen jedoch erst nach einiger Zeit berechnet werden.

·Gruppe 5 - 1536 Bit - Stellt den höchsten Stärke-Schlüssel und die sicherste Authentifizierungsgruppe dar. Die Berechnung der IKE-Schlüssel erfordert mehr Zeit. Es wird empfohlen, wenn die Netzwerkgeschwindigkeit hoch ist.

Advanced VPN Setup	,	
Add / Edit IKE Policy Configu	ration	
Policy Name:	policy1]
Exchange Mode:	Aggressive 🗸	
IKE SA Parameters		
Encryption Algorithm:	3DES 🗸	
Authentication Algorithm:	MD5 🗸	
Pre-Shared Key:	abcd1234]
Diffie-Hellman (DH) Group:	Group2 (1024 bit) 🗸	
SA-Lifetime:	3500	Seconds (Range: 30 - 86400, Default: 3600)
Dead Peer Detection:	Enable	
DPD Delay:	20	(Range: 10 - 999, Default: 10)
DPD Timeout:	40	(Range: 30 - 1000, Default: 30)
Save Cancel	Back	

Schritt 9: Geben Sie an, wie lange (in Sekunden) eine SA für das VPN dauert, bevor die SA im Feld *SA-Lifetime* verlängert wird.

Schritt 10: (Optional) Aktivieren Sie das Kontrollkästchen **Aktivieren** im Feld *Dead Peer Detection* (**Dead-Peer-Erkennung**), um die Dead Peer Detection (Dead-Peer-Erkennung) zu aktivieren. Die Deed Peer Detection überwacht IKE-Peers, um festzustellen, ob ein Peer nicht mehr funktioniert. Dead Peer Detection verhindert die Verschwendung von Netzwerkressourcen bei inaktiven Peers.

Schritt 11: (Optional) Wenn Sie unter Schritt 9 die Deed Peer Detection aktiviert haben, geben Sie im Feld *Deed Peer Delay (Deed-Peer-Verzögerung*) ein, wie oft (in Sekunden) der Peer auf Aktivitäten überprüft wird.

Schritt 12: (Optional) Wenn Sie unter Schritt 9 die Deed Peer Detection aktiviert haben, geben Sie in das Feld Deed Peer Detection Timeout (Deed Peer Detection-Timeout) die Anzahl der Sekunden ein, die gewartet wird, bevor ein inaktiver Peer verworfen wird.

Schritt 13: Klicken Sie auf Speichern, um alle Einstellungen zu übernehmen.

VPN-Richtlinienkonfiguration

Schritt 1: Melden Sie sich beim Webkonfigurationsprogramm an, und wählen Sie **VPN**>Advanced VPN Setup (Erweitertes VPN-Setup). Die Seite *Advanced VPN Setup* wird geöffnet:

Advanced VPN Setup				
IKE Doliov Tabla				
Name Mode Local Remote		Encryption	Authentication	DH
No data to display				
Add Row Edit Delete				
VPN Policy Table				
Status Name Type Li	ocal	Remote	Authentication	Encryption
No data to display				
Add Row Edit Enable Disable Delete				
Save Cancel				
IPSec Connection Status				
Configuration settings have been saved successfully				
IKE POIICY LADIE	Remote			
	Remote			
Add Row Edit Delete				
VPN Policy Table				
Status Name	Туре	Local		
No data to display				
Add Row Edit Enable Disable Delete				
Save Cancel				
IPSec Connection Status				

Schritt 2: Klicken Sie in der *VPN-Richtlinientabelle auf* Zeile **hinzufügen**. Das Fenster *Advanced VPN Policy Setup* (Erweiterte VPN-Richtlinieneinrichtung) wird angezeigt:

Advanced VPN	Setup	
Add / Edit VPN Policy	Configuration	
Policy Name:		
Policy Type:	Auto Policy 🗸	
Remote Endpoint:	IP Address 🗸	
		(Hint: 1.2.3.4 or abc.com)
Local Traffic Selection	on	
Local IP:	Single 🗸	
IP Address:		(Hint: 1.2.3.4)
Subnet Mask:		(Hint: 255.255.255.0)
Remote Traffic Selec	tion	

VPN-Richtlinienkonfiguration hinzufügen/bearbeiten

Add / Edit VPN Policy	Configuration	
Policy Name:	policy 2	
Policy Type:	Auto Policy 🗸	_
Remote Endpoint:	IP Address 🗸	

Schritt 1: Geben Sie einen eindeutigen Namen für die Richtlinie im Feld *Policy Name* (*Richtlinienname*) ein, um sie leicht zu identifizieren.

Add / Edit VPN Policy	Configuration	
Policy Name:	policy 2	
Policy Type:	Auto Policy 🗸	
Remote Endpoint	Auto Policy Manual Policy	

Schritt 2: Wählen Sie den entsprechenden Richtlinientyp aus der Dropdown-Liste *Policy Type* (*Richtlinientyp*) aus.

·Auto Policy (Automatische Richtlinie): Die Parameter können automatisch festgelegt werden. In diesem Fall ist es zusätzlich zu den Richtlinien erforderlich, dass das IKE-Protokoll (Internet Key Exchange) zwischen den beiden VPN-Endpunkten ausgehandelt wird.

·Manuelle Richtlinie - In diesem Fall werden alle Einstellungen, die Einstellungen für Schlüssel für den VPN-Tunnel enthalten, für jeden Endpunkt manuell eingegeben.

Advanced VPN Setup		
Add / Edit VPN Policy	Configuration	
Policy Name:	policy 2	
Policy Type:	Manual Policy 🖌	
Remote Endpoint:	IP Address V IP Address FQDN	(Hint: 1.2.3.4 or abc.com)

Schritt 3: Wählen Sie aus der Dropdown-Liste "Remote Endpoint" den Typ der IP-ID aus, der das Gateway am Remote-Endpunkt identifiziert.

·IP-Adresse - IP-Adresse des Kabelmodems am Remote-Endpunkt. Wenn Sie diese Option wählen, geben Sie die IP-Adresse in das Feld ein.

·FQDN (Fully Qualified Domain Name): Geben Sie den vollqualifizierten Domänennamen des Kabelmodems am Remote-Endpunkt ein. Wenn Sie diese Option wählen, geben Sie den vollqualifizierten Domänennamen in das Feld ein.

Lokale Datenverkehrsauswahl

Local Traffic Selection	on	
Local IP:	Single V	
IP Address:	Subnet	(Hint: 1.2.3.4)
Subnet Mask:		(Hint: 255.255.255.0)

Schritt 1: Wählen Sie aus der Dropdown-Liste "*Local IP*" (*Lokale IP*) den Typ der ID aus, die Sie für den Endpunkt bereitstellen möchten.

Local Traffic Selec	ction	
Local IP:	Single 🗸	
IP Address:	192.168.1.1	(Hint: 1.2.3.4)
Subnet Mask:		(Hint: 255.255.255.0)

·Single (Einzel): Dadurch wird die Richtlinie auf einen Host beschränkt. Wenn Sie diese Option wählen, geben Sie die IP-Adresse in das Feld *IP-Adresse ein*.

Local Traffic Selec	tion	
Local IP:	Subnet 🗸	
IP Address:	192.168.1.1	(Hint: 1.2.3.4)
Subnet Mask:	255.255.255.0	(Hint: 255.255.255.0)

·Subnetz - Dies ist eine Maske, die die Grenzen einer IP definiert. Dadurch können Hosts aus dem angegebenen Subnetz nur eine Verbindung zum VPN herstellen. Um eine VPN-Verbindung herzustellen, wird ein Computer durch einen logischen AND-Vorgang ausgewählt. Ein Computer wird ausgewählt, wenn die IP in den gleichen erforderlichen Bereich fällt. Wenn Sie diese Option wählen, geben Sie die IP-Adresse und das Subnetz in das Feld IP-Adresse und Subnetz ein.

RemoteTraffic-Auswahl

Remote Traffic Select	ion	
Remote IP:	Single V	
IP Address:	Subnet	(Hint: 1.2.3.4)
Subnet Mask:		(Hint: 255.255.255.0)

Schritt 1: Wählen Sie aus der Dropdown-Liste *Local IP (Lokale IP)* den Typ der ID aus, die Sie für den Endpunkt bereitstellen möchten:

Remote Traffic Selection		
Remote IP:	Single 🖌	
IP Address:	192.168.1.5	(Hint: 1.2.3.4)
Subnet Mask:		(Hint: 255.255.255.0)

·Single (Einzel): Dadurch wird die Richtlinie auf einen Host beschränkt. Wenn Sie diese Option wählen, geben Sie die IP-Adresse in das Feld *IP-Adresse ein*.

Remote Traffic Se	lection	
Remote IP:	Subnet 🗸	
IP Address:	192.168.1.5	(Hint: 1.2.3.4)
Subnet Mask:	255.255.255.0	(Hint: 255.255.255.0)

·Subnetz - Dies ist eine Maske, die die Grenzen einer IP definiert. Dadurch können Hosts aus dem angegebenen Subnetz nur eine Verbindung zum VPN herstellen. Um eine VPN-Verbindung herzustellen, wird ein Computer durch einen logischen AND-Vorgang ausgewählt. Ein Computer wird ausgewählt, wenn die IP in den gleichen erforderlichen Bereich fällt. Wenn Sie diese Option wählen, geben Sie die IP-Adresse und das Subnetz in das Feld IP-Adresse und Subnetz ein.

Parameter für manuelle Richtlinien

Um Parameter für die manuelle Richtlinie zu konfigurieren, wählen Sie in der Dropdown-Liste *Policy Type (Richtlinientyp) in Schritt 2 des* Abschnitts *Konfiguration* der *VPN-Richtlinie hinzufügen/bearbeiten* aus.

Manual Policy Parameters	
SPI-Incoming:	014C
SPI-Outgoing:	014C
Encryption Algorithm:	AES-128 🗸
Key-In:	
Key-Out:	
Integrity Algorithm:	SHA-1
Key-In:	
Key-Out:	

Schritt 1: Geben Sie im Feld *SPI-Incoming* (*SPI-Incoming*) einen Hexadezimalwert zwischen 3 und 8 ein. Stateful Packet Inspection (SPI) ist eine Technologie, die als Deep Packet Inspection (Deep Packet Inspection) bezeichnet wird. SPI implementiert eine Reihe von Sicherheitsfunktionen, die dazu beitragen, Ihr Computernetzwerk sicher zu halten. Der Wert für den SPI-Eingang entspricht dem SPI-Ausgang des vorherigen Geräts. Jeder Wert ist akzeptabel, vorausgesetzt, der Remote-VPN-Endpunkt hat in seinem *SPI-Outgoing-*Feld den gleichen Wert.

Schritt 2: Geben Sie im Feld *SPI-Outgoing* (*SPI-Ausgang*) einen Hexadezimalwert zwischen 3 und 8 ein.

Manual Policy Parame	ters
SPI-Incoming:	014C
SPI-Outgoing:	014C
Encryption Algorithm:	AES-128 V
Key-In:	3DES DES
Key-Out:	AES-192 AES-256
Integrity Algorithm:	SHA-1
Key-In:	
Key-Out:	

Schritt 3: Wählen Sie in der Dropdown-Liste Verschlüsselungsalgorithmus den entsprechenden Verschlüsselungsalgorithmus aus.

·DES - Data Encryption Standard (DES) verwendet eine 56-Bit-Schlüsselgröße für die Datenverschlüsselung. DES ist veraltet und sollte nur verwendet werden, wenn ein Endpunkt nur DES unterstützt.

·3DES - Der Triple Data Encryption Standard (3DES) führt DES dreimal durch, variiert jedoch die Schlüssellänge von 168 Bit bis 112 Bit und von 112 Bit bis 56 Bit je nach der DES-Runde. 3DES ist sicherer als DES und AES.

·AES-128 - Advanced Encryption Standard mit 128-Bit-Schlüssel (AES-128) verwendet einen 128-Bit-Schlüssel für AES-Verschlüsselung. AES ist schneller und sicherer als DES. Im Allgemeinen ist AES auch schneller, aber weniger sicher als 3DES, aber einige Hardwaretypen ermöglichen eine schnellere Ausführung von 3DES. AES-128 ist schneller, aber weniger sicher als AES-192 und AES-256.

·AES-192 - AES-192 verwendet einen 192-Bit-Schlüssel für die AES-Verschlüsselung. AES-192 ist langsamer, aber sicherer als AES-128, und AES-192 ist schneller, aber weniger sicher als AES-256.

·AES-256 - AES-256 verwendet einen 256-Bit-Schlüssel für die AES-Verschlüsselung. AES-256 ist langsamer, aber sicherer als AES-128 und AES-192.

Manual Policy Parame	eters
SPI-Incoming:	014C
SPI-Outgoing:	014C
Encryption Algorithm:	DES
Key-In:	1452
Key-Out:	1452
Integrity Algorithm:	SHA-1
Key-In:	
Key-Out:	

Schritt 4: Geben Sie den Verschlüsselungsschlüssel der eingehenden Richtlinie in das Feld *Key-In ein*. Die Länge des Schlüssels hängt von dem in Schritt 3 gewählten Algorithmus ab.

Schritt 5: Geben Sie im Feld *Key-Out* den Verschlüsselungsschlüssel der Richtlinie für ausgehenden Datenverkehr ein.

Manual Policy Parame	ters
SPI-Incoming:	014C
SPI-Outgoing:	014C
Encryption Algorithm:	AES-128 V
Key-In:	JES DES
Key-Out:	AES-192 AES-256
Integrity Algorithm:	SHA-1
Key-In:	
Key-Out:	

Schritt 6: Wählen Sie den entsprechenden Integritätsalgorithmus aus der Dropdown-Liste *Integrity Algorithm* aus. Dieser Algorithmus überprüft die Integrität der Daten:

·MD5: Dieser Algorithmus gibt die Schlüssellänge auf 16 Zeichen an. Message-Digest Algorithm Five (MD5) ist nicht kollisionssicher und eignet sich für Anwendungen wie SSL-Zertifikate oder digitale Signaturen, die auf dieser Eigenschaft basieren. MD5 komprimiert jeden Byte-Stream in einen 128-Bit-Wert, SHA komprimiert ihn jedoch in einen 160-Bit-Wert. MD5 ist etwas preiswerter zu berechnen, MD5 ist jedoch eine ältere Version des Hash-Algorithmus und ist anfällig für Kollisionsangriffe.

·SHA1 — Secure Hash Algorithm Version 1 (SHA1) ist eine 160-Bit-Hash-Funktion, die sicherer ist als MD5, aber die Berechnung dauert länger.

·SHA2-256: Dieser Algorithmus gibt die Schlüssellänge auf 32 Zeichen an.

Manual Policy Parameters		
SPI-Incoming:	014C	
SPI-Outgoing:	014C	
Encryption Algorithm:	DES 🗸	
Key-In:	1452	
Key-Out:	1452	
Integrity Algorithm:	SHA2-256 V	
Key-In:	1234	
Key-Out:	1234	

Schritt 7: Geben Sie den Integritätsschlüssel (für ESP mit Integrity-Modus) für die eingehende Richtlinie ein. Die Länge des Schlüssels hängt von dem in Schritt 6 gewählten Algorithmus ab.

Schritt 8: Geben Sie den Integritätsschlüssel der Richtlinie für ausgehenden Datenverkehr in das Feld "Key-Out" ein. Die VPN-Verbindung ist für den ausgehenden an den eingehenden Datenverkehr eingerichtet. Daher müssen die ausgehenden Schlüssel eines Endgeräts mit den eingehenden Schlüsseln am anderen Ende übereinstimmen.

Hinweis: Für eine erfolgreiche Verbindung müssen SPI-Eingangs- und Ausgangs-, Verschlüsselungs-Algorithmus, Integrity Algorithm und Keys am anderen Ende des VPN-Tunnels identisch sein.

Auto Policy Parameters		
SA-Lifetime:	2800	Seconds (Range: 30 - 86400, Default: 28800
Encryption Algorithm:	AES-128 🗸	
Integrity Algorithm:	SHA-1 ¥	
PFS Key Group:	Enable	
	DH-Group 1(768	bit) 🗸
Select IKE Policy:	policy1 🗸	
	View	

Schritt 1: Geben Sie die Dauer der Sicherheitszuordnung (Security Association, SA) in Sekunden im Feld SA Lifetime (SA-Lebensdauer) ein. Die SA-Lebensdauer ist, wenn ein Schlüssel seine Lebensdauer erreicht hat. Alle zugehörigen SAs werden automatisch neu verhandelt.

Auto Policy Paramete	rs	
riate i energi aramete		
SA-Lifetime:	2800	Seconds (Range: 30 - 86400, Default: 28800)
Encryption Algorithm:	AES-128 V	
Integrity Algorithm:	JDES DES	
PFS Key Group:	AES-128 AES-192 AES-256	
	DH-Group 1(768 bit)	¥
Select IKE Policy:	policy1 🖌	
	View	

Schritt 2: Wählen Sie den entsprechenden Verschlüsselungsalgorithmus aus der Dropdown-Liste Verschlüsselungsalgorithmus aus:

·DES - Data Encryption Standard (DES) verwendet eine 56-Bit-Schlüsselgröße für die Datenverschlüsselung. DES ist veraltet und sollte nur verwendet werden, wenn ein Endpunkt nur DES unterstützt.

·3DES - Der Triple Data Encryption Standard (3DES) führt DES dreimal durch, variiert jedoch die Schlüssellänge von 168 Bit bis 112 Bit und von 112 Bit bis 56 Bit je nach der DES-Runde. 3DES ist sicherer als DES und AES.

·AES-128 - Advanced Encryption Standard mit 128-Bit-Schlüssel (AES-128) verwendet einen 128-Bit-Schlüssel für AES-Verschlüsselung. AES ist schneller und sicherer als DES. Im Allgemeinen ist AES auch schneller, aber weniger sicher als 3DES, aber einige Hardwaretypen ermöglichen eine schnellere Ausführung von 3DES. AES-128 ist schneller, aber weniger sicher als AES-192 und AES-256.

·AES-192 - AES-192 verwendet einen 192-Bit-Schlüssel für die AES-Verschlüsselung. AES-192 ist langsamer, aber sicherer als AES-128, und AES-192 ist schneller, aber weniger sicher als AES-256.

Auto Policy Parameter	rs	
SA-Lifetime:	2800	Seconds (Range: 30 - 86400, Default: 28800)
Encryption Algorithm:	DES	
Integrity Algorithm:	SHA-1	
PFS Key Group:	SHA-1 SHA2-256 MD5	
	DH-Group 1(768 bit)	v
Select IKE Policy:	policy1 🗸	
	View	

·AES-256 - AES-256 verwendet einen 256-Bit-Schlüssel für die AES-Verschlüsselung. AES-256 ist langsamer, aber sicherer als AES-128 und AES-192.

Schritt 3: Wählen Sie in der Dropdown-Liste Integrity Algorithm (Integritätsalgorithmus) den entsprechenden Integrationsalgorithmus aus. Dieser Algorithmus überprüft die Integrität der Daten. ·MD5: Dieser Algorithmus gibt die Schlüssellänge auf 16 Zeichen an. Message-Digest Algorithm Five (MD5) ist nicht kollisionssicher und eignet sich für Anwendungen wie SSL-Zertifikate oder digitale Signaturen, die auf dieser Eigenschaft basieren. MD5 komprimiert jeden Byte-Stream in einen 128-Bit-Wert, SHA komprimiert ihn jedoch in einen 160-Bit-Wert. MD5 ist etwas preiswerter zu berechnen, MD5 ist jedoch eine ältere Version des Hash-Algorithmus und ist anfällig für Kollisionsangriffe.

·SHA1 — Secure Hash Algorithm Version 1 (SHA1) ist eine 160-Bit-Hash-Funktion, die sicherer ist als MD5, aber die Berechnung dauert länger.

·SHA2-256: Dieser Algorithmus gibt die Schlüssellänge auf 32 Zeichen an.

Auto Policy Paramete	rs	
SA-Lifetime:	2800	Seconds (Range: 30 - 86400, Default: 28800)
Encryption Algorithm:	DES	
Integrity Algorithm:	SHA-1	
PFS Key Group:	🗹 Enable	
	DH-Group 1(768 bit)	~
Select IKE Policy:	policy1 👻	
	View	

Schritt 4: (Optional) Aktivieren Sie das Kontrollkästchen **Aktivieren** im *PFS*-Feld *Schlüsselgruppe*, um Perfect Forward Secrecy (Perfekte Weiterleitungsgeheimnis) zu aktivieren, um die Sicherheit zu verbessern.

Auto Policy Parameters		
SA-Lifetime:	2800	Seconds (Range: 30 - 86400, Default: 28800)
Encryption Algorithm:	DES	
Integrity Algorithm:	SHA-1	
PFS Key Group:	Enable	_
Select IKE Policy:	DH-Group 1(768 bit) V DH-Group 1(768 bit) DH-Group 2(1024 bit) DH-Group 5(1536 bit) View	

Schritt 5: Wenn Sie in Schritt 4 **Aktivieren** aktiviert haben, wählen Sie den entsprechenden Diffie-Hellman-Schlüsselaustausch aus der Dropdown-Liste *PFS Key Group* (Feld *PFS-Schlüsselgruppe*) aus.

·Gruppe 1 - 768 Bit - Stellt den niedrigsten Stärke-Schlüssel und die unsicherste Authentifizierungsgruppe dar. Die Berechnung der IKE-Schlüssel erfordert jedoch weniger Zeit. Es wird empfohlen, wenn die Netzwerkgeschwindigkeit niedrig ist.

Gruppe 2 - 1024 Bit - Stellt einen leistungsfähigeren Schlüssel und eine sicherere
Authentifizierungsgruppe dar. Die IKE-Schlüssel müssen jedoch erst nach einiger Zeit berechnet
werden.

·Gruppe 5 - 1536 Bit - Stellt den höchsten Stärke-Schlüssel und die sicherste Authentifizierungsgruppe dar. Die Berechnung der IKE-Schlüssel erfordert mehr Zeit. Es wird empfohlen, wenn die Netzwerkgeschwindigkeit hoch ist.

Auto Policy Parameters		
SA-Lifetime:	2800	Seconds (Range: 30 - 86400, Default: 28800)
Encryption Algorithm:	DES	
Integrity Algorithm:	SHA-1	
PFS Key Group:	Enable	
	DH-Group 1(768 bit)	~
Select IKE Policy:	policy1 view	

Schritt 6: Wählen Sie die entsprechende IKE-Richtlinie aus der Dropdown-Liste *Select IKE Policy* (*IKE-Richtlinie auswählen*) aus. Internet Key Exchange (IKE) ist ein Protokoll, das verwendet wird, um eine sichere Verbindung für die Kommunikation in einem VPN herzustellen. Diese etablierte, sichere Verbindung wird als Security Association (SA) bezeichnet. Damit ein VPN ordnungsgemäß funktioniert, müssen die IKE-Richtlinien für beide Endpunkte identisch sein.

Schritt 7: Klicken Sie auf Speichern, um alle Einstellungen zu übernehmen.

Hinweis: Für eine erfolgreiche Verbindung müssen SA-Lifetime, Encryption Algorithm, Integrity Algorithm, PFS Key Group und die IKE Policy am anderen Ende des VPN-Tunnels identisch sein.

Wenn Sie weitere Artikel zur RV110W anzeigen möchten, klicken Sie hier.