TCP-Verbindungen stellen nicht fest, wann Datenverkehr auf asymmetrische Pfade folgt

Inhalt

Einführung Problem Topologiediagramm Diagnose Lösung Schlussfolgerung

Einführung

Dieses Dokument beschreibt ein Problem, das auftritt, wenn asymmetrische Pfade für die Weiterleitung von Datenverkehr in einer SD-WAN-Fabric verwendet werden.

Problem

Secure Shell (SSH)-Verbindungen können nicht für host2 (Hostname - edgeclien2) von host1 (Hostname - edgeclien1) eingerichtet werden, aber gleichzeitig funktioniert SSH in umgekehrter Richtung einwandfrei.

```
[root@edgeclient2 user]# ssh user@192.168.40.21
user@192.168.40.21's password:
Last login: Sun Feb 10 13:26:32 2019 from 192.168.60.20
[user@edgeclient1 ~]$
```

[root@edgeclient1 user]# ssh user@192.168.60.20
<nothing happens after that>

oder

[user@edgeclient1 ~]\$ ssh user@192.168.60.20 ssh_exchange_identification: Connection closed by remote host

Sowohl edgeclient1- als auch edgeclient2-SSH-Daemons und Clients verfügen über zweifelsfrei funktionierende Konfigurationen, und Verbindungen können aus lokalem LAN-Segment erfolgreich hergestellt werden:

vedge4# request execute vpn 40 ssh user@192.168.60.20
user@192.168.60.20's password:
Last login: Sun Feb 10 13:28:23 2019 from 192.168.60.7
[user@edgeclient2 ~]\$

Alle anderen Transmission Control Protocol (TCP)-Anwendungen haben ähnliche Probleme.

Topologiediagramm

Diagnose

Diese Zugriffskontrolllisten (Access Control Lists, ACLs) wurden in entsprechenden Richtungen auf den serviceseitigen Schnittstellen von vEdge1 und vEdge3 konfiguriert und angewendet:

```
policy
access-list SSH_IN
  sequence 10
  match
   source-ip
                 192.168.40.21/32
   destination-ip 192.168.60.20/32
   !
   action accept
   count SSH_IN
   1
  !
 default-action accept
 !
 access-list SSH_OUT
  sequence 10
  match
```

```
source-ip 192.168.60.20/32
destination-ip 192.168.40.21/32
!
action accept
count SSH_OUT
!
default-action accept
!
```

Gespiegelte ACL wurde auf vEdge4 angewendet:

```
policy
access-list SSH_IN
 sequence 10
  match
   source-ip 192.168.60.20/32
   destination-ip 192.168.40.21/32
   !
  action accept
   count SSH_IN
   !
  !
 default-action accept
 !
 access-list SSH_OUT
  sequence 10
  match
   source-ip 192.168.40.21/32
   destination-ip 192.168.60.20/32
   !
   action accept
   count SSH_OUT
   !
  1
 default-action accept
 !
!
```

Darüber hinaus wurde die Anwendungstransparenz auf allen vEdge-Routern aktiviert, und die Datenflüsse wurden während der Phase der Einrichtung der SSH-Verbindung überprüft:

vedge1#	show ap	op cflowd flo	ows tab ; sh	ow poli	cy access-li	ist-count	ers		
						TCP			
TIME	EGRESS	INGRESS							
			SRC	DEST	IP	CNTRL	ICMP		TOTAL
TOTAL I	MIN MAX	Σ		то	INTF	INTF			
VPN SR	C IP	DEST II	P PORT	PORT	DSCP PROTO) BITS	OPCODE	NHOP IP	PKTS
BYTES	3 LEN LEN START TIME EXPIRE NAME NAME								
40 19	2.168.40	0.21 192.16	8.60.20 47866	22	0 6	24	0	192.168.109.7	3
227	66 87	Sun Feb 1	7 14:13:25 201	9 34	ge0/0	ge0/1			

```
COUNTER
NAME PACKETS BYTES
```

SSH_IN SSH_IN 3 227 SSH_OUT SSH_OUT 2 140 vedge3# show app cflowd flows | tab ; show policy access-list-counters TCP EGRESS INGRESS TIME SRC DEST IP CNTRL ICMP TOTAL ТО INTF INTF TOTAL MIN MAX VPN SRC IP DEST IP PORT PORT DSCP PROTO BITS OPCODE NHOP IP PKTS BYTES LEN LEN START TIME EXPIRE NAME NAME _____ _____ 40 192.168.60.20 192.168.40.21 22 47866 0 6 18 0 192.168.40.21 8 480 60 Sun Feb 17 14:14:08 2019 51 ge0/1 ge0/0 60 COUNTER NAME NAME PACKETS BYTES _____ SSH_IN SSH_IN 0 0 SSH_OUT SSH_OUT 7 420 vedge4# show app cflowd flows | tab ; show policy access-list-counters TCP TIME EGRESS INGRESS SRC DEST IP CNTRL ICMP TOTAL TOTAL MIN MAX ТО INTF INTF VPN SRC IP DEST IP PORT PORT DSCP PROTO BITS OPCODE NHOP IP PKTS BYTES LEN LEN START TIME EXPIRE NAME NAME _____ _____ _____ 0 6 2 192.168.40.21 192.168.60.20 47866 22 0 192.168.60.20 4 40 60 60 Sun Feb 17 14:17:44 2019 37 ge0/2 ge0/0 240 40 192.168.60.20 192.168.40.21 22 47866 0 6 18 0 192.168.110.6 8 74 74 Sun Feb 17 14:17:44 2019 49 ge0/0 ge0/2 592 COUNTER

NAME	NAME	PACKETS	BYTES		
SSH_IN	SSH_IN	8	592		
SSH_OUT	SSH_OUT	4	240		

Wie Sie an diesen Ausgängen sehen können, sind ein- und ausgehende Datenflüsse asymmetrisch. edgeclient1 (192.168.40.21) versucht, eine SSH-Sitzung mit edgeclient2 (192.168.60.20) einzurichten, und eingehender Datenverkehr wird über vEdge1 gesendet und Datenverkehr über vEdge3 zurückgegeben. Aus den ACL-Zählern können Sie auch sehen, dass die Anzahl der ein- und ausgehenden Pakete auf vEdge4 nicht mit der Summe in den entsprechenden Richtungen auf vEdge1 und vEdge3 übereinstimmt. Beim Testen mit dem Ping gehen keine Paketverluste ein:

[root@edgeclient1 user]# ping -f 192.168.60.20 -c 10000 PING 192.168.60.20 (192.168.60.20) 56(84) bytes of data. [root@edgeclient2 user]# ping -f 192.168.40.21 -c 10000
PING 192.168.40.21 (192.168.40.21) 56(84) bytes of data.

--- 192.168.40.21 ping statistics ---10000 packets transmitted, 10000 received, 0% packet loss, time 3402ms rtt min/avg/max/mdev = 0.212/0.318/2.766/0.136 ms, ipg/ewma 0.340/0.327 ms Außerdem können Sie auch ohne Probleme Dateien über scp/sftp kopieren.

Lösung

Einige DPI-Konfigurationen (Deep Packet Inspection) oder Datenrichtlinien wurden anfänglich vermutet, aber keine dieser Richtlinien wurde aktiviert:

vedge3# show policy from-vsmart
% No entries found.
vedge1# show policy from-vsmart
% No entries found.
Schließlich wurde jedoch festgestellt, dass die TCP-Optimierung aktiviert war:

vedge1# show app tcp-opt active-flows

		SRC	DEST		EGRESS INTF	INGRESS INTF	TX
RX VPN SRC IP	UNOPT PROXY DEST IP	PORT	PORT	START TIME	NAME	NAME	BYTES
BYTES TCP STATE	REASON IDENTI	ТҮ 					
40 192.168.40.2 0 In-progres	1 192.168.60.20 s - Client	47868 -Proxy	22	Sun Feb 17 14:18:13 2019	ge0_0	ge0_1	314

vedge1# show app tcp-opt expired-flows

							SRC	DEST						
TX	RX		UNC	PT PF	ROXY									
TIMES	ГАМР	VPN	SRC IP		DEST	IP	PORT	PORT	STAI	RT ΤΙ	ME			END
TIME			BYTES	BYTES	TCP	STATE	REASON	IDENTITY		DEI	ETE	REASON		
15498	19969608	40	192.168.	40.21	192.1	68.60.	7 22	56612	Sun	Feb	10	18:32:49	2019	Sun
Feb 1	0 18:36:03	3 2019	5649	4405	Opti	mized	-	Server-P	roxy	CLC	SED			
15498	20055487	40	192.168.	40.21	192.1	68.60.	7 22	56613	Sun	Feb	10	18:34:15	2019	Sun
Feb 1	0 19:07:40	5 2019	5719	4669	Opti	mized	-	Server-P	roxy	CLC	SED			
15504	08210511	40	192.168.	40.21	192.1	68.60.	20 47862	2 22	Sun	Feb	17	13:56:50	2019	Sun
Feb 1	7 13:56:58	3 2019	401	0	Opti	mized	-	Client-Pr	roxy	STA	TE-	TIMEOUT		
15504	08981634	40	192.168.	40.21	192.1	68.60.	20 4786	4 22	Sun	Feb	17	14:09:41	2019	Sun
Feb 1	7 14:09:49	9 2019	401	0	Opti	mized	-	Client-Pr	roxy	STA	TE-	TIMEOUT		
15504	09205399	40	192.168.	40.21	192.1	68.60.	20 4786	5 22	Sun	Feb	17	14:13:25	2019	Sun
Feb 1	7 14:13:33	3 2019	227	0	Opti	mized	-	Client-Pr	roxy	STA	TE-	TIMEOUT		
15504	09493042	40	192.168.	40.21	192.1	68.60.	20 47868	8 22	Sun	Feb	17	14:18:13	2019	Sun
Feb 1	7 14:18:21	2019	401	0	Opti	mized	-	Client-Pr	roxy	STA	TE-'	TIMEOUT		

Außerdem kann in debugs die Meldung ftm tcpopt CONN_TEARDOWN angezeigt werden.

vedge1# show log /var/log/tmplog/vdebug tail "-f" local7.debug: Feb 17 13:56:50 vedge1 FTMD[662]: ftm_tcpopt_flow_add[268]: Created new tcpflow :vrid-3 192.168.40.21/47862 192.168.60.20/22 local7.debug: Feb 17 13:56:58 vedge1 FTMD[662]: ftm tcpd send conn tear down[388]: Trying to pack and send the following message to TCPD local7.debug: Feb 17 13:56:58 vedge1 FTMD[662]: ftm_tcpd_send_conn_tear_down[408]: Sending following CONN_TD msg local7.debug: Feb 17 13:56:58 vedge1 FTMD[662]: ftm_tcpd_send_conn_tear_down[413]: 192.168.40.21:47862->192.168.60.20:22; vpn:40; syn_seq_num:4172167164; identity:0; cport_prime:0 local7.debug: Feb 17 13:56:58 vedge1 FTMD[662]: ftm_tcpd_msgq_tx[354]: Transfering size = 66 bytes data local7.debug: Feb 17 13:56:58 vedge1 FTMD[662]: ftm_tcpd_send_conn_tear_down[416]: Successfully sent conn_td msg to TCPD local7.debug: Feb 17 13:56:58 vedge1 FTMD[662]: ftm_tcpopt_propagate_tear_down[1038]: Sent CONN_TEARDOWN msg to tcpd for existing tcpflow :- vrid-3 192.168.40.21/47862 192.168.60.20/22 ; identity:CLIENT_SIDE_PROXY . Send Successful ! local7.debug: Feb 17 13:56:58 vedge1 FTMD[662]: ftm_tcpopt_append_expired_err_flow_tbl[958]: Appending flow vrid-3 192.168.40.21/47862 192.168.60.20/22 to the expired flow table at Sun Feb 17 13:56:58 2019 local7.debug: Feb 17 13:56:58 vedge1 FTMD[662]: ftm_tcpopt_append_expired_err_flow_tbl[980]: Appending flow vrid-3 192.168.40.21/47862 192.168.60.20/22 to the error flow table at Sun Feb 17 13:56:58 2019 local7.debug: Feb 17 13:56:58 vedge1 FTMD[662]: ftm_tcpopt_flow_delete[293]: Removing tcpflow :vrid-3 192.168.40.21/47862 192.168.60.20/22 local7.debug: Feb 17 13:56:58 vedge1 TCPD[670]: handle_upstream_connect[538]: Error - BP NULL local7.debug: Feb 17 13:56:58 vedge1 FTMD[662]: ftm_tcpd_msg_decode[254]: FTM-TCPD: Received FTM_TCPD_PB_FTM_TCPD_MSG_E_MSG_TYPE_CONN_CLOSED msg local7.debug: Feb 17 13:56:58 vedge1 FTMD[662]: ftm_tcpd_handle_conn_closed[139]: FTM-TCPD: Received CONN_CLOSED for following C->S local7.debug: Feb 17 13:56:58 vedge1 FTMD[662]: ftm_tcpd_handle_conn_closed[150]: 192.168.40.21:47862->192.168.60.20:22; vpn:40; syn_seq_num:4172167164; identity:0; cport_prime:47862; bind_port:0 local7.debug: Feb 17 13:56:58 vedge1 FTMD[662]: ftm_tcpd_handle_conn_closed[184]: FTM-TCPD: Could not find entry in FT for following flow local7.debug: Feb 17 13:56:58 vedge1 FTMD[662]: ftm_tcpd_handle_conn_closed[185]: vrid-3 192.168.40.21/47862 192.168.60.20/22

Hier sehen Sie ein Beispiel, in dem die TCP-Optimierung ordnungsgemäß funktioniert (CONN_EST-Nachricht ist sichtbar):

vedge3# show log /var/log/tmplog/vdebug tail "-f -n 0" local7.debug: Feb 17 15:41:13 vedge3 FTMD[657]: ftm_tcpd_msg_decode[254]: FTM-TCPD: Received FTM_TCPD_PB_FTM_TCPD_MSG_E_MSG_TYPE_CONN_CLOSED msg local7.debug: Feb 17 15:41:13 vedge3 FTMD[657]: ftm_tcpd_handle_conn_closed[139]: FTM-TCPD: Received CONN_CLOSED for following C->S local7.debug: Feb 17 15:41:13 vedge3 FTMD[657]: ftm_tcpd_handle_conn_closed[150]: 192.168.40.21:47876->192.168.60.20:22; vpn:40; syn_seq_num:2779178897; identity:0; cport_prime:47876; bind_port:0 local7.debug: Feb 17 15:41:15 vedge3 FTMD[657]: ftm_tcpd_msg_decode[258]: FTM-TCPD: Received FTM_TCPD_PB_FTM_TCPD_MSG_E_MSG_TYPE_CONN_EST msg local7.debug: Feb 17 15:41:15 vedge3 FTMD[657]: ftm_tcpd_handle_conn_est[202]: FTM-TCPD: Received CONN_EST for following C->S local7.debug: Feb 17 15:41:15 vedge3 FTMD[657]: ftm_tcpd_handle_conn_est[213]: 192.168.40.21:47878->192.168.60.20:22; vpn:40; syn_seq_num:2690847868; identity:0; cport_prime:47878; bind_port:0 local7.debug: Feb 17 15:41:15 vedge3 FTMD[657]: ftm_tcpopt_flow_add[268]: Created new tcpflow :vrid-3 192.168.40.21/47878 192.168.60.20/22

Schlussfolgerung

Für die TCP-Optimierung müssen die Datenflüsse symmetrisch sein. Um dieses Problem zu beheben, muss entweder die TCP-Optimierung deaktiviert (keine VPN 40-TCP-Optimierung) oder eine Datenrichtlinie erstellt werden, um zu erzwingen, dass TCP-Datenflüsse in beide Richtungen denselben Pfad verwenden. Weitere Informationen hierzu finden Sie im <u>SD-WAN-Designleitfaden</u> im Abschnitt Datenverkehrssymmetrie für DPI, Seite 23.