Fehlerbehebung bei NTP-Problemen (Network Time Protocol) in vEdge

Inhalt

Einleitung Voraussetzungen Anforderungen Verwendete Komponenten Beispiele für NTP-Probleme **NTP-Befehle** anzeigen NTP-Zuordnungen anzeigen **NTP-Peer** anzeigen Fehlerbehebung bei NTP mit vManager und Paketerfassungstools Überprüfen des Ausgangs mit "Flow simulieren" auf vManage TCPDump von vEdge sammeln Durchführung von Wireshark Capture über vManage Häufige NTP-Probleme NTP-Pakete nicht empfangen Synchron-Verlust Die Geräteuhr wurde manuell eingestellt. Referenzen und zugehörige Informationen

Einleitung

In diesem Dokument wird die Fehlerbehebung bei NTP-Problemen (Network Time Protocol) mit **show ntp-**Befehlen und Paketerfassungstools auf vEdge-Plattformen beschrieben..

Voraussetzungen

Anforderungen

Es gibt keine spezifischen Anforderungen für dieses Dokument.

Verwendete Komponenten

Dieses Dokument ist nicht auf bestimmte Softwareversionen oder vEdge-Modelle beschränkt.

Die Informationen in diesem Dokument beziehen sich auf Geräte in einer speziell eingerichteten Testumgebung. Alle Geräte, die in diesem Dokument benutzt wurden, begannen mit einer gelöschten (Nichterfüllungs) Konfiguration. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die möglichen Auswirkungen aller Befehle kennen.

Beispiele für NTP-Probleme

Der Verlust der NTP-Synchronisierung mit einem vEdge kann auf verschiedene Weise auftreten, z. B.:

• Falsche Uhrzeit in Anzeige der Taktausgabe auf dem Gerät.

- Zertifikate werden aufgrund einer falschen Zeit außerhalb des Gültigkeitsbereichs als ungültig angesehen.
- Falsche Zeitstempel in Protokollen.

NTP-Befehle anzeigen

Um mit der Isolierung von NTP-Problemen zu beginnen, müssen Sie die Verwendung und Ausgabe von zwei Hauptbefehlen verstehen:

- NTP-Zuordnungen anzeigen
- NTP-Peer anzeigen

Weitere Einzelheiten zu bestimmten Befehlen finden Sie in der SD-WAN-Befehlsreferenz.

NTP-Zuordnungen anzeigen

vedge1# show ntp associations

IDX	ASSOCID	STATUS	CONF	REACHABILITY	AUTH	CONDITION	LAST EVENT	COUNT
1	56368	8011	yes	no	none	reject	mobilize	1
2	56369	911a	yes	yes	none	falsetick	sys_peer	1
3	56370	9124	yes	yes	none	falsetick	reachable	2

IDX	lokale Indexnummer
ASSOCID	Zuordnungs-ID
STATUS	Peer-Statuswort (im Hexadezimalformat)
KONF	Konfiguration (persistent oder ephemer)
ERREICHBARKEIT	Erreichbarkeit (ja oder nein)
AUTH	Authentifizierung (OK, Ja, Schlecht oder Keine)
BEDINGUNG	Auswahlstatus
VERANSTALTUNG	Letzte Veranstaltung für diesen Peer
ANZAHL	Ereigniszählung

NTP-Peer anzeigen

vedge1# show ntp peer | tab

INDEX	REMOTE	REFID	ST	TYPE	WHEN	POLL	REACH	DELAY	OFFSET	JITTER
1	192.168.18.201	.STEP.	16	u	37	1024	0	0.000	0.000	0.000
2	x10.88.244.1	LOCAL(1)	2	u	7	64	377	108.481	140.642	20.278
3	x172.18.108.15	.GPS.	1	u	66	64	377	130.407	-24883.	55.334

INDEX	lokale Indexnummer
ENTFERNT	NTP-Serveradresse

Schicht Das NTP nutzt das Schichtenkonzept, um zu beschreiben, wie weit (in NTP-Hops) ein Rechner von einer maßgeblichen Zeitquelle entfernt ist. Beispielsweise ist ein Schicht-1-Zeitserver drust. Beispielsweise ist ein Schicht-1-Zeitserver drust. bis Schicht 16. Ein Computer zu dasführt, wählt automatisch den Computer mit der niedrigsten Schicht-Nummer aus, mit dem er kommunizieren kann, und verwendet NTP als Zeitquelle. TYP typ WANN Die Zeit seit dem Empfang des letzten NTP-Pakets von einem Peer wird in Sekunden gemeldet. Dieser Wert muss kleiner als das Abfrageintervall sein. UMFRAGE Abfrageintervall (Sekunden) Reichweite, wie durch Oktalwert auf Basis der letzten 8 Verbindungen angegeben 377 (1 1 1 1 1 1 1) - Die letzten 8 waren alle OK REICHWEITE Die Round-Trip-Verzögerung zum Peer wird in Millisekunden gemeldet. Um den Takt genauer einzustellen, wird diese Verzögerung bei der Einstellung der Taktzeit berücksichtigt. VERZÖGERUNG Die Round-Trip-Verzögerung zum Peer wird in Millisekunden gemeldet. Um den Takt genauer einzustellen, wird diese Verzögerung bei der Einstellung der Taktzeit berücksichtigt.	NEU	Aktuelle Quelle der Synchronisierung durch den Peer
TYP typ WANN Die Zeit seit dem Empfang des letzten NTP-Pakets von einem Peer wird in Sekunden gemeldet. Dieser Wert muss kleiner als das Abfrageintervall sein. UMFRAGE Abfrageintervall (Sekunden) Reichweite, wie durch Oktalwert auf Basis der letzten 8 Verbindungen angegeben 377 (1 1 1 1 1 1 1) - Die letzten 8 waren alle OK REICHWEITE 376 (1 1 1 1 1 1 1) - Die letzten 6 waren alle OK 376 (1 1 1 1 1 1 1) - Letzte fehlerhafte Verbindur UMFRAGE Die Round-Trip-Verzögerung zum Peer wird in Millisekunden gemeldet. Um den Takt genauer einzustellen, wird diese Verzögerung bei der Einstellung der Taktzeit berücksichtigt. Offset (in Millisekunden) Offset (in Millisekunden)	ST	Schicht Das NTP nutzt das Schichtenkonzept, um zu beschreiben, wie weit (in NTP-Hops) ein Rechner von einer maßgeblichen Zeitquelle entfernt ist. Beispielsweise ist ein Schicht-1-Zeitserver direkt mit einer Funk- oder Atomuhr verbunden. Es sendet seine Zeit über NTP an einen Schicht-2-Zeitserver usw. bis Schicht 16. Ein Computer, der NTP ausführt, wählt automatisch den Computer mit der niedrigsten Schicht-Nummer aus, mit dem er kommunizieren kann, und verwendet NTP als Zeitquelle.
WANN Die Zeit seit dem Empfang des letzten NTP-Pakets von einem Peer wird in Sekunden gemeldet. Dieser Wert muss kleiner als das Abfrageintervall sein. UMFRAGE Abfrageintervall (Sekunden) Reichweite, wie durch Oktalwert auf Basis der letzten 8 Verbindungen angegeben 377 (1 1 1 1 1 1 1) - Die letzten 8 waren alle OK REICHWEITE 376 (1 1 1 1 1 1 1) - Die letzte fehlerhafte Verbindur 177 (0 1 1 1 1 1 1) - Älteste Verbindung war schlecht, alle seit gut und so weiter VERZÖGERUNG Die Round-Trip-Verzögerung zum Peer wird in Millisekunden gemeldet. Um den Takt genauer einzustellen, wird diese Verzögerung bei der Einstellung der Taktzeit berücksichtigt. Offset (in Millisekunden) Offset ist die Zeitdifferenz zwischen den Peers ode zwischen dem primären und dem Client. Dieser	ТҮР	typ
UMFRAGE Abfrageintervall (Sekunden) Reichweite, wie durch Oktalwert auf Basis der letzten 8 Verbindungen angegeben 377 (1 1 1 1 1 1 1) - Die letzten 8 waren alle OK 377 (1 1 1 1 1 1 1) - Die letzten 8 waren alle OK 376 (1 1 1 1 1 1 1 0) - Letzte fehlerhafte Verbindur 177 (0 1 1 1 1 1 1) - Älteste Verbindung war schlecht, alle seit gut und so weiter VERZÖGERUNG Die Round-Trip-Verzögerung zum Peer wird in Millisekunden gemeldet. Um den Takt genauer einzustellen, wird diese Verzögerung bei der Einstellung der Taktzeit berücksichtigt. Offset (in Millisekunden) Offset (in Millisekunden) Offset ist die Zeitdifferenz zwischen den Peers ode zwischen dem primären und dem Client. Dieser	WANN	Die Zeit seit dem Empfang des letzten NTP-Pakets von einem Peer wird in Sekunden gemeldet. Dieser Wert muss kleiner als das Abfrageintervall sein.
Reichweite, wie durch Oktalwert auf Basis der letzten 8 Verbindungen angegeben 377 (1 1 1 1 1 1 1) - Die letzten 8 waren alle OK 376 (1 1 1 1 1 1 1) - Die letzten 8 waren alle OK 376 (1 1 1 1 1 1 1) - Letzte fehlerhafte Verbindur 177 (0 1 1 1 1 1 1) - Älteste Verbindung war schlecht, alle seit gut und so weiter VERZÖGERUNG Die Round-Trip-Verzögerung zum Peer wird in Millisekunden gemeldet. Um den Takt genauer einzustellen, wird diese Verzögerung bei der Einstellung der Taktzeit berücksichtigt. Offset (in Millisekunden) Offset (in Millisekunden) Offset ist die Zeitdifferenz zwischen den Peers ode zwischen dem primären und dem Client. Dieser	UMFRAGE	Abfrageintervall (Sekunden)
VERZÖGERUNG Die Round-Trip-Verzögerung zum Peer wird in Millisekunden gemeldet. Um den Takt genauer einzustellen, wird diese Verzögerung bei der Einstellung der Taktzeit berücksichtigt. Offset (in Millisekunden) Offset ist die Zeitdifferenz zwischen den Peers oder zwischen dem primären und dem Client. Dieser	REICHWEITE	Reichweite, wie durch Oktalwert auf Basis der letzten 8 Verbindungen angegeben 377 (1 1 1 1 1 1 1) - Die letzten 8 waren alle OK 376 (1 1 1 1 1 1 1 0) - Letzte fehlerhafte Verbindung 177 (0 1 1 1 1 1 1) - Älteste Verbindung war schlecht, alle seit gut und so weiter
Offset (in Millisekunden) Offset ist die Zeitdifferenz zwischen den Peers oder zwischen dem primären und dem Client. Dieser	VERZÖGERUNG	Die Round-Trip-Verzögerung zum Peer wird in Millisekunden gemeldet. Um den Takt genauer einzustellen, wird diese Verzögerung bei der Einstellung der Taktzeit berücksichtigt.
OFFSET Wert ist die Korrektur, die auf eine Client-Uhr angewendet wird, um diese zu synchronisieren. Ein positiver Wert zeigt an, dass die Serveruhr höher is Ein negativer Wert zeigt an, dass die Client-Uhr höher ist. UTTER Litter (in Millisekunden)	OFFSET	Offset (in Millisekunden) Offset ist die Zeitdifferenz zwischen den Peers oder zwischen dem primären und dem Client. Dieser Wert ist die Korrektur, die auf eine Client-Uhr angewendet wird, um diese zu synchronisieren. Ein positiver Wert zeigt an, dass die Serveruhr höher ist. Ein negativer Wert zeigt an, dass die Client-Uhr höher ist.

Fehlerbehebung bei NTP mit vManager und Paketerfassungstools

Überprüfen des Ausgangs mit "Flow simulieren" auf vManage

- 1. Wählen Sie das Dashboard für Netzwerkgeräte über Monitor > Network aus.
- 2. Wählen Sie den gewünschten vEdge aus.
- 3. Klicken Sie auf die Option Fehlerbehebung, gefolgt von Flusssimulation.
- 4. Geben Sie das Quell-VPN und die Schnittstelle aus den Dropdown-Menüs an, legen Sie die Ziel-IP fest, und legen Sie die Anwendung als NTP fest.
- 5. Klicken Sie auf Simulieren.

Dadurch wird das erwartete Weiterleitungsverhalten für NTP-Datenverkehr vom vEdge angezeigt.

TCPDump von vEdge sammeln

Wenn NTP-Datenverkehr die Kontrollebene von vEdge passiert, kann er über TCP-Dump erfasst werden. Bei der Übereinstimmungsbedingung muss der Standard-UDP-Port 123 verwendet werden, um speziell nach NTP-Datenverkehr zu filtern.

tcpdump vpn 0 options "dst port 123"

```
vedge1# tcpdump interface ge0/0 options "dst port 123"
tcpdump -p -i ge0_0 -s 128 dst port 123 in VPN 0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on ge0_0, link-type EN10MB (Ethernet), capture size 128 bytes
19:05:44.364567 IP 192.168.19.55.ntp > 10.88.244.1.ntp: NTPv4, Client, length 48
19:05:44.454385 IP 10.88.244.1.ntp > 192.168.19.55.ntp: NTPv4, Server, length 48
19:05:45.364579 IP 192.168.19.55.ntp > 172.18.108.15.ntp: NTPv4, Client, length 48
19:06:52.364470 IP 192.168.19.55.ntp > 10.88.244.1.ntp: NTPv4, Server, length 48
19:06:52.549536 IP 10.88.244.1.ntp > 192.168.19.55.ntp: NTPv4, Client, length 48
19:06:52.364470 IP 192.168.19.55.ntp > 10.88.244.1.ntp: NTPv4, Client, length 48
19:06:52.549536 IP 10.88.244.1.ntp > 192.168.19.55.ntp: NTPv4, Server, length 48
19:06:54.364486 IP 192.168.19.55.ntp > 172.18.108.15.ntp: NTPv4, Client, length 48
19:06:54.375065 IP 172.18.108.15.ntp > 192.168.19.55.ntp: NTPv4, Client, length 48
```

Fügen Sie das Flag verbose -v hinzu, um die Zeitstempel aus den NTP-Paketen zu dekodieren.

tcpdump vpn 0 options "dst port 123 -v"

```
vedge1# tcpdump interface ge0/0 options "dst port 123 -n -v"
tcpdump -p -i ge0_0 -s 128 dst port 123 -n -v in VPN 0
tcpdump: listening on ge0_0, link-type EN10MB (Ethernet), capture size 128 bytes
19:10:13.364515 IP (tos 0xb8, ttl 64, id 62640, offset 0, flags [DF], proto UDP (17), length 76)
192.168.19.55.123 > 192.168.18.201.123: NTPv4, length 48
Client, Leap indicator: clock unsynchronized (192), Stratum 3 (secondary reference), poll 6 (64:
Root Delay: 0.103881, Root dispersion: 1.073425, Reference-ID: 10.88.244.1
Reference Timestamp: 3889015198.468340729 (2023/03/28 17:59:58)
Originator Timestamp: 3889019320.559000091 (2023/03/28 19:08:40)
Receive Timestamp: 3889019348.377538353 (2023/03/28 19:09:08)
Transmit Timestamp: 3889019413.364485614 (2023/03/28 19:10:13)
Originator - Receive Timestamp: +27.818538262
Originator - Transmit Timestamp: +92.805485523
19:10:13.365092 IP (tos 0xc0, ttl 255, id 7977, offset 0, flags [none], proto UDP (17), length 76)
```

192.168.18.201.123 > 192.168.19.55.123: NTPv4, length 48
Server, Leap indicator: (0), Stratum 8 (secondary reference), poll 6 (64s), precision -10
Root Delay: 0.000000, Root dispersion: 0.002166, Reference-ID: 127.127.1.1
Reference Timestamp: 3889019384.881000144 (2023/03/28 19:09:44)
Originator Timestamp: 3889019413.364485614 (2023/03/28 19:10:13)
Receive Timestamp: 3889019385.557000091 (2023/03/28 19:09:45)
Transmit Timestamp: 3889019385.557000091 (2023/03/28 19:09:45)
Originator - Receive Timestamp: -27.807485523
Originator - Transmit Timestamp: -27.807485523

Durchführung von Wireshark Capture über vManage

Wenn die Paketerfassung von vManage aktiviert wurde, kann der NTP-Datenverkehr auch direkt in eine von Wireshark lesbare Datei erfasst werden.

- 1. Wählen Sie das Dashboard für Netzwerkgeräte über Monitor > Network aus.
- 2. Wählen Sie den gewünschten vEdge aus.
- 3. Klicken Sie auf die Option Fehlerbehebung, gefolgt von Paketerfassung.
- 4. Wählen Sie VPN 0 und die externe Schnittstelle aus den Dropdown-Menüs aus.
- 5. Klicken Sie auf **Datenverkehrsfilter**. Hier können Sie den Zielport 123 und ggf. einen bestimmten Zielserver angeben.

Hinweis: Bei der Filterung nach IP-Adresse werden Pakete nur in eine Richtung erfasst, da der IP-Filter nach Quelle oder Ziel gefiltert wird. Da der Layer-4-Zielport in beide Richtungen den Wert 123 aufweist, wird nur nach dem Port gefiltert, um bidirektionalen Datenverkehr zu erfassen.

6. Klicken Sie auf Start.

vManage kommuniziert nun mit dem vEdge, um eine Paketerfassung entweder für 5 Minuten oder bis zum Auffüllen des 5-MB-Puffers zu sammeln, je nachdem, welcher Fall zuerst eintritt. Nach Fertigstellung kann diese Aufzeichnung zur Überprüfung heruntergeladen werden.

Häufige NTP-Probleme

NTP-Pakete nicht empfangen

Paketerfassungen zeigen ausgehende Pakete, die an den/die konfigurierten Server gesendet wurden, aber keine Antworten erhalten.

```
vedge1# tcpdump interface ge0/0 options "dst 192.168.18.201 && dst port 123 -n"
tcpdump -p -i ge0_0 -s 128 dst 192.168.18.201 && dst port 123 -n in VPN 0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on ge0_0, link-type EN10MB (Ethernet), capture size 128 bytes
14:24:49.364507 IP 192.168.19.55.123 > 192.168.18.201.123: NTPv4, Client, length 48
14:25:55.364534 IP 192.168.19.55.123 > 192.168.18.201.123: NTPv4, Client, length 48
14:27:00.364521 IP 192.168.19.55.123 > 192.168.18.201.123: NTPv4, Client, length 48
^C
3 packets captured
3 packets received by filter
0 packets dropped by kernel
```

Wenn Sie bestätigen, dass keine NTP-Pakete empfangen wurden, haben Sie folgende Möglichkeiten:

- Überprüfen Sie, ob das NTP richtig konfiguriert ist.
- Wenn Datenverkehr in VPN 0 einen Tunnel durchläuft, stellen Sie sicher, dass **allow-service ntp** oder **allow-service all** unter der Tunnelschnittstelle aktiviert ist.
- Überprüfen Sie, ob NTP von einer Zugriffsliste oder einem zwischengeschalteten Gerät blockiert wird.
- Suchen Sie nach Routing-Problemen zwischen der NTP-Quelle und dem -Ziel.

Synchron-Verlust

Ein Verlust der Synchronisierung kann auftreten, wenn der Dispersions- und/oder Verzögerungswert für einen Server sehr hoch wird. Hohe Werte zeigen an, dass die Pakete zu lange dauern, bis sie vom Server/Peer in Bezug auf den Stamm der Uhr an den Client gesendet werden. Das lokale System kann daher der Genauigkeit der im Paket enthaltenen Zeit nicht vertrauen, da es nicht weiß, wie lange es bis zum Eintreffen des Pakets gedauert hat.

Wenn der Pfad eine überlastete Verbindung enthält, die eine Pufferung verursacht, werden die Pakete verzögert, sobald sie an den NTP-Client gesendet werden.

Wenn Sie einen Verlust der Synchronisierung feststellen, müssen Sie die folgenden Links überprüfen:

- Ist der Pfad überlastet/überbelegt?
- Wurden verworfene Pakete beobachtet?
- Handelt es sich um Verschlüsselung?

Der Reichweitenwert in **show ntp peer** kann auf einen Verlust von NTP-Datenverkehr hinweisen. Wenn der Wert kleiner als 377 ist, werden Pakete gelegentlich empfangen, und der Client wird nicht mehr synchronisiert.

Die Geräteuhr wurde manuell eingestellt.

Die vom NTP bezogenen Uhrenwerte können mit dem Befehl **clock set** überschrieben werden. In diesem Fall werden die Offsetwerte für alle Peers deutlich erhöht.

INDEX	REMOTE	REFID	ST	TYPE	WHEN	POLL	REACH	DELAY	OFFSET	JITTER
1	x10.88.244.1	LOCAL(1)	2	u	40	64	1	293.339	-539686	88.035
2	x172.18.108.15	.GPS.	1	u	39	64	1	30.408	-539686	8.768
3	x192.168.18.201	LOCAL(1)	8	u	38	64	1	5.743	-539686	2.435

Ausführliche Aufnahmen zeigen auch, dass die Referenz-Zeitstempel und die Originator-Zeitstempel nicht übereinstimmen.

vedge1# tcpdump interface ge0/0 options "src 192.168.18.201 && dst port 123 -n -v"
tcpdump -p -i ge0_0 -s 128 src 192.168.18.201 && dst port 123 -n -v in VPN 0
tcpdump: listening on ge0_0, link-type EN10MB (Ethernet), capture size 128 bytes
00:01:28.156796 IP (tos 0xc0, ttl 255, id 8542, offset 0, flags [none], proto UDP (17), length 76)
192.168.18.201.123 > 192.168.19.55.123: NTPv4, length 48

vedge1# show ntp peer | tab

```
Server, Leap indicator: (0), Stratum 8 (secondary reference), poll 6 (64s), precision -10
Root Delay: 0.000000, Root dispersion: 0.002365, Reference-ID: 127.127.1.1
Reference Timestamp: 3889091263.881000144 (2023/03/29 15:07:43)
Originator Timestamp: 133810392.155976055 (2040/05/05 00:01:28)
Receive Timestamp: 3889091277.586000096 (2023/03/29 15:07:57)
Transmit Timestamp: 3889091277.586000096 (2023/03/29 15:07:57)
Originator - Receive Timestamp: -539686410.569975959
Originator - Transmit Timestamp: -539686410.569975959
^C
```

Um zu erzwingen, dass der vEdge den NTP-Status als Zeitquelle wieder einstellt, löschen Sie die Konfiguration unter **System ntp**, führen Sie einen Commit aus, fügen Sie sie erneut hinzu, und führen Sie einen neuen Commit aus.

Referenzen und zugehörige Informationen

- Fehlerbehebung und Fehlerbehebung bei NTP-Problemen (Cisco IOS-Geräte)
- Cisco SD-WAN-Befehlsreferenz
- Überprüfen des NTP-Status mit dem Befehl show ntp associations

Informationen zu dieser Übersetzung

Cisco hat dieses Dokument maschinell übersetzen und von einem menschlichen Übersetzer editieren und korrigieren lassen, um unseren Benutzern auf der ganzen Welt Support-Inhalte in ihrer eigenen Sprache zu bieten. Bitte beachten Sie, dass selbst die beste maschinelle Übersetzung nicht so genau ist wie eine von einem professionellen Übersetzer angefertigte. Cisco Systems, Inc. übernimmt keine Haftung für die Richtigkeit dieser Übersetzungen und empfiehlt, immer das englische Originaldokument (siehe bereitgestellter Link) heranzuziehen.