Konfigurationsbeispiel für IPSec zwischen der PIX-Firewall und dem Cisco VPN 3000-Konzentrator mit sich überschneidenden privaten Netzwerken

Inhalt

Einführung Voraussetzungen Anforderungen Verwendete Komponenten Konventionen Konfigurieren Netzwerkdiagramm Konfigurationen Überprüfen PIX VPN-Konzentrator Fehlerbehebung Befehle zur Fehlerbehebung Zugehörige Informationen

Einführung

In diesem Dokument wird beschrieben, wie die Cisco Secure PIX Firewall in einem standortübergreifenden IPSec-VPN mit sich überschneidenden privaten Netzwerkadressen hinter VPN-Gateways konfiguriert wird. Die erweiterte Network Address Translation (NAT)-Funktion, die in PIX 6.2 eingeführt wurde, wird in diesem Beispiel verwendet, um die sich überschneidenden Netzwerke auf jeder Seite des IPSec-VPN-Tunnels in nicht überlappende Adressräume zu übersetzen.

Voraussetzungen

Anforderungen

Für dieses Dokument bestehen keine speziellen Anforderungen.

Verwendete Komponenten

Die Informationen in diesem Dokument basieren auf den folgenden Software- und

Hardwareversionen:

- Cisco Secure PIX Firewall 506 mit Softwareversion 6.3(3)
- VPN 3030 Concentrator mit Softwareversion 4.1(5)

Die Informationen in diesem Dokument wurden von den Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen.

Konventionen

Weitere Informationen zu Dokumentkonventionen finden Sie unter <u>Cisco Technical Tips</u> <u>Conventions</u>.

Konfigurieren

In diesem Abschnitt erhalten Sie Informationen zum Konfigurieren der in diesem Dokument beschriebenen Funktionen.

Hinweis: Um weitere Informationen zu den in diesem Dokument verwendeten Befehlen zu erhalten, verwenden Sie das <u>Command Lookup Tool</u> (<u>nur registrierte</u> Kunden).

Netzwerkdiagramm

In diesem Dokument wird die in diesem Diagramm dargestellte Netzwerkeinrichtung verwendet.

Sowohl Private_LAN1 als auch Private_LAN2 verfügen über das IP-Subnetz 192.168.4.0/24. Dadurch wird der sich überschneidende Adressbereich hinter jeder Seite des IPSec-Tunnels simuliert. Der VPN 3000 Concentrator wird hier als Beispiel für einen Konzentrator verwendet, der nicht über die Funktionalität von NAT-over-VPN-Datenverkehr verfügt.

In diesem Beispiel führt das PIX eine bidirektionale Übersetzung durch, sodass die beiden

privaten LANs über den IPSec-Tunnel kommunizieren können. Die Übersetzung bedeutet, dass Private_LAN1 Private_LAN2 durch den IPSec-Tunnel als 10.1.1.0/24 und Private_LAN2 durch den IPSec-Tunnel als 20.1.1.0/24 "sieht" Private_LAN1.

Konfigurationen

PIX
P520-1(config)# show run
: Saved
:
PIX Version 6.3(3)
interface ethernet0 auto
interface ethernet1 auto
nameif ethernet0 outside security0
nameif ethernet1 inside security100
enable password 8Ry2YjIyt7RRXU24 encrypted
passwd 2KFQnbNIdI.2KYOU encrypted
hostname P520-1
domain-name bru-ch.com
fixup protocol dns maximum-length 512
fixup protocol ftp 21
fixup protocol h323 h225 1720
fixup protocol h323 ras 1718-1719
fixup protocol http 80
fixup protocol rsh 514
fixup protocol rtsp 554
fixup protocol sip 5060
fixup protocol sip udp 5060
fixup protocol skinny 2000
fixup protocol smtp 25
fixup protocol sqlnet 1521
fixup protocol tftp 69
names
! Defines IPSec interesting traffic. ! Note that
the host behind PIX communicates ! to Private_LAN1
using 10.1.1.0/24. ! When the packets arrive at the
PIX, they are first ! translated to 192.168.4.0/24
and then encrypted by IPSec. access-list 101 permit 1p
20.1.1.0 255.255.255.0 192.168.4.0 255.255.255.0
pager lines 24
mtu outside 1500
mtu inside 1500
ip address outside 1/2.16.1/2.34 255.255.255.0
ip audit info action alarm
ip audit attack action alarm
pdm history enable
arp timeout 14400
I Static translation defined to translate
Private LAN2 ! from 192.168.4.0/24 to 10.1.1.0/24.
static (outside, inside) 10.1.1.0 192.168.4.0 netmask
255.255.255.0 0 0
! Static translation defined to translate
Private_LAN1 ! from 192.168.4.0/24 to 20.1.1.0/24. !-
Note that this translation is used for both ! VPN
and Internet traffic from Private_LAN1. ! A routable
global IP address range, or an extra NAT ! at the ISP
router (in front of PIX), is ! required if
Private_LAN1 also needs internal access. static
(inside,outside) 20.1.1.0 192.168.4.0 netmask

```
255.255.255.0 0 0
route outside 0.0.0.0 0.0.0.0 172.16.172.55 1
timeout xlate 3:00:00
timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 rpc
0:10:00 h225 1:00:00
timeout h323 0:05:00 mgcp 0:05:00 sip 0:30:00 sip_media
0:02:00
timeout uauth 0:05:00 absolute
aaa-server TACACS+ protocol tacacs+
aaa-server RADIUS protocol radius
aaa-server LOCAL protocol local
no snmp-server location
no snmp-server contact
snmp-server community public
no snmp-server enable traps
floodguard enable
sysopt connection permit-ipsec
!--- Defines IPSec encryption and authentication
algorithms. crypto ipsec transform-set myset esp-des
esp-md5-hmac
!--- Defines crypto map. crypto map vpn 10 ipsec-isakmp
crypto map vpn 10 match address 101
crypto map vpn 10 set peer 172.16.172.55
crypto map vpn 10 set transform-set myset
!--- Apply crypto map on the outside interface. crypto
map vpn interface outside
isakmp enable outside
!--- Defines pre-shared secret (cisco123) used for IKE
authentication. isakmp key ******* address
172.16.172.55 netmask 255.255.255.255
isakmp identity address
!--- Defines ISAKMP policy. isakmp policy 1
authentication pre-share
isakmp policy 1 encryption des
isakmp policy 1 hash md5
isakmp policy 1 group 1
isakmp policy 1 lifetime 86400
telnet timeout 5
ssh timeout 5
console timeout 0
terminal width 80
Cryptochecksum:6cc25fc2fea20958dfe74c1fca45ada2
: end
```

Konfiguration des VPN 3000 Concentrator LAN-to-LAN-Tunnels

Für die Zieladresse 20.1.1.0 /24 (Private_LAN1) muss auf dem VPN 3000 eine statische Route vorhanden sein. Wählen Sie dazu **Configuration > System > IP Routing > Static Routes** (Konfiguration > System > IP-Routing > Statische Routen) aus, und wählen Sie Add (Hinzufügen). Wenn Sie alle Felder ausgefüllt haben, klicken Sie auf Hinzufügen.

Configuration System IP Routing Static Routes Add	
Configure and add a static route.	
Network Address 20.1.1.0	Enter the network address.
Subnet Mask 255.255.255.0	Enter the subnet mask.
Metric 1	Enter the numeric metric for this route (1 through 16).
Destination	
Router Address 💿 172.16.172.34	Enter the router/gateway IP address.
Interface C Ethernet 2 (Public) (172.16.172.55)	Select the interface to route to.
Add Cancel	

Mithilfe der Einstellungen in diesen Bildern können Sie den VPN 3000-Konzentrator konfigurieren.

Configuration Tunneling and Security IPSec LAN-to-LAN Add			
Add a new IPSec L	AN-to-LAN connection.		
Enable	V	Check to enable this LAN-to-LAN connection.	
Name	ToPIX	Enter the name for this LAN-to-LAN connection.	
Interface	Ethernet 2 (Public) (172.16.172.55)	Select the interface for this LAN-to-LAN connection.	
Connection Type	Bi-directional	Choose the type of LAN-to-LAN connection. An Originate-Only connection may have multiple peers specified below.	
Peers	172.16.172.34	Enter the remote peer IP addresses for this LAN-to- LAN connection. <i>Originate-Only</i> connection may specify up to ten peer IP addresses. Enter one IP address per line.	
Digital Certificate	None (Use Preshared Keys) 💌	Select the digital certificate to use.	

Certificate O Entire certificate chain	Choose how to send the digital certificate to the IKE
Transmission 💿 Identity certificate only	peer.
Preshared Key cisco123	Enter the preshared key for this LAN-to-LAN connection.
Authentication ESP/MD5/HMAC-128	Specify the packet authentication mechanism to use.
Encryption DES-56	Specify the encryption mechanism to use.
IKE Proposal IKE-DES-MD5	Select the IKE Proposal to use for this LAN-to- LAN connection
Filter -None-	Choose the filter to apply to the traffic that is tunneled through this LAN-to-LAN connection.
IPSec NAT-T	Check to let NAT-T compatible IPSec peers establish this LAN-to-LAN connection through a NAT device. You must also enable IPSec over NAT-T under NAT Transparency.
Bandwidth Policy -None-	Choose the bandwidth policy to apply to this LAN- to-LAN connection.
Routing None	Choose the routing mechanism to use. Parameters below are ignored if Network Autodiscovery is chosen.
Local Network: If a LAN-to-LAN NAT rule is used, this is	s the Translated Network address.
	Charles de la companya de la companya de TD

Network List Use IP Address/Wildcard-mask below 💌	Specify the local network address list or the IP address and wildcard mask for this LAN-to-LAN connection.
IP Address 192.168.4.0	Note: Enter a <i>wildcard</i> mask, which is the reverse of a subnet mask . A wildcard mask has 1s
Wildcard Mask 0.0.0.255	in bit positions to ignore, 0s in bit positions to match. For example, 10.10.1.0/0.0.0.255 = all 10.10.1.nnn addresses.
Remote Network: If a LAN-to-LAN NAT rule is used, this	is the Remote Network address.
Network List Use IP Address/Wildcard-mask below 💌	Specify the remote network address list or the IP address and wildcard mask for this LAN-to-LAN connection.
IP Address 20.1.10	Note: Enter a <i>wildcard</i> mask, which is the reverse of a subnet mask . A wildcard mask has 1s
Wildcard Mask 0.0.0.255	in bit positions to ignore, 0s in bit positions to match. For example, 10.10.1.0/0.0.0.255 = all 10.10.1.nnn addresses.
Add Cancel	

<u>Überprüfen</u>

. .

Dieser Abschnitt enthält Informationen, mit denen Sie überprüfen können, ob Ihre Konfiguration ordnungsgemäß funktioniert.

Bestimmte show-Befehle werden vom Output Interpreter Tool unterstützt (nur registrierte Kunden), mit dem Sie eine Analyse der show-Befehlsausgabe anzeigen können.

- show crypto isakmp sa Zeigt alle aktuellen Sicherheitszuordnungen (SAs) f
 ür den Internet Key Exchange (IKE) auf einem Peer an.
- show crypto isakmp sa detail Zeigt die Details aller aktuellen IKE-SAs unter einem Peer an.
- show crypto ipsec sa Zeigt die von aktuellen SAs verwendeten Einstellungen an.
- show xlate detail Zeigt Informationen zu Übersetzungssteckplätzen an.

PIX

```
P520-1(config)#
P520-1(config)#show crypto isakmp sa
Total
      : 1
Embryonic : 0
                      src state pending created
      dst
  172.16.172.55 172.16.172.34 QM_IDLE 0 1
P520-1(config)#show crypto isakmp sa detail
Total : 1
Embryonic : 0
                     Remote Encr Hash Auth State Lifetime
       Local
  172.16.172.34:500 172.16.172.55:500 des md5 psk QM_IDLE
                                                                   86211
P520-1(config)#
P520-1(config)#show crypto ipsec sa
interface: outside
   Crypto map tag: vpn, local addr. 172.16.172.34
  local ident (addr/mask/prot/port): (20.1.1.0/255.255.255.0/0/0)
  remote ident (addr/mask/prot/port): (192.168.4.0/255.255.255.0/0/0)
  current_peer: 172.16.172.55:500
    PERMIT, flags={origin_is_acl,}
   #pkts encaps: 4, #pkts encrypt: 4, #pkts digest 4
   #pkts decaps: 4, #pkts decrypt: 4, #pkts verify 4
   #pkts compressed: 0, #pkts decompressed: 0
   #pkts not compressed: 0, #pkts compr. failed: 0, #pkts decompress failed: 0
   #send errors 1, #recv errors 0
    local crypto endpt.: 172.16.172.34, remote crypto endpt.: 172.16.172.55
    path mtu 1500, ipsec overhead 56, media mtu 1500
    current outbound spi: 734575cb
    inbound esp sas:
     spi: 0xe028850d(3760751885)
       transform: esp-des esp-md5-hmac ,
       in use settings ={Tunnel, }
       slot: 0, conn id: 1, crypto map: vpn
       sa timing: remaining key lifetime (k/sec): (4607999/28751)
       IV size: 8 bytes
       replay detection support: Y
   inbound ah sas:
    inbound pcp sas:
    outbound esp sas:
     spi: 0x734575cb(1933931979)
```

transform: esp-des esp-md5-hmac , in use settings ={Tunnel, } slot: 0, conn id: 2, crypto map: vpn sa timing: remaining key lifetime (k/sec): (4607999/28751) IV size: 8 bytes replay detection support: Y outbound ah sas:

Verwenden Sie Ping-Datenverkehr, um den Tunnel zu überprüfen. Diese auf dem PIX erfasste **Debugging-ICMP-Ablaufverfolgungsausgabe** veranschaulicht, wie die Pakete von NAT übersetzt werden.

```
P520-1(config)# debug icmp trace
ICMP trace on
Warning: this may cause problems on busy networks
P520-1(config)#
1: ICMP echo-request from inside:192.168.4.1 to 10.1.1.1 ID=3060 seq=4391 length=80
2: ICMP echo-request: translating inside:192.168.4.1 to outside:20.1.1.1
3: ICMP echo-request: untranslating inside:10.1.1.1 to outside:192.168.4.1
4: ICMP echo-reply from outside:192.168.4.1 to 20.1.1.1 ID=3060 seq=4391 length=80
5: ICMP echo-reply: translating outside:192.168.4.1 to inside:10.1.1.1
6: ICMP echo-reply: untranslating outside:20.1.1.1 to inside:192.168.4.1
7: ICMP echo-request from inside:192.168.4.1 to 10.1.1.1 ID=3061 seg=4391 length=80
8: ICMP echo-request: translating inside:192.168.4.1 to outside:20.1.1.1
9: ICMP echo-request: untranslating inside:10.1.1.1 to outside:192.168.4.1
10: ICMP echo-reply from outside:192.168.4.1 to 20.1.1.1 ID=3061 seq=4391 length=80
11: ICMP echo-reply: translating outside:192.168.4.1 to inside:10.1.1.1
12: ICMP echo-reply: untranslating outside:20.1.1.1 to inside:192.168.4.1
13: ICMP echo-request from inside:192.168.4.1 to 10.1.1.1 ID=3062 seq=4391 length=80
14: ICMP echo-request: translating inside:192.168.4.1 to outside:20.1.1.1
15: ICMP echo-request: untranslating inside:10.1.1.1 to outside:192.168.4.1
16: ICMP echo-reply from outside:192.168.4.1 to 20.1.1.1 ID=3062 seq=4391 length=80
17: ICMP echo-reply: translating outside:192.168.4.1 to inside:10.1.1.1
18: ICMP echo-reply: untranslating outside: 20.1.1.1 to inside: 192.168.4.1
19: ICMP echo-request from inside:192.168.4.1 to 10.1.1.1 ID=3063 seq=4391 length=80
20: ICMP echo-request: translating inside:192.168.4.1 to outside:20.1.1.1
21: ICMP echo-request: untranslating inside:10.1.1.1 to outside:192.168.4.1
22: ICMP echo-reply from outside:192.168.4.1 to 20.1.1.1 ID=3063 seq=4391 length=80
23: ICMP echo-reply: translating outside:192.168.4.1 to inside:10.1.1.1
24: ICMP echo-reply: untranslating outside: 20.1.1.1 to inside: 192.168.4.1
25: ICMP echo-request from inside:192.168.4.1 to 10.1.1.1 ID=3064 seq=4391 length=80
26: ICMP echo-request: translating inside:192.168.4.1 to outside:20.1.1.1
27: ICMP echo-request: untranslating inside:10.1.1.1 to outside:192.168.4.1
28: ICMP echo-reply from outside:192.168.4.1 to 20.1.1.1 ID=3064 seq=4391 length=80
29: ICMP echo-reply: translating outside:192.168.4.1 to inside:10.1.1.1
30: ICMP echo-reply: untranslating outside: 20.1.1.1 to inside: 192.168.4.1
P520-1(config)#
```

VPN-Konzentrator

Wählen Sie **Überwachung > Sitzungen > Detail** aus, um die Konfiguration des VPN 3000-Konzentrators zu überprüfen. Monitoring | Sessions | Detail

Back to Sessions

Connection Name	IP Address	Protocol	Encryption	Login Time	Duration	Bytes Tx	Bytes Rx
ToPDI	172.16.172.34	IPSec/LAN-to-LAN	DES-56	Jul 07 18:09:20	0:08:13	416	416

KE Sessions: 1 PSec Sessions: 1			
	IKE Se	ssion	
Session ID	1	Encryption Algorithm	DES-56
Hashing Algorithm	MD5	Diffie-Hellman Group	Group 1 (768-bit)
Authentication Mode	Pre-Shared Keys	IKE Negotiation Mode	Main
Rekey Time Interval	86400 seconds		
	IPSec S	ession	
Session ID	2	Remote Address	20.1.1.0/0.0.0.255
Local Address	192.168.4.0/0.0.0.255	Encryption Algorithm	DES-56
Hashing Algorithm	MD5	SEP	1
Encapsulation Mode	Tunnel	Rekey Time Interval	28800 seconds
Rekey Data Interval	4608000 KBytes		
Bytes Received	416	Bytes Transmitted	416

Fehlerbehebung

Dieser Abschnitt enthält Informationen zur Fehlerbehebung in Ihrer Konfiguration. Weitere Informationen zur Fehlerbehebung finden Sie in den folgenden Dokumenten:

- Beheben von Verbindungsproblemen beim VPN 300-Concentrator
- IP Security Troubleshooting Understanding and Using debug Commands
- <u>Fehlerbehebung beim PIX zur Weiterleitung des Datenverkehrs auf einem etablierten IPSec-</u> <u>Tunnel</u>

Befehle zur Fehlerbehebung

Bestimmte **show**-Befehle werden vom <u>Output Interpreter Tool</u> unterstützt (nur <u>registrierte</u> Kunden), mit dem Sie eine Analyse der **show**-Befehlsausgabe anzeigen können.

Hinweis: Bevor Sie Debugbefehle ausgeben, lesen Sie <u>Wichtige Informationen über Debug-</u> Befehle.

Diese Ausgabe veranschaulicht ein funktionierendes Debuggen der IKE-Aushandlung. Hier sind die Ausgaben der **Debug-Crypto isakmp** und **Debug crypto ipsec-**Befehle dargestellt.

P520-1(config)# ISAKMP (0): beginning Main Mode exchange crypto_isakmp_process_block:src:172.16.172.55, dest:172.16.172.34 spt:500 dpt:500 OAK MM exchange ISAKMP (0): processing SA payload. message ID = 0 ISAKMP (0): Checking ISAKMP transform 1 against priority 1 policy TSAKMP: encryption DES-CBC ISAKMP: hash MD5 default group 1 ISAKMP: auth pre-share ISAKMP: life type in seconds ISAKMP: life duration (VPI) of 0x0 0x1 0x51 0x80 ISAKMP: ISAKMP (0): atts are acceptable. Next payload is 0 ISAKMP (0): processing vendor id payload ISAKMP (0): SA is doing pre-shared key authentication using id type ID_IPV4_ADDR return status is IKMP_NO_ERROR crypto_isakmp_process_block:src:172.16.172.55, dest:172.16.172.34 spt:500 dpt:500 OAK_MM exchange ISAKMP (0): processing KE payload. message ID = 0 ISAKMP (0): processing NONCE payload. message ID = 0 ISAKMP (0): processing vendor id payload ISAKMP (0): processing vendor id payload ISAKMP (0): received xauth v6 vendor id ISAKMP (0): processing vendor id payload ISAKMP (0): speaking to another IOS box! ISAKMP (0): processing vendor id payload ISAKMP (0): speaking to a VPN3000 concentrator ISAKMP (0): ID payload next-payload : 8 type : 1 protocol : 17 : 500 port : 8 length ISAKMP (0): Total payload length: 12 return status is IKMP_NO_ERROR crypto_isakmp_process_block:src:172.16.172.55, dest:172.16.172.34 spt:500 dpt:500 OAK_MM exchange ISAKMP (0): processing ID payload. message ID = 0 ISAKMP (0): processing HASH payload. message ID = 0 ISAKMP (0): processing vendor id payload ISAKMP (0): remote peer supports dead peer detection ISAKMP (0): SA has been authenticated ISAKMP (0): beginning Quick Mode exchange, M-ID of -995061605:c4b0909bIPSEC (key_engine): got a gueue event... IPSEC(spi_response): getting spi 0xe028850d(3760751885) for SA from 172.16.172.55 to 172.16.172.34 for prot 3 return status is IKMP_NO_ERROR ISAKMP (0): sending INITIAL_CONTACT notify ISAKMP (0): sending NOTIFY message 24578 protocol 1 VPN Peer: ISAKMP: Added new peer: ip:172.16.172.55/500 Total VPN Peers:1 VPN Peer: ISAKMP: Peer ip:172.16.172.55/500 Ref cnt incremented to:1 Total VPN Peers:1 crypto_isakmp_process_block:src:172.16.172.55, dest:172.16.172.34 spt:500 dpt:500 OAK_QM exchange oakley_process_quick_mode: OAK_QM_IDLE ISAKMP (0): processing SA payload. message ID = 3299905691 ISAKMP : Checking IPSec proposal 1 ISAKMP: transform 1, ESP_DES

```
ISAKMP: attributes in transform:
ISAKMP:
          SA life type in seconds
ISAKMP:
          SA life duration (basic) of 28800
          SA life type in kilobytes
ISAKMP:
ISAKMP:
           SA life duration (VPI) of 0x0 0x46 0x50 0x0
TSAKMP:
           encaps is 1
ISAKMP:
            authenticator is HMAC-MD5
ISAKMP (0): atts are acceptable.IPSEC(validate_proposal_request): proposal part #1,
  (key eng. msg.) dest= 172.16.172.55, src= 172.16.172.34,
   dest_proxy= 192.168.4.0/255.255.255.0/0/0 (type=4),
   src_proxy= 20.1.1.0/255.255.255.0/0/0 (type=4),
   protocol= ESP, transform= esp-des esp-md5-hmac ,
   lifedur= 0s and 0kb,
    spi= 0x0(0), conn_id= 0, keysize= 0, flags= 0x4
ISAKMP (0): processing NONCE payload. message ID = 3299905691
ISAKMP (0): processing ID payload. message ID = 3299905691
ISAKMP (0): processing ID payload. message ID = 3299905691
ISAKMP (0): Creating IPSec SAs
       inbound SA from 172.16.172.55 to
                                           172.16.172.34
        (proxy 192.168.4.0 to 20.1.1.0)
       has spi 3760751885 and conn_id 1 and flags 4
       lifetime of 28800 seconds
       lifetime of 4608000 kilobytes
       outbound SA from 172.16.172.34 to 172.16.172.55
       (proxy 20.1.1.0 to 192.168.4.0)
       has spi 1933931979 and conn_id 2 and flags 4
       lifetime of 28800 seconds
       lifetime of 4608000 kilobytesIPSEC(key_engine): got a queue event...
IPSEC(initialize_sas): ,
  (key eng. msg.) dest= 172.16.172.34, src= 172.16.172.55,
   dest_proxy= 20.1.1.0/255.255.255.0/0/0 (type=4),
   src_proxy= 192.168.4.0/255.255.255.0/0/0 (type=4),
   protocol= ESP, transform= esp-des esp-md5-hmac ,
   lifedur= 28800s and 4608000kb,
    spi= 0xe028850d(3760751885), conn_id= 1, keysize= 0, flags= 0x4
IPSEC(initialize_sas): ,
  (key eng. msg.) src= 172.16.172.34, dest= 172.16.172.55,
    src_proxy= 20.1.1.0/255.255.255.0/0/0 (type=4),
   dest_proxy= 192.168.4.0/255.255.255.0/0/0 (type=4),
   protocol= ESP, transform= esp-des esp-md5-hmac ,
   lifedur= 28800s and 4608000kb,
    spi= 0x734575cb(1933931979), conn_id= 2, keysize= 0, flags= 0x4
VPN Peer: IPSEC: Peer ip:172.16.172.55/500 Ref cnt incremented to:2 Total VPN Peers:1
VPN Peer: IPSEC: Peer ip:172.16.172.55/500 Ref cnt incremented to:3 Total VPN Peers:1
return status is IKMP_NO_ERROR
P520-1(config)#
P520-1(config)#
crypto_isakmp_process_block:src:172.16.172.55, dest:172.16.172.34 spt:500 dpt:500
ISAKMP (0): processing NOTIFY payload 36136 protocol 1
       spi 0, message ID = 1690390088
ISAMKP (0): received DPD_R_U_THERE from peer 172.16.172.55
ISAKMP (0): sending NOTIFY message 36137 protocol 1
return status is IKMP_NO_ERR_NO_TRANS
P520-1(config)#
```

Zugehörige Informationen

- Support-Seiten für Sicherheits- und VPN-Produkte
- <u>Support-Seiten f
 ür Security- und VPN-Technologie</u>
- IPSec-Support-Seite

<u>Technischer Support - Cisco Systems</u>