Router an Router Verschlüsselung von DLSw-Datenverkehr

Inhalt

Einführung Voraussetzungen Anforderungen Verwendete Komponenten Konventionen Konfigurieren Netzwerkdiagramm Konfigurationen Überprüfen Fehlerbehebung Befehle debuggen und anzeigen Zugehörige Informationen

Einführung

In der Beispielkonfiguration in diesem Dokument sind zwei Router mit Data-Link Switching (DLSw)-Peers zwischen ihren Loopback-Schnittstellen eingerichtet. Der gesamte DLSw-Datenverkehr wird zwischen ihnen verschlüsselt. Diese Konfiguration funktioniert für jeden vom Router selbst generierten Datenverkehr.

In dieser Konfiguration ist die Crypto-Zugriffsliste allgemein gehalten. Der Benutzer kann spezifischer sein und DLSw-Datenverkehr zwischen den beiden Loopback-Adressen zulassen. Im Allgemeinen wird nur DLSw-Datenverkehr von der Loopback-Schnittstelle an die Loopback-Schnittstelle übertragen.

Voraussetzungen

Anforderungen

Für dieses Dokument bestehen keine speziellen Anforderungen.

Verwendete Komponenten

Diese Konfiguration wurde mit den folgenden Software- und Hardwareversionen entwickelt und getestet:

• Cisco IOS® Softwareversion 12.0. Diese Konfiguration wurde mit 12,28T getestet.

- Cisco 2500-is56i-l.120-7.T
- Cisco 2513

Die Informationen in diesem Dokument wurden von den Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen.

Konventionen

Weitere Informationen zu Dokumentkonventionen finden Sie unter <u>Cisco Technical Tips</u> <u>Conventions</u> (Technische Tipps zu Konventionen von Cisco).

Konfigurieren

In diesem Abschnitt erhalten Sie Informationen zum Konfigurieren der in diesem Dokument beschriebenen Funktionen.

Hinweis: Verwenden Sie das <u>Command Lookup Tool</u> (nur <u>registrierte</u> Kunden), um weitere Informationen zu den in diesem Dokument verwendeten Befehlen zu erhalten.

Netzwerkdiagramm

In diesem Dokument wird die folgende Netzwerkeinrichtung verwendet:

Konfigurationen

In diesem Dokument werden folgende Konfigurationen verwendet:

- Router A
- Router B

Router A

```
Current configuration:

!

version 12.0

service timestamps debug uptime

service timestamps log uptime

no service password-encryption

!

hostname RouterA

!

enable secret 5 $1$7WP3$aEqtNjvRJ9Vy6i41x0RJf0

enable password ww

!

ip subnet-zero

!

cns event-service server
```

```
source-bridge ring-group 20
dlsw local-peer peer-id 1.1.1.1
dlsw remote-peer 0 tcp 2.2.2.2
crypto isakmp policy 1
 hash md5
 authentication pre-share
crypto isakmp key cisco123 address 99.99.99.2
1
crypto ipsec transform-set dlswset esp-des esp-md5-hmac
crypto map dlswstuff 10 ipsec-isakmp
 set peer 99.99.99.2
 set transform-set dlswset
 match address 101
1
 I
interface Loopback0
 ip address 1.1.1.1 255.255.255.0
 no ip directed-broadcast
 !
interface TokenRing0
 ip address 10.2.2.3 255.255.255.0
 ring-speed 16
 source-bridge 2 3 20
 source-bridge spanning
 no ip directed-broadcast
 no mop enabled
 !
interface Serial0
 ip address 99.99.99.1 255.255.255.0
 no ip directed-broadcast
 crypto map dlswstuff
 Т
ip classless
ip route 0.0.0.0 0.0.0.0 99.99.99.2
no ip http server
1
access-list 101 permit ip host 1.1.1.1 host 2.2.2.2
!
line con 0
 transport input none
line aux 0
line vty 0 4
 password ww
 login
!
end
Router B
Current configuration:
1
version 12.0
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
 !
hostname RouterB
 enable secret 5 $1$7WP3$aEqtNjvRJ9Vy6i41x0RJf0
enable password ww
```

```
ip subnet-zero
1
cns event-service server
source-bridge ring-group 10
dlsw local-peer peer-id 2.2.2.2
dlsw remote-peer 0 tcp 1.1.1.1
1
crypto isakmp policy 1
 hash md5
 authentication pre-share
crypto isakmp key cisco123 address 99.99.99.1
!
crypto ipsec transform-set dlswset esp-des esp-md5-hmac
1
crypto map dlswstuff 10 ipsec-isakmp
 set peer 99.99.99.1
 set transform-set dlswset
 match address 101
1
!
interface Loopback0
 ip address 2.2.2.2 255.255.255.0
 no ip directed-broadcast
!
interface TokenRing0
 ip address 10.1.1.3 255.255.255.0
 ring-speed 16
 source-bridge 2 3 10
 source-bridge spanning
 no ip directed-broadcast
 no mop enabled
interface Serial0
 ip address 99.99.99.2 255.255.255.0
 no ip directed-broadcast
 crypto map dlswstuff
!
ip classless
ip route 0.0.0.0 0.0.0.0 99.99.99.1
no ip http server
!
access-list 101 permit ip host 2.2.2.2 host 1.1.1.1
1
line con 0
 transport input none
line aux 0
line vty 0 4
password ww
 login
1
end
```

<u>Überprüfen</u>

Für diese Konfiguration ist derzeit kein Überprüfungsverfahren verfügbar.

Fehlerbehebung

In diesem Abschnitt finden Sie eine Fehlerbehebung für Ihre Konfiguration.

Befehle debuggen und anzeigen

Das <u>Output Interpreter Tool</u> (nur <u>registrierte</u> Kunden) (OIT) unterstützt bestimmte **show**-Befehle. Verwenden Sie das OIT, um eine Analyse der **Ausgabe des** Befehls **show anzuzeigen**.

Hinweis: Beachten Sie <u>vor der</u> Verwendung von **Debug-**Befehlen die <u>Informationen</u> zu <u>Debug-</u><u>Befehlen</u>.

- debug crypto ipsec Dieser Befehl zeigt die IP Security Protocol (IPSec)-Aushandlungen von Phase 2 an.
- debug crypto isakmp Dieser Befehl zeigt die ISAKMP-Verhandlungen (Internet Security Association and Key Management Protocol) von Phase 1 an.
- debug crypto engine Dieser Befehl zeigt den verschlüsselten Datenverkehr an.
- show crypto ipsec sa Zeigt die Sicherheitszuordnungen für Phase 2 an.
- show crypto isakmp sa Dieser Befehl zeigt die Sicherheitszuordnungen für Phase 1 an.
- show dlsw peer Dieser Befehl zeigt den DLSw-Peer-Status und den Verbindungsstatus an.

Zugehörige Informationen

- IPSec-Support-Seite
- DLSW-Support-Seite
- <u>Technischer Support und Dokumentation Cisco Systems</u>