Konfigurieren eines Cisco 827 für PPPoE mit VPN IPSec NAT-Überladung

Inhalt

Einführung Bevor Sie beginnen Konventionen Voraussetzungen Verwendete Komponenten Konfigurieren Netzwerkdiagramm Konfigurationen Überprüfen Fehlerbehebung Befehle zur Fehlerbehebung Zugehörige Informationen

Einführung

Der Cisco 827 Router ist in der Regel ein DSL-Gerät am Kundenstandort (CPE). In dieser Beispielkonfiguration wird der Cisco 827 für Point-to-Point Protocol over Ethernet (PPPoE) konfiguriert und als Peer in einem LAN-to-LAN IPSec-Tunnel mit einem Cisco 3600-Router verwendet. Der Cisco 827 überlastet außerdem Network Address Translation (NAT), um eine Internetverbindung für sein internes Netzwerk bereitzustellen.

Bevor Sie beginnen

Konventionen

Weitere Informationen zu Dokumentkonventionen finden Sie in den <u>Cisco Technical Tips</u> <u>Conventions</u>.

Voraussetzungen

Beachten Sie bei der Konfiguration Folgendes.

- Stellen Sie sicher, dass PPPoE funktioniert, bevor Sie eine Konfiguration f
 ür IPSec VPN in Cisco 827 hinzuf
 ügen. Um den PPPoE-Client auf dem Cisco 827 zu debuggen, m
 üssen Sie den Protokoll-Stack ber
 ücksichtigen. Sie sollten die Fehlerbehebung in der folgenden Reihenfolge durchf
 ühren.Physischer DSL-LayerATM-SchichtEthernet-LayerPPP-Ebene
- In dieser Beispielkonfiguration hat der Cisco 827 eine statische IP-Adresse. Wenn Ihr Cisco

827 über eine dynamische IP-Adresse verfügt, finden Sie in diesem Dokument weitere Informationen <u>unter Konfigurieren von Dynamic-to-Static IPSec mit NAT</u>.

Verwendete Komponenten

Die Informationen in diesem Dokument basieren auf den unten stehenden Software- und Hardwareversionen.

- Cisco 827 12.1(5)YB4
- Cisco 3600 12.1(5)T8
- Cisco 6400 12.1(1)DC1

Die in diesem Dokument enthaltenen Informationen wurden aus Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Sie in einem Live-Netzwerk arbeiten, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen, bevor Sie es verwenden.

Konfigurieren

In diesem Abschnitt erhalten Sie Informationen zum Konfigurieren der in diesem Dokument beschriebenen Funktionen.

Netzwerkdiagramm

In diesem Dokument wird die im Diagramm unten dargestellte Netzwerkeinrichtung verwendet.

Router to Router IPSec VPN Tunnel

Konfigurationen

In diesem Dokument werden die unten angegebenen Konfigurationen verwendet.

- <u>Cisco 827 (CPE)</u>
- Routerleuchte

Hinweis: Um weitere Informationen zu den in diesem Dokument verwendeten Befehlen zu erhalten, verwenden Sie das <u>Command Lookup Tool</u> (<u>nur registrierte</u> Kunden).

Cisco 827 (CPE)

```
version 12.1
no service single-slot-reload-enable
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
hostname 827
1
logging rate-limit console 10 except errors
ip subnet-zero
no ip finger
1
no ip dhcp-client network-discovery
vpdn enable
no vpdn logging
1
vpdn-group pppoe
request-dialin
 protocol pppoe
!
!
1
crypto isakmp policy 20
 encr 3des
 authentication pre-share
group 2
crypto isakmp key sharedkey address 30.30.30.30
!
1
crypto ipsec transform-set dsltest esp-3des esp-md5-hmac
1
crypto map test 10 ipsec-isakmp
set peer 30.30.30.30
 set transform-set dsltest
match address 101
1
interface Ethernet0
 ip address 192.168.100.100 255.255.255.0
 ip nat inside
1
interface ATM0
no ip address
no atm ilmi-keepalive
bundle-enable
dsl operating-mode ansi-dmt
!
interface ATM0.1 point-to-point
pvc 0/33
!--- This is usually provided by the ISP. protocol pppoe
pppoe-client dial-pool-number 1 ! ! interface Dialer1 ip
address 20.20.20.20 255.255.255.0 !--- This is provided
by the ISP. !--- Another variation is ip address
negotiated.
 ip mtu 1492
 ip Nat outside
 encapsulation ppp
 no ip route-cache
 no ip mroute-cache
```

```
dialer pool 1
ppp authentication chap callin
ppp chap hostname testuser
ppp chap password 7 00071A1507545A545C
crypto map test
!
ip classless
ip route 0.0.0.0 0.0.0.0 Dialer1
no ip http server
ip Nat inside source route-map nonat interface Dialer1
overload
access-list 1 permit 192.168.100.0 0.0.0.255
access-list 101 permit ip 192.168.100.0 0.0.0.255
192.168.200.0 0.0.0.255
access-list 105 deny
                       ip 192.168.100.0 0.0.0.255
192.168.200.0 0.0.0.255
access-list 105 permit ip 192.168.100.0 0.0.0.255 any
1
route-map nonat permit 10
match ip address 105
!
line con 0
transport input none
stopbits 1
line vty 0 4
login
!
scheduler max-task-time 5000
end
Routerleuchte
version 12.1
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
1
hostname light
boot system flash:c3660-jk2s-mz.121-5.T8.bin
logging buffered 4096 debugging
logging rate-limit console 10 except errors
1
ip subnet-zero
!
no ip finger
1
ip cef
1
crypto isakmp policy 20
encr 3des
authentication pre-share
group 2
crypto isakmp key sharedkey address 20.20.20.20
crypto ipsec transform-set dsltest esp-3des esp-md5-hmac
crypto map test 10 ipsec-isakmp
set peer 20.20.20.20
set transform-set dsltest
```

```
match address 101
1
call rsvp-sync
cns event-service server
!
!
!
controller E1 2/0
!
!
interface FastEthernet0/0
ip address 192.168.200.200 255.255.255.0
ip Nat inside
duplex auto
speed auto
interface FastEthernet0/1
 ip address 30.30.30.30 255.255.255.0
 ip Nat outside
duplex auto
speed auto
crypto map test
interface Serial1/0
no ip address
shutdown
1
interface Serial1/1
no ip address
shutdown
interface Serial1/2
no ip address
shutdown
1
interface Serial1/3
no ip address
shutdown
!
interface BRI4/0
no ip address
shutdown
1
interface BRI4/1
no ip address
shutdown
!
interface BRI4/2
no ip address
shutdown
!
interface BRI4/3
no ip address
shutdown
1
ip kerberos source-interface any
ip Nat inside source route-map nonat interface
FastEthernet0/1 overload
ip classless
ip route 0.0.0.0 0.0.0.0 30.30.30.1
ip http server
!
access-list 101 permit ip 192.168.200.0 0.0.0.255
192.168.100.0 0.0.0.255
```

```
access-list 105 deny
                       ip 192.168.200.0 0.0.0.255
192.168.100.0 0.0.0.255
access-list 105 permit ip 192.168.200.0 0.0.0.255 any
1
route-map nonat permit 10
match ip address 105
!
!
dial-peer cor custom
!
!
line con 0
exec-timeout 0 0
transport input none
line 97 108
line aux 0
line vty 0 4
login
!
end
```

<u>Überprüfen</u>

Dieser Abschnitt enthält Informationen, mit denen Sie überprüfen können, ob Ihre Konfiguration ordnungsgemäß funktioniert.

Bestimmte **show**-Befehle werden vom <u>Output Interpreter Tool</u> unterstützt (nur <u>registrierte</u> Kunden), mit dem Sie eine Analyse der **show**-Befehlsausgabe anzeigen können.

Hinweis: Um genau zu verstehen, was die folgenden **Befehle** anzeigen, finden Sie weitere Informationen unter <u>IP Security Troubleshooting - Understanding and Using Debug Commands</u>.

- **show crypto isakmp sa** Zeigt die ISAKMP-Sicherheitszuordnung (Internet Security Association Management Protocol) zwischen Peers.
- show crypto ipsec sa Zeigt die zwischen Peers erstellte IPSec SA.
- show crypto engine connections active Zeigt jede erstellte Phase 2 SA und die Menge des gesendeten Datenverkehrs an.

Router IPSec Good show Command

- show crypto isakmp saCisco 827 (CPE)Routerleuchte
- Zeigen Sie Crypto Engine-Verbindungen aktiv an. Cisco 827 (CPE) Routerleuchte
- show crypto ipsec sa

```
827#show crypto ipsec sa
interface: Dialer1
Crypto map tag: test, local addr. 20.20.20.20
local ident (addr/mask/prot/port): (192.168.100.0/255.255.255.0/0/0)
remote ident (addr/mask/prot/port): (192.168.200.0/255.255.255.0/0/0)
current_peer: 30.30.30.30
PERMIT, flags={origin_is_acl,}
#pkts encaps: 208, #pkts encrypt: 208, #pkts digest 208
#pkts decaps: 208, #pkts decrypt: 208, #pkts verify 208
```

#pkts compressed: 0, #pkts decompressed: 0 #pkts not compressed: 0, #pkts compr. failed: 0, #pkts decompress failed: 0 #send errors 2, #recv errors 0 local crypto endpt.: 20.20.20.20, remote crypto endpt.: 30.30.30.30 path mtu 1500, media mtu 1500 current outbound spi: 4FE59EF2 inbound esp sas: spi: 0x3491ACD6(881962198) transform: esp-3des esp-md5-hmac , in use settings ={Tunnel, } slot: 0, conn id: 2000, flow_id: 1, crypto map: test sa timing: remaining key lifetime (k/sec): (4607840/3301) IV size: 8 bytes replay detection support: Y inbound ah sas: inbound pcp sas: outbound esp sas: spi: 0x4FE59EF2(1340448498) transform: esp-3des esp-md5-hmac , in use settings ={Tunnel, } slot: 0, conn id: 2001, flow_id: 2, crypto map: test sa timing: remaining key lifetime (k/sec): (4607837/3301) IV size: 8 bytes replay detection support: Y outbound ah sas: outbound pcp sas: interface: Virtual-Access1 Crypto map tag: test, local addr. 20.20.20.20 local ident (addr/mask/prot/port): (192.168.100.0/255.255.255.0/0/0) remote ident (addr/mask/prot/port): (192.168.200.0/255.255.255.0/0/0) current_peer: 30.30.30.30 PERMIT, flags={origin_is_acl,} #pkts encaps: 208, #pkts encrypt: 208, #pkts digest 208 #pkts decaps: 208, #pkts decrypt: 208, #pkts verify 208 #pkts compressed: 0, #pkts decompressed: 0 #pkts not compressed: 0, #pkts compr. failed: 0, #pkts decompress failed: 0 #send errors 2, #recv errors 0 local crypto endpt.: 20.20.20.20, remote crypto endpt.: 30.30.30.30 path mtu 1500, media mtu 1500 current outbound spi: 4FE59EF2 inbound esp sas: spi: 0x3491ACD6(881962198) transform: esp-3des esp-md5-hmac , in use settings ={Tunnel, } slot: 0, conn id: 2000, flow_id: 1, crypto map: test sa timing: remaining key lifetime (k/sec): (4607840/3301) IV size: 8 bytes replay detection support: Y inbound ah sas: inbound pcp sas:

```
outbound esp sas:
spi: 0x4FE59EF2(1340448498)
transform: esp-3des esp-md5-hmac ,
in use settings ={Tunnel, }
slot: 0, conn id: 2001, flow_id: 2, crypto map: test
sa timing: remaining key lifetime (k/sec): (4607837/3301)
IV size: 8 bytes
replay detection support: Y
```

outbound ah sas:

outbound pcp sas:

Fehlerbehebung

Dieser Abschnitt enthält Informationen zur Fehlerbehebung in Ihrer Konfiguration.

Befehle zur Fehlerbehebung

Hinweis: Bevor Sie Debug-Befehle ausgeben, finden Sie wichtige Informationen über Debug-Befehle und IP-Sicherheitsfehlerbehebung - Verständnis und Verwenden von Debug-Befehlen.

- debug crypto ipsec- Zeigt die IPSec-Verhandlungen von Phase 2.
- debug crypto isakmp Zeigt die ISAKMP-Verhandlungen für Phase 1.
- debug crypto engine Zeigt den verschlüsselten Datenverkehr an.
- ping Zeigt die Verbindung durch den VPN-Tunnel an und kann zusammen mit **Debug-** und **Show-**Befehlen verwendet werden.

```
827#ping
Protocol [ip]:
Target IP address: 192.168.200.200
Repeat count [5]: 100
Datagram size [100]: 1600
Timeout in seconds [2]:
Extended commands [n]: y
Source address or interface: 192.168.100.100
Type of service [0]:
Set DF bit in IP header? [no]:
Validate reply data? [no]:
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]:
Sweep range of sizes [n]:
Type escape sequence to abort.
Sending 100, 1600-byte ICMP Echos to 192.168.200.200, timeout is 2 seconds:
.........
Success rate is 100 percent (100/100), round-trip min/avg/max = 264/266/276 ms
```

Zugehörige Informationen

- IPSec-Support-Seiten
- <u>Support-Seiten f
 ür IP-Routing</u>
- Eine Einführung in die IPSec-Verschlüsselung
- Fehlerbehebung beim Cisco 827 Router
- <u>Technischer Support Cisco Systems</u>