QuickVPN-TCP-Dump-Analyse

Ziele

In diesem Artikel wird erläutert, wie die Pakete mit Wireshark erfasst werden, um den Client-Datenverkehr zu überwachen, wenn QuickVPN vorhanden ist. QuickVPN ist eine einfache Methode, VPN-Software auf einem Remote-Computer oder Laptop mit einem einfachen Benutzernamen und Kennwort einzurichten. Dies erleichtert den sicheren Zugriff auf Netzwerke basierend auf dem verwendeten Gerät. <u>Wireshark</u> ist ein Paket-Sniffer, mit dem Pakete im Netzwerk zur Fehlerbehebung erfasst werden.

QuickVPN wird von Cisco nicht mehr unterstützt. Dieser Artikel ist weiterhin für Kunden mit QuickVPN verfügbar. Eine Liste der Router, die QuickVPN verwendet haben, finden Sie unter <u>Cisco Small Business</u> <u>QuickVPN</u>. Weitere Informationen zu QuickVPN finden Sie im Video am Ende dieses Artikels.

Unterstützte Geräte

ãf» RV-Serie (siehe Liste in Link oben)

Analyse von QuickVPN-TCP-Dumps

Um die in diesem Artikel beschriebenen Schritte ausführen zu können, müssen Wireshark und der QuickVPN-Client auf Ihrem PC installiert sein.

Schritt 1: Navigieren Sie auf Ihrem Computer zur Suchleiste. Geben Sie **cmd ein**, und wählen Sie die Anwendung *Eingabeaufforderung* aus den Optionen aus. Geben Sie den Befehl *ping* und die IP-Adresse ein, mit der Sie eine Verbindung herstellen möchten. In diesem Fall wurde *ping* 79.189.214.83 eingegeben.

Administrator: C:\Windows\system32\cmd.exe	
C:\>ping 79.189.214.83_	^
	*

Schritt 2: Öffnen Sie die Wireshark-Anwendung, und wählen Sie die Schnittstelle aus, über die die Pakete an das Internet übertragen werden, um den Datenverkehr zu erfassen.

Schritt 3: Starten Sie QuickVPN. Geben Sie den Profilnamen in das Feld Profilname ein.

Profile Name :	Office 🔹	
User Name :	admin	
Password :	kololok	
Server Address :	79.189.214.83	
Port For QuickVPN :	Auto 🗾	
Use Remote DNS Server :		
Connect Save	Delete Help	
© 2010 Cisco Systems, Inc. All rights reserved. Ver 1.4.2.1		

Schritt 4: Geben Sie den Benutzernamen in das Feld Benutzername ein.

Profile Name :	Office 🗸	
User Name :	admin	
Password :	solololok	
Server Address :	79.189.214.83	
Port For QuickVPN :	Auto 🔽	
Use Remote DNS Server :		
Connect Save	Delete Help	
© 2010 Cisco Systems, Inc. All rights reserved. Ver 1.4.2.1		

Schritt 5: Geben Sie das Kennwort in das Feld Kennwort ein.

Profile Name :	Office 🗾	
User Name :	admin	
Password :	sololok	
Server Address :	79.189.214.83	
Port For QuickVPN :	Auto 💌	
Use Remote DNS Server :		
Connect Save	Delete Help	
© 2010 Cisco Systems, Inc. All rights reserved. Ver 1.4.2.1		

Schritt 6: Geben Sie die Serveradresse in das Feld Serveradresse ein.

Profile Name :	Office 🔹	
User Name :	admin	
Password :	sololook	
Server Address :	79.189.214.83	
Port For QuickVPN :	Auto 🔽	
Use Remote DNS Server :		
Connect Save	Delete Help	
© 2010 Cisco Systems, Inc. All rights reserved. Ver 1.4.2.1		

Schritt 7. Wählen Sie in der Dropdown-Liste Port for QuickVPN (Port für QuickVPN) den Port für QuickVPN aus.

cisco QuickVPN	Client	
Profile Name :	Office 🗾	
User Name :	admin	
Password :	kololok	
Server Address :	79.189.214.83	
Port For QuickVPN :	Auto 🔹	
Use Remote DNS Server :	443 60443	
Connect Save	Auto	
© 2010 Cisco Systems, Inc. All rights reserved. Ver 1.4.2.1		

Schritt 8. (Optional) Aktivieren Sie das Kontrollkästchen *Remote-DNS-Server verwenden*, um den Remote-DNS-Server anstelle des lokalen zu verwenden.

Profile Name :	Office 🔹	
User Name :	admin	
Password :	kololok	
Server Address :	79.189.214.83	
Port For QuickVPN :	Auto 💌	
Use Remote DNS Server : 💌		
Connect Save	Delete Help	
© 2010 Cisco Systems, Inc. All rights reserved. Ver 1.4.2.1		

Schritt 9. Klicken Sie auf Verbinden.

Schritt 10. Öffnen Sie die erfasste Datenverkehrsdatei.

97	22.922202	79.189.214.86	213.16.33.141	TCP	https>nav-port [ACK] Seq=728 Ack=315 Win=5840 Len=0
98	22.953202	79.189.214.86	213.16.33.141	TLSv1	Change Cipher Spec, Encrypted Handshake Message
99	22.953514	213.16.33.141	79.189.214.86	TLSv1	Application Data, Application Data
100	23.047399	79.189.214.86	213.16.33.141	TCP	https>nav-port [ACK] Seq=779 Ack=589 Win=5840 Len=
115	26.839997	79.189.214.86	213.16.33.141	TLSv1	Application Data, Application Data
116	26.885516	79.189.214.86	213.16.33.141	TLSv1	Encrypted Alert
117	26.885548	213.16.33.141	79.189.214.86	TCP	nav-port > https [ACK] Seq=589 Ack=1187 Win=64350 Len=0
118	26.885644	213.16.33.141	79.189.214.86	TLSv1	Encrypted Alert
119	26.885751	213.16.33.141	79.189.214.86	ТСР	nav-port > https [FIN, ACK] Seq=618 Ack=1187 Win=64350 Len=0
120	26.975742	79.189.214.86	213.16.33.141	TCP	https>nav-port [RST] Seq=1187 Win=0 Len=0
153	36.003017	213.16.33.141	79.189.214.86	ISAKMP	Identity Protection (Main Mode)
154	36.100454	79.189.214.86	213.16.33.141	ISAKMP	Identity Protection (Main Mode)
155	36.111330	213.16.33.141	79.189.214.86	ISAKMP	Identity Protection (Main Mode)
162	36.597760	79.189.214.86	213.16.33.141	ISAKMP	Identity Protection (Main Mode)
163	36.601730	213.16.33.141	79.189.214.86	ISAKMP	Identity Protection (Main Mode)
164	36.703206	79.189.214.86	213.16.33.141	ISAKMP	Identity Protection (Main Mode)
165	36.714256	213.16.33.141	79.189.214.86	ISAKMP	Quick Mode
166	37.279513	79.189.214.86	213.16.33.141	ISAKMP	Quick Mode
167	37.283580	213.16.33.141	79.189.214.86	ESP	ESP (SPI=0x8316dOa3)
168	37.283761	213.16.33.141	79.189.214.86	ISAKMP	Quick Mode
209	48.111271	213.16.33.141	79.189.214.86	ESP	ESP (SPI=0x8316d0a3)
216	48.233459	79.189.214.86	213.16.33.141	ESP	ESP (SPI=0x2b28e6ae)
224	51.775102	213.16.33.141	79.189.214.86	ISAKMP	Informational
225	51.783452	213.16.33.141	79.189.214.86	ISAKMP	Informational
227	51.834637	213.16.33.141	79.189.214.86	TCP	giga-pocket > https [SYN] Seq=0 Win=65535 Len=0 MSS=1460
228	51.924897	79.189.214.86	213.16.33.141	TCP	https>giga-pocket [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 MSS=14
229	51.924934	213.16.33.141	79.189.214.86	TCP	giga-pocket > https [ACK] Seq=1 Ack=1 Win=65535 Len=0
230	51.925230	213.16.33.141	79.189.214.86	SSLv2	Client Hello
231	52.016293	79.189.214.86	213.16.33.141	TCP	https>giga-pocket [ACK] Seq=1 Ack=125 Win=5840 Len=0
232	52.049811	79.189.214.86	213.16.33.141	TLSv1	Server Hello, Certificate, Server Hello Done
233	52.052284	213.16.33.141	79.189.214.86	TLSv1	Client Key Exchange, Change Cipher Spec, Encrypted Handshake Me
237	52.181662	79.189.214.86	213.16.33.141	тср	https>giga-pocket [ACK] Seq=728 Ack=315 Win=5840 Len=0
241	52.210977	79.189.214.86	213.16.33.141	TLSv1	Change Cipher Spec, Encrypted Handshake Message
242	52.211266	213.16.33.141	79.189.214.86	TLSv1	Application Data, Application Data
243	52.304238	79.189.214.86	213.16.33.141	ТСР	https>giga-pocket [ACK] Seq=779 Ack=605 Win=5840 Len=0
244	52.407500	79.189.214.86	213.16.33.141	ISAKMP	Informational
245	52.412835	79.189.214.86	213.16.33.141	ISAKMP	Informational
255	56.043199	79.189.214.86	213.16.33.141	TLSv1	Application Data, Application Data
256	56.044568	79.189.214.86	213.16.33.141	TLSv1	Encrypted Alert
257	56.044596	213.16.33.141	79.189.214.86	TCP	giga-pocket > https [ACK] Seq=605 Ack=1091 Win=64446 Len=0
258	56.044668	213.16.33.141	79.189.214.86	TLSv1	Encrypted Alert

Um eine QuickVPN-Verbindung herzustellen, müssen drei Hauptaspekte überprüft werden:

ãf» Konnektivität

ãf» Aktivieren der Richtlinie (Zertifikat prüfen)

ãf» Überprüfung des Netzwerks

Um die Verbindung zu überprüfen, müssen zunächst die Transport Layer Security (TLSv1)-Pakete im Erfassungsdatenverkehr zusammen mit dem Vorgänger Secure Socket Layer (SSL) angezeigt werden. Dies sind die kryptographischen Protokolle, die die Sicherheit für die Kommunikation über das Netzwerk bieten.

Die Aktivierung der Richtlinie kann mithilfe des Internet Security Association and Key Management Protocol (ISAKMP)-Pakets im abgefangenen Wireshark-Datenverkehr überprüft werden. Sie definiert den Mechanismus für die Authentifizierung, Erstellung und Verwaltung der Security Association (SA), Verfahren zur Schlüsselgenerierung und Maßnahmen zur Risikominimierung. Er verwendet IKE für den Schlüsselaustausch.

ISAKMP hilft bei der Festlegung des Paketformats für Einrichtung, Aushandlung, Änderung und Löschen der SA. Er verfügt über verschiedene Informationen, die für verschiedene Netzwerksicherheitsdienste wie den IP-Schicht-Dienst benötigt werden, einschließlich Header-Authentifizierung, Payload-Kapselung, Transport- oder Anwendungsschicht-Services oder Selbstschutz des Verhandlungsdatenverkehrs. ISAKMP definiert Payloads für den Austausch von Schlüsselgenerierungs- und Authentifizierungsdaten. Diese Formate bieten ein konsistentes Framework für die Übertragung von Schlüssel- und Authentifizierungsdaten, das von der Schlüsselgenerierungstechnik, dem Verschlüsselungsalgorithmus und dem Authentifizierungsmechanismus unabhängig ist.

Encapsulation Security Payload (ESP) wird verwendet, um die Vertraulichkeit, die verbindungslose Integrität der Datenursprungsauthentifizierung, den Anti-Replay-Service und den begrenzten Datenverkehrsfluss zu überprüfen. In QuickVPN ist ESP ein Mitglied des IPSec-Protokolls. Es wird verwendet, um die Authentizität, Integrität und Vertraulichkeit von Paketen zu gewährleisten. Verschlüsselung und Authentifizierung werden separat unterstützt.

Hinweis: Eine Verschlüsselung ohne Authentifizierung wird nicht empfohlen.

ESP wird nicht zum Schutz des IP-Headers verwendet, aber im Tunnelmodus wird das gesamte IP-Paket mit einem neuen Paket-Header gekapselt. Sie wird hinzugefügt und auf das gesamte innere IP-Paket einschließlich des inneren Headers aufgeteilt. Es arbeitet auf IP und verwendet die Protokollnummer 50.

Schlussfolgerung

Nun weißt du, wie man Pakete mit Wireshark und QuickVPN erfasst.

Video zu diesem Artikel anzeigen ...

Klicken Sie hier, um weitere Tech Talks von Cisco anzuzeigen.

Informationen zu dieser Übersetzung

Cisco hat dieses Dokument maschinell übersetzen und von einem menschlichen Übersetzer editieren und korrigieren lassen, um unseren Benutzern auf der ganzen Welt Support-Inhalte in ihrer eigenen Sprache zu bieten. Bitte beachten Sie, dass selbst die beste maschinelle Übersetzung nicht so genau ist wie eine von einem professionellen Übersetzer angefertigte. Cisco Systems, Inc. übernimmt keine Haftung für die Richtigkeit dieser Übersetzungen und empfiehlt, immer das englische Originaldokument (siehe bereitgestellter Link) heranzuziehen.