Erstkonfiguration für OSPF über Broadcast Media

Inhalt

Einführung Voraussetzungen Anforderungen Verwendete Komponenten Zugehörige Produkte Konventionen Konfigurieren Netzwerkdiagramm Konfigurationen Überprüfen Fehlerbehebung Befehle zur Fehlerbehebung Zugehörige Informationen

Einführung

In diesem Dokument wird eine Beispielkonfiguration für Open Shortest Path First (OSPF) über das Übertragungsmedium wie Ethernet und Token Ring erläutert. Mit dem Befehl <u>show ip ospf</u> <u>interface wird</u> standardmäßig sichergestellt, dass OSPF auf allen Broadcast-Medien als Broadcast-Netzwerktyp ausgeführt wird.

Voraussetzungen

<u>Anforderungen</u>

Die Leser dieses Dokuments sollten folgende Themen kennen:

- Ethernet-Technologien
- Konfigurieren von OSPF
- <u>OSPF-Nachbarstaaten</u>

Verwendete Komponenten

Die Informationen in diesem Dokument gelten für diese Software- und Hardwareversionen.

Zwei Cisco 2501-Router

Cisco IOS® Softwareversion 12.2(27)

Die Informationen in diesem Dokument wurden von den Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen.

Zugehörige Produkte

Sie können diese Konfiguration auch mit zwei beliebigen Routern mit mindestens einer Ethernet-, Token Ring- oder FDDI-Schnittstelle verwenden.

Konventionen

Weitere Informationen zu Dokumentkonventionen finden Sie in den <u>Cisco Technical Tips</u> <u>Conventions</u>.

Konfigurieren

In diesem Abschnitt finden Sie Informationen zum Konfigurieren der in diesem Dokument beschriebenen Funktionen.

Hinweis: Weitere Informationen zu den in diesem Dokument verwendeten Befehlen finden Sie unter <u>OSPF-Befehle</u> oder verwenden Sie das <u>Command Lookup Tool</u> (nur <u>registrierte</u> Kunden).

Netzwerkdiagramm

In diesem Dokument wird diese Netzwerkeinrichtung verwendet.

Konfigurationen

In diesem Dokument werden diese Konfigurationen verwendet.

- <u>Router1</u>
- <u>Router2</u>

Router1

```
interface Loopback0
ip address 192.168.45.1 255.255.255.0
!
interface Ethernet0
ip address 10.10.10.1 255.255.255.0
!
router ospf 1
network 10.10.10.0 0.0.0.255 area 0
!--- OSPF is configured to run on the !--- Ethernet
interface with an Area ID of 1. !
Router2
interface Loopback0
ip address 172.16.10.1 255.255.255.0
!
interface Ethernet0
ip address 10.10.10.2 255.255.255.0
!
router ospf 1
network 10.10.10.0 0.0.0.255 area 0
!--- OSPF is configured to run on the !--- Ethernet
```

Überprüfen

interface with an Area ID of 1. !

Dieser Abschnitt enthält Informationen zur Bestätigung, dass Ihre Konfiguration ordnungsgemäß funktioniert.

Bestimmte **show**-Befehle werden vom <u>Output Interpreter Tool</u> unterstützt (nur <u>registrierte</u> Kunden), mit dem Sie eine Analyse der **show**-Befehlsausgabe anzeigen können.

 <u>show ip ospf neighbor</u>: Zeigt OSPF-Nachbarinformationen auf Schnittstellenbasis an. Die Ausgabe von Router1 wird hier angezeigt:

Router1#show ip ospf neighbor

Neighbor IDPriStateDead TimeAddressInterface172.16.10.11FULL/BDR00:00:3810.10.10.2Ethernet0Aus dieser Ausgabe lautet der Nachbar-Status in Router1 in Bezug auf Router2 "Full" (Voll), dereine Nachbarn-ID von 172.16.10.1 hat. Router 2 ist ein Backup Designated Router (BDR) indiesem Broadcast-Netzwerk. Weitere Informationen über die Anzeige des Befehls show ip ospfneighborfinden Sie unter Was zeigt die Befehlsaufdeckung des show ip ospf neighbor?

 <u>show ip ospf interface</u>: Zeigt OSPF-bezogene Schnittstelleninformationen an. Die Ausgabe von Router1 auf der Ethernet-Schnittstelle wird hier angezeigt:

Router1#show ip ospf interface ethernet 0

Ethernet0 is up, line protocol is up Internet Address 10.10.10.1/24, Area 0 Process ID 1, Router ID 192.168.45.1, **Network Type BROADCAST**, Cost: 10 Transmit Delay is 1 sec, State DR, Priority 1 Designated Router (ID) 192.168.45.1, Interface address 10.10.10.1 Backup Designated router (ID) 172.16.10.1, Interface address 10.10.10.2 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5 Hello due in 00:00:00 Index 2/2, flood queue length 0 Next 0x0(0)/0x0(0) Last flood scan length is 2, maximum is 2 Last flood scan time is 0 msec, maximum is 0 msec Neighbor Count is 1, Adjacent neighbor count is 1 Adjacent with neighbor 172.16.10.1 (Backup Designated Router) Suppress hello for 0 neighbor(s)

Aus dieser Ausgabe wissen Sie, dass der Netzwerktyp für die Ethernet 0-Schnittstelle übertragen wird. Weitere Informationen über die Anzeige des Befehls <u>show ip ospf interface</u> finden Sie unter <u>Was zeigt die Befehlsübersicht über die show ip ospf-Schnittstelle?</u>

Ebenso werden hier die Ausgaben für die show-Befehle auf Router2 angezeigt.

Router2#show ip ospf neighbor

Neighbor ID	Pri	State	Dead Time	Address	Interface
192.168.45.1	1	FULL/ DR	00:00:31	10.10.10.1	Ethernet0

In der Befehlsausgabe des Befehls **show ip ospf neighbor** wissen Sie, dass Router1 der designierte Router (DR) in diesem Broadcast-Netzwerk ist.

Router2#show ip ospf interface ethernet 0

Ethernet0 is up, line protocol is up Internet Address 10.10.10.2/24, Area 0 Process ID 1, Router ID 172.16.10.1, Network Type BROADCAST, Cost: 10 Transmit Delay is 1 sec, State BDR, Priority 1 Designated Router (ID) 192.168.45.1, Interface address 10.10.10.1 Backup Designated router (ID) 172.16.10.1, Interface address 10.10.10.2 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5 Hello due in 00:00:00 Index 1/1, flood queue length 0 Next 0x0(0)/0x0(0) Last flood scan length is 1, maximum is 1 Last flood scan time is 0 msec, maximum is 0 msec Neighbor Count is 1, Adjacent neighbor count is 1 Adjacent with neighbor 192.168.45.1 (Designated Router) Suppress hello for 0 neighbor(s)

Die Ausgabe des Befehls **show ip ospf interface ethernet 0** von Router2 zeigt auch, dass der Netzwerktyp für die Ethernet 0-Schnittstelle gesendet wird.

Fehlerbehebung

Dieser Abschnitt enthält Informationen zur Fehlerbehebung in Ihrer Konfiguration.

Befehle zur Fehlerbehebung

Bestimmte **show**-Befehle werden vom <u>Output Interpreter Tool</u> unterstützt (nur <u>registrierte</u> Kunden), mit dem Sie eine Analyse der **show**-Befehlsausgabe anzeigen können.

Hinweis: Bevor Sie Debugbefehle ausgeben, lesen Sie <u>die</u> Informationen <u>Wichtige Informationen</u> <u>über Debug-Befehle</u>. Es gibt verschiedene Zustände, wenn Adjacencies zwischen zwei Routern gebildet werden. Sie können den Befehl **debug ip ospf adj** verwenden, um die verschiedenen Zustände sowie die DRund BDR-Wahl anzuzeigen, die in einem Broadcast-OSPF-Netzwerk stattfindet. In früheren Versionen der Cisco IOS-Software können Sie den Befehl **debug ip ospf adjacency** verwenden. Sie müssen diesen **debug**-Befehl ausführen, bevor die Nachbarbeziehung hergestellt wird.

Diese Ausgabe bezieht sich auf Router1. Die fett formatierten Ausgabeteile sind die verschiedenen Zustände, in denen der Adjacency-Prozess verläuft.

Router1#debug ip ospf adj OSPF adjacency events debugging is on *Mar 1 01:41:23.319: OSPF: Rcv DBD from 172.16.10.1 on Ethernet0 seq 0x1F6C opt 0x42 flag 0x7 len 32 mtu 1500 state INIT *Mar 1 01:41:23.323: OSPF: 2 Way Communication to 172.16.10.1 on Ethernet0, state 2WAY *Mar 1 01:41:23.327: OSPF: Neighbor change Event on interface Ethernet0 *Mar 1 01:41:23.327: OSPF: DR/BDR election on Ethernet0 *Mar 1 01:41:23.331: OSPF: Elect BDR 172.16.10.1 *Mar 1 01:41:23.331: OSPF: Elect DR 192.168.45.1 *Mar 1 01:41:23.335: DR: 192.168.45.1 (Id) BDR: 172.16.10.1 (Id) *Mar 1 01:41:23.339: OSPF: Send DBD to 172.16.10.1 on Ethernet0 seq 0x2552 opt 0x42 flag 0x7 len 32 *Mar 1 01:41:23.343: OSPF: First DBD and we are not SLAVE *Mar 1 01:41:23.359: OSPF: Rcv DBD from 172.16.10.1 on Ethernet0 seq 0x2552 opt 0x42 flag 0x2 len 52 mtu 1500 state EXSTART *Mar 1 01:41:23.363: OSPF: NBR Negotiation Done. We are the MASTER *Mar 1 01:41:23.367: OSPF: Send DBD to 172.16.10.1 on Ethernet0 seq 0x2553 opt 0x42 flag 0x3 len 72 *Mar 1 01:41:23.387: OSPF: Rcv DBD from 172.16.10.1 on Ethernet0 seq 0x2553 opt 0x42 flag 0x0 len 32 mtu 1500 **state EXCHANGE** *Mar 1 01:41:23.391: OSPF: Send DBD to 172.16.10.1 on Ethernet0 seq 0x2554 opt 0x42 flag 0x1 len 32 *Mar 1 01:41:23.411: OSPF: Rcv DBD from 172.16.10.1 on Ethernet0 seq 0x2554 opt 0x42 flag 0x0 len 32 mtu 1500 state EXCHANGE *Mar 1 01:41:23.415: OSPF: Exchange Done with 172.16.10.1 on Ethernet0 *Mar 1 01:41:23.419: OSPF: Synchronized with 172.16.10.1 on Ethernet0, state FULL 01:41:23: %OSPF-5-ADJCHG: Process 1, Nbr 172.16.10.1 on Ethernet0 from LOADING to FULL, Loading Done *Mar 1 01:41:23.879: OSPF: Build router LSA for area 0, router ID 192.168.45.1, seq 0x80000004 *Mar 1 01:41:23.923: OSPF: Build network LSA for Ethernet0, router ID 192.168.45.1 *Mar 1 01:41:25.503: OSPF: Neighbor change Event on interface Ethernet0 *Mar 1 01:41:25.507: OSPF: DR/BDR election on Ethernet0 *Mar 1 01:41:25.507: OSPF: Elect BDR 172.16.10.1 *Mar 1 01:41:25.511: OSPF: Elect DR 192.168.45.1 *Mar 1 01:41:25.511: DR: 192.168.45.1 (Id) BDR: 172.16.10.1 (Id)

Geben Sie den Befehl <u>debug ip ospf events</u> aus, um den Wert des Hello-Timers zu überprüfen, wie in dieser Beispielausgabe dargestellt.

Router1#debug ip ospf events
OSPF events debugging is on
Router1#
*Mar 1 04:04:11.926: OSPF: Rcv hello from 172.16.10.1 area 0 from
Ethernet0 10.10.10.2
*Mar 1 04:04:11.930: OSPF: End of hello processing
*Mar 1 04:04:21.926: OSPF: Rcv hello from 172.16.10.1
 area 0 from Ethernet0 10.10.10.2
*Mar 1 04:04:21.930: OSPF: End of hello processing

*Mar 1 04:04:31.926: OSPF: Rcv hello from 172.16.10.1 area 0 from Ethernet0 10.10.10.2 *Mar 1 04:04:31.930: OSPF: End of hello processing *Mar 1 04:04:41.926: OSPF: Rcv hello from 172.16.10.1 area 0 from Ethernet0 10.10.10.2 *Mar 1 04:04:41.930: OSPF: End of hello processing *Mar 1 04:04:51.926: OSPF: Rcv hello from 172.16.10.1 area 0 from Ethernet0 10.10.10.2 *Mar 1 04:04:51.930: OSPF: End of hello processing *Mar 1 04:05:01.926: OSPF: Rcv hello from 172.16.10.1 area 0 from Ethernet0 10.10.10.2 *Mar 1 04:05:01.930: OSPF: End of hello processing *Mar 1 04:05:11.926: OSPF: Rcv hello from 172.16.10.1 area 0 from Ethernet0 10.10.10.2 *Mar 1 04:05:11.930: OSPF: End of hello processing *Mar 1 04:05:21.926: OSPF: Rcv hello from 172.16.10.1 area 0 from Ethernet0 10.10.10.2 *Mar 1 04:05:21.930: OSPF: End of hello processing Diese Ausgabe zeigt, dass das Hello-Paket alle 10 Sekunden ausgetauscht wird.

Zugehörige Informationen

- <u>Über ein Multi-Access-Netzwerk verbundene OSPF-Router</u>
- Erstkonfiguration für OSPF über Nicht-Broadcast-Verbindungen
- Fehlerbehebung OSPF
- <u>OSPF-Support-Seite</u>
- <u>Support-Seite für IP-Routing-Technologie</u>
- Technischer Support und Dokumentation Cisco Systems