Konfigurieren von Packet-Trace zum Debuggen von PBR-Datenverkehr auf XE-Plattformen

Inhalt

Einführung Voraussetzungen Anforderungen Verwendete Komponenten Konfigurieren Überprüfen Fehlerbehebung Zugehörige Informationen

Einführung

Dieses Dokument beschreibt die Vorgehensweise zur Aktivierung der Paketverfolgung auf der IOS-XE-Plattform zur Erfassung von richtlinienbasiertem Routing (PBR)-Datenverkehr auf der Plattform der Cisco Integrated Service Router (ISR) der Serie 4000.

Mitarbeiter: Prathik Krishnappa, Cisco TAC Engineer.

Voraussetzungen

Anforderungen

Für dieses Dokument bestehen keine speziellen Anforderungen.

Verwendete Komponenten

Dieses Dokument ist nicht auf bestimmte Software- und Hardwareversionen beschränkt.

Die Informationen in diesem Dokument wurden von den Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen.

Konfigurieren

Die folgende Konfiguration ermöglicht die Aktivierung der Paketverfolgung zum Debuggen von PBR-Datenverkehr:

PBR-Konfigurationen:

```
route-map PBR permit 10
match ip address 102
set ip next-hop 192.168.1.18
ip access-list extended 102
permit ip 192.168.1.0 0.0.3.255 any
permit ip 192.168.2.0 0.0.0.255 any
interface GigabitEthernet0/0/1
ip address 192.168.2.10 255.255.255.248
no ip redirects
no ip unreachables
no ip proxy-arp
ip nat inside
ip policy route-map PBR
load-interval 30
negotiation auto
route-map PBR, permit, sequence 10
 Match clauses:
   ip address (access-lists):102
 Set clauses:
   ip next-hop 192.168.1.18
Policy routing matches: 500 packets, 400 bytes
```

Erstellen Sie zum Debuggen eines bestimmten Subnetzes eine Zugriffsliste:

ip access-list ext 103 permit ip host 192.168.3.10 any

Anwenden der Zugriffsliste im PBR:

route-map PBR match ip address 103

Führen Sie bedingtes Debuggen auf der Schnittstelle durch, auf der PBR angewendet wird:

debug platform condition interface gigabitethernet 0/0/1 ipv4 access-list 103 both

Aktivieren Sie diese Debugger:

```
debug platform packet-trace packet 64
debug platform packet-trace packet 16 fia-trace
debug platform packet-trace enable
debug platform condition start
Initiieren Sie Datenverkehr aus dem Subnetz.
```

Hinweis: Verwenden Sie das <u>Command Lookup Tool</u> (nur <u>registrierte</u> Kunden), um weitere Informationen zu den in diesem Abschnitt verwendeten Befehlen zu erhalten.

Überprüfen

Für diese Konfiguration ist derzeit kein Überprüfungsverfahren verfügbar.

Fehlerbehebung

Dieser Abschnitt enthält Informationen, die Sie zur Fehlerbehebung bei Ihrer Konfiguration verwenden können.

```
Router #sh debugging
IOSXE Conditional Debug Configs:
Conditional Debug Global State: Start
Conditions Direction
 _____
GigabitEthernet0/0/1 & IPV4 ACL [102] both
Feature Condition Type Value
Feature Type Submode Level
-----|-----|
IOSXE Packet Tracing Configs:
debug platform packet-trace enable
debug platform packet-trace packet 16 fia-trace data-size 2048
Packet Infra debugs:
Ip Address Port
```

show platform paket-trace paket 0 zeigt das erste verfolgte Paket.

Zusammenfassung zeigt, dass das Eingabepaket t am Gig 0/0/1 empfangen und an die Ausgangsschnittstelle Gig 0/0/2 weitergeleitet wird und der Status fwd ist.

In der Pfadverfolgung finden Sie Quell- und Ziel-IP-Adresse.

Überprüfen Sie, ob das Paket richtlinienbasiert ist: Feld IPV4_INPUT_PBR.

```
Feature: FIA_TRACE
   Entry : 0x10f81c00 - IPV4_INPUT_PBR
   Lapsed time: 23220 ns
Router#sh platform packet-trace packet 0
Packet: 0
                 CBUG ID: 458151
Summary
         : GigabitEthernet0/0/1
 Input
 Output : GigabitEthernet0/0/2
 State : FWD
 Timestamp
   Start : 355835562633335 ns (12/28/2016 08:11:52.433136 UTC)
   Stop
          : 355835562660187 ns (12/28/2016 08:11:52.433163 UTC)
Path Trace
 Feature: IPV4
   Source : 192.168.3.10
   Destination : 74.125.200.189
   Protocol : 17 (UDP)
     SrcPort : 56018
     DstPort : 443
 Feature: FIA_TRACE
   Entry : 0x10f82018 - DEBUG_COND_INPUT_PKT
   Lapsed time: 2060 ns
```

Feature: FIA_TRACE Entry : 0x10f81c38 - IPV4_INPUT_SRC_LOOKUP_ISSUE Lapsed time: 2160 ns Feature: FIA_TRACE : 0x10f81c34 - IPV4_INPUT_DST_LOOKUP_CONSUME Entry Lapsed time: 3080 ns Feature: FIA_TRACE : 0x10f81c2c - IPV4_INPUT_SRC_LOOKUP_CONSUME Entry Lapsed time: 700 ns Feature: FIA_TRACE Entry : 0x10f82000 - IPV4_INPUT_FOR_US_MARTIAN Lapsed time: 800 ns Feature: FIA_TRACE : 0x10f81c14 - IPV4_INPUT_FNF_FIRST Entry Lapsed time: 15280 ns Feature: FIA_TRACE : 0x10f81ff4 - IPV4_INPUT_VFR Entry Lapsed time: 620 ns Feature: FIA_TRACE Entry : 0x10f81c00 - IPV4_INPUT_PBR Lapsed time: 23220 ns Feature: FIA_TRACE : 0x10f816f4 - IPV4_INPUT_TCP_ADJUST_MSS Entry Lapsed time: 1500 ns Feature: FIA_TRACE Entry : 0x10f81e90 - IPV4_INPUT_LOOKUP_PROCESS Lapsed time: 5100 ns Feature: FIA_TRACE

Zugehörige Informationen

- IOS-XE Datapath Packet Trace-Funktion
- <u>Technischer Support und Dokumentation Cisco Systems</u>