Konfigurieren von IS-IS für IP auf Cisco Routern

Inhalt

Einführung Voraussetzungen Anforderungen Verwendete Komponenten Konventionen IS-IS - Beispielkonfiguration Netzwerkdiagramm Konfigurationen IS-IS-Überwachung Überwachen von IS-IS-Adjacencies Überwachen der IS-IS-Datenbank Überprüfen Fehlerbehebung Zugehörige Informationen

Einführung

In diesem Dokument wird eine grundlegende Konfiguration des IS-IS (Intermediate System-to-Intermediate System) für IP auf Cisco Routern erläutert. Neben der Konfiguration wird gezeigt, wie verschiedene IS-IS-Informationen überwacht werden, z. B. Informationen zur Wahl des Designated Intermediate System (DIS) und Informationen zur IS-IS-Datenbank.

Voraussetzungen

Anforderungen

Für dieses Dokument bestehen keine speziellen Anforderungen.

Verwendete Komponenten

Die Informationen in diesem Dokument basieren auf der Cisco IOS ® Softwareversion 12.1(5)T9.

Die Informationen in diesem Dokument wurden von den Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen.

Konventionen

Weitere Informationen zu Dokumentkonventionen finden Sie unter <u>Cisco Technical Tips</u> <u>Conventions</u> (Technische Tipps zu Konventionen von Cisco).

IS-IS - Beispielkonfiguration

In diesem Abschnitt erhalten Sie Informationen zum Konfigurieren der in diesem Dokument beschriebenen Funktionen.

Hinweis: Verwenden Sie das <u>Command Lookup Tool</u> (nur <u>registrierte</u> Kunden), um weitere Informationen zu den in diesem Dokument verwendeten Befehlen zu erhalten.

Um IS-IS für IP auf einem Cisco Router zu aktivieren und um Routing-Informationen mit anderen IS-IS-fähigen Routern auszutauschen, müssen Sie die folgenden beiden Aufgaben ausführen:

- Aktivieren Sie den IS-IS-Prozess, und weisen Sie einen Bereich zu.
- IS-IS für IP-Routing auf einer Schnittstelle aktivieren

Weitere Konfigurationsaufgaben sind optional, jedoch sind die beiden oben genannten Aufgaben erforderlich. Weitere Informationen zu optionalen Konfigurationsaufgaben finden Sie unter Konfigurieren integrierter IS-IS.

Netzwerkdiagramm

In diesem Dokument wird die folgende Netzwerkeinrichtung verwendet:

Konfigurationen

In diesem Dokument werden folgende Konfigurationen verwendet:

- Router 1
- Router 2
- Router 3

In den folgenden Beispielkonfigurationen werden alle Router in der oben genannten Topologie mit folgenden Parametern konfiguriert:

- Gebiet 49 0001
- Layer-1-Router (L1) und Layer-2-Router (L2) (dies ist der Standardwert, sofern nichts anderes

angegeben wird)

- Keine optionalen Parameter
- Ausführung von IS-IS nur für IP
- Loopback-Schnittstellen (Loopbacks werden von IS-IS angekündigt, nicht IS-IS aktiviert)

IS-IS-Überwachung

Es stehen viele show-Befehle zur Verfügung, um den Zustand von IS-IS auf einem Cisco Router

zu überwachen. Dieses Dokument zeigt einige der einfacheren Befehle, die auf den oben angegebenen Routerkonfigurationen basieren.

Das <u>Output Interpreter Tool</u> (nur <u>registrierte</u> Kunden) (OIT) unterstützt bestimmte **show**-Befehle. Verwenden Sie das OIT, um eine Analyse der **Ausgabe des** Befehls **show anzuzeigen**.

Überwachen von IS-IS-Adjacencies

Verwenden Sie den Befehl **show clns neighbor**, um die Adjacencies für einen bestimmten Router anzuzeigen. Dies ist die Ausgabe dieses Befehls von Router 1 (R1) und Router 2 (R2):

R1# show clns neighbor									
System Id	Interface	SNPA	State	Holdtime	Type Protocol				
R2	Et0	0000.0c47.b947	Up	24	L1L2 ISIS				
R2# show cl	.ns neighbor								
R2# show cl System Id	.ns neighbor Interface	SNPA	State	Holdtime	Type Protocol				
R2# show cl System Id R1	.ns neighbor Interface Et0	SNPA 0000.0c09.9fea	State Up	Holdtime 24	Type Protocol L1L2 ISIS				

Im obigen Beispiel erkennt R1 R2 an seiner E0-Schnittstelle, wobei der Adjacency-Typ L1L2 ist. Da R1 und R2 mit Standardkonfigurationen konfiguriert sind, senden und empfangen sie L1- und L2-Hellos.

R2 erkennt R1 an seiner E0-Schnittstelle und Router 3 (R3) an seiner S0-Schnittstelle. Für den Adjacency-Typ gilt dieselbe Erklärung wie oben.

Da sich R1 und R2 an derselben Ethernet-Schnittstelle befinden, gibt es für L1 und L2 ein DIS. Sie können dies mit dem Befehl **show clns interface <int>** auf Router 1 überprüfen, wie unten gezeigt:

```
R1# show clns interface ethernet 0
Ethernet0 is up, line protocol is up
Checksums enabled, MTU 1497, Encapsulation SAP
Routing Protocol: ISIS
Circuit Type: level-1-2
Interface number 0x0, local circuit ID 0x1
Level-1 Metric: 10, Priority: 64, Circuit ID: R2.01
Number of active level-1 adjacencies: 1
Level-2 Metric: 10, Priority: 64, Circuit ID: R2.01
Number of active level-2 adjacencies: 1
Next ISIS LAN Level-1 Hello in 5 seconds
Next ISIS LAN Level-2 Hello in 1 seconds
```

In der obigen Ausgabe ist R2 das DIS. Es ist der R2 (DIS), der das Pseudonode Link State Packet (LSP) generiert und mit einer Nicht-Null-LSP-ID gekennzeichnet ist - R2.01

Da Metric/Priority für beide Router in L1/L2 identisch ist, ist der Tiebreaker für das DIS die höchste SNPA-Adresse (Subnetz Points of Attachment) im LAN-Segment. Die SNPA-Adresse bezieht sich auf die Adresse der Datenverbindung, in diesem Fall auf die MAC-Adresse. Eine weitere Instanz der Sicherungsschichtadressen sind X.25-Adressen und Frame-Relay-DLCI.

Beachten Sie, dass die DIS für beide Ebenen ausgewählt ist und dass keine Backup-DIS vorhanden ist, wie bei Open Shortest Path First (OSPF), das über einen Backup Designated Router (DR) verfügt.

Zu den weiteren interessanten Punkten der oben genannten Ergebnisse gehören:

- Schaltungstyp: L1L2
- Metriken und Prioritäten für L1 und L2 sind Standardwerte. 10 und 64
- L1- und L2-Adjacencies: 1 (aus R1-Sicht auf die Ethernet-Schnittstelle nur R2)
- IS-IS LAN-Hellos für L1 und L2
- Maximale Übertragungseinheit (MTU): 1497. Der Grund hierfür ist, dass der IS-IS-Header Open Systems Interconnection (OSI) in einen 802.2-Header mit 3 Byte eingekapselt wird.

Überwachen der IS-IS-Datenbank

Der Befehl **show isis database (detail)** zeigt den Inhalt der IS-IS-Datenbank an. Dies ist die Ausgabe dieses Befehls, wenn dieser auf R2 ausgegeben wird. Da IS-IS ein Link-State-Protokoll ist, sollte die Link-State-Datenbank für alle Router im gleichen Bereich identisch sein.

R2# show isi	s	database							
ISIS Level-1 Link State Database:									
LSPID		LSP Seq Num	LSP Checksum	LSP Holdtime	ATT/P/OL				
R1.00-00		0x000008B	0x6843	55	0/0/0				
R2.00-00	*	0x0000083	0x276E	77	0/0/0				
R2.01-00	*	0x0000004	0x34E1	57	0/0/0				
R3.00-00		0x0000086	0xF30E	84	0/0/0				
ISIS Level-2 Link State Database:									
LSPID		LSP Seq Num	LSP Checksum	LSP Holdtime	ATT/P/OL				
R1.00-00		0x00000092	0x34B2	41	0/0/0				
R2.00-00	*	A8000000x0	0x7A59	115	0/0/0				
R2.01-00	*	0x0000004	0xC3DA	50	0/0/0				
R3.00-00		0x000008F	0x0766	112	0/0/0				

In der obigen Ausgabe sind einige Punkte zu beachten. Zunächst zur LSP-ID:

Die LSP-ID, R1.00-00, kann in drei Abschnitte unterteilt werden: R1/00/00

- R1 = System-ID
- 00 = nicht null Wert für den Pseudonode. Beachten Sie R2.01-00 ist der pseudonode LSP.
- 00 = Fragmentnummer. In diesem Fall gibt es nur Fragment-Nummern von 00, was bedeutet, dass alle Daten in dieses LSP-Fragment passen und keine weiteren Fragmente erstellt werden müssen. Wenn Informationen vorliegen, die nicht in den ersten LSP passen, hätte IS-IS weitere LSP-Fragmente wie 01, 02 usw. erstellt.

Das * kennzeichnet die LSPs, die von *diesem* Router generiert wurden, den Router, auf dem der Befehl **show** ausgegeben wurde. Da dieser Router ein L1- und L2-Router ist, enthält er auch eine L1- und L2-Datenbank.

Sie können sich auch einen bestimmten LSP ansehen und das **Detail-**Schlüsselwort verwenden, um weitere Informationen anzuzeigen. Ein Beispiel hierfür ist hier:

R2# show isis database R2.00-00 detail ISIS Level-1 LSP R2.00-00									
R2.00-00 *	0x0000093	0x077E	71	0/0/0					
Area Address	s: 49.0001								
NLPID:	0xCC								
Hostname: R2	2								
IP Address:	172.16.2.2								
Metric: 10	IP 17	2.16.12.0 255.	255.255.0						
Metric: 0	IP 17	2.16.2.2 255.2	55.255.255						

```
Metric:10IP 172.16.23.0 255.255.255.252Metric:10IS R2.01Metric:10IS R3.00
                   IS R3.00
  Metric: 10
ISIS Level-2 LSP R2.00-00
LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL
R2.00-00 * 0x000009A 0x5A69 103
                                                     0/0/0
 Area Address: 49.0001
  NLPTD:
               0xCC
  Hostname: R2
  IP Address: 172.16.2.2
  Metric: 10 IS R2.01
  Metric: 10
                   IS R3.00
  Metric: 10
                   IP 172.16.23.0 255.255.255.252
 Metric: 10
Metric: 10
Metric: 0
Metric: 10
                   IP 172.16.1.1 255.255.255.255
                   IP 172.16.3.3 255.255.255.255
                   IP 172.16.2.2 255.255.255.255
                   IP 172.16.12.0 255.255.255.0
```

Die obige Ausgabe zeigt, dass die Loopback-Adresse dieses Routers mit dem Wert **0** angegeben wird. Dies liegt daran, dass das Loopback mit einem Befehl **passiver Schnittstelle** im IS-IS-Prozess des Routers angekündigt wird und dass die Loopback-Schnittstelle selbst nicht für IS-IS aktiviert ist. Alle anderen IP-Präfixe haben einen Wert von 10, d. h. die Standardkosten für die Schnittstellen, auf denen IS-IS ausgeführt wird.

<u>Überprüfen</u>

Für diese Konfiguration ist derzeit kein Überprüfungsverfahren verfügbar.

Fehlerbehebung

Für diese Konfiguration sind derzeit keine spezifischen Informationen zur Fehlerbehebung verfügbar.

Zugehörige Informationen

- IS-IS Multiarea-Unterstützung
- Support-Seite für IP-Routing
- <u>Technischer Support und Dokumentation Cisco Systems</u>