ATT-Bit-Filterung mit CLNS Filter-Set -Konfigurationsbeispiel

Inhalt

Einführung Voraussetzungen Anforderungen Verwendete Komponenten Konfigurieren Netzwerkdiagramm Anforderungen Standardverhalten CLNS-Routing-Konfiguration CLNS-Verifizierung ATT-Bit-Filterungskonfiguration Überprüfen Fehlerbehebung

Einführung

Dieses Dokument enthält ein Konfigurationsbeispiel zum Filtern des Attach-Bit (ATT-Bit). Wenn Sie als Routing-Protokoll in einem Netzwerk das Intermediate System-to-Intermediate System (IS-IS) verwenden, legt der Level 1 (L1)/Level 2 (L2)-Router (R2) das ATT-Bit auf seinen L1 Link State Packets (LSPs) fest. Ein L1/L2-Router legt das ATT-Bit automatisch fest. Der Zweck eines ATT-Bits besteht in der Durchführung von Inter-Area Routing. Wenn ein L1/L2-Router mit mehr als einem Bereich verbunden ist, legt er das ATT-Bit auf seinem L1-LSP fest. Wenn mehrere L1/L2-Router vorhanden sind, wählen die Router in L1 den nächsten L1/L2-Router aus.

In einigen Fällen ist es möglicherweise nicht wünschenswert, dass ein L1/L2-Router immer das ATT-Bit festlegt. In der Topologie, die im Abschnitt "Netzwerkdiagramm" angezeigt wird, ist R2 der L1/L2-Router. Es handelt sich um eine L2-Adjacency mit zwei verschiedenen Bereichen: 49.0003 und 49.0004. Wie gezeigt, besteht nur in Bereich 49.0003 eine Verbindung zu einem ISP. Sie möchten nicht, dass R2 das ATT-Bit in seinen L1 LSPs einstellt, wenn die Verbindung mit Bereich 49.0003 unterbrochen ist. Das Standardverhalten ist, dass R2 das ATT-Bit auch dann noch einstellt, wenn die Verbindung mit Area 49.0003 unterbrochen wird. Dies liegt daran, dass es sich immer noch um einen L1/L2-Router handelt, der Peering mit mehr als einem Bereich bietet. Dieses Dokument enthält ein Konfigurationsbeispiel dafür, wie ein L1/L2-Router (R2) vom Festlegen des ATT-Bits in seinen L1-LSPs gefiltert wird.

Hinweis: Für die Kommunikation zwischen 49.0001 und 49.0004 müssen L2-Routen ohne ATT-Bit in die L1-Domäne neu verteilt werden.

Voraussetzungen

Anforderungen

Cisco empfiehlt, IS-IS zu kennen. Das CLNS-Routing (Connectionless Network Service) muss global und unter den erforderlichen Schnittstellen aktiviert werden. Sie verwenden das CLNS-Filterset, sodass das CLNS-Routing aktiviert werden muss.

Verwendete Komponenten

Dieses Dokument ist nicht auf bestimmte Software- und Hardwareversionen beschränkt.

Die Informationen in diesem Dokument wurden von den Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen.

Konfigurieren

Netzwerkdiagramm

Hier wird eine einfache Topologie angezeigt. Es ist erforderlich, dass Sie keinen L1/L2 (R2)-Router benötigen, um das ATT-Bit festzulegen, sobald die Verbindung mit Area 49.0003 ausfällt.

Anforderungen

Grundlegendes IS-IS ist bereits gemäß der Topologie konfiguriert. Die Netzwerkanforderung besteht darin, dass R2 das ATT-Bit nicht mehr in seiner L1-Datenbank festlegen darf, wenn er

nicht über 49.0003 (den Backbone-Bereich) Bescheid weiß.

Standardverhalten

R2 ist der L1/L2-Router und bietet Peering mit mehreren Area Routern.

e Circuit Id
R2.01
R3.01
R4.01

Da R2 der L1/L2-Router ist, wird in der Topologie das ATT-Bit festgelegt, und es wird eine Standardroute zu R1 (Area 49.0001) bereitgestellt.

Dies wird in der L1-Datenbank von R2 angezeigt.

R2# show isis databa	se level-1			
Tag 1:				
IS-IS Level-1 Link	State Database:			
LSPID	LSP Seq Num	LSP Checksum	LSP Holdtime	ATT/P/OL
R1.00-00	0x000000D	0x99B7	1178	0/0/0
R2.00-00	* 0x0000016	0x3274	1190	1/0/0 <<<<< ATTach
bit Set.				
R2.01-00	* 0x0000008	0xE4BF	1181	0/0/0

Wenn die Schnittstelle zwischen R2 und R3 geschlossen ist, verfügt der R2 nicht über eine Verbindung zum Backbone-Bereich und darf daher das ATT-Bit nicht in seiner L1 LSP-Datenbank gemäß unseren Anforderungen ankündigen.

```
!
R2(config)#int eth 0/1
R2(config-if)#shutdown
!
```

Nachdem die Schnittstelle zu R3 (Eth0/1) geschlossen wurde, wird sie nicht mehr mit R3 gleichgesetzt.

R2#show isis neighbors							
Tag 1:							
System Id	Туре	Interface	IP Address	State	Holdtime	Circuit Id	
Rl	Ll	Et0/0	10.1.2.1	UP	21	R2.01	
R4	L2	Et0/2	10.2.4.4	UP	9	R4.01	

R2 kündigt jedoch weiterhin das ATT-Bit an, und R1 erhält immer noch eine Standardroute über R2. Dies ist in dieser Netzwerktopologie unerwünscht.

R2#show isis data	abase level-1				
Tag 1:					
IS-IS Level-1 Lin	nk State Database:				
LSPID	LSP Seq Num	LSP Checksum	LSP Holdtime	ATT/P/OL	
R1.00-00	0x000000D	0x99B7	974	0/0/0	
R2.00-00	* 0x0000017	0x76D5	1188	1/0/0	<<< ATTach
bit still set !					

```
R1#show ip route 0.0.0.0
Routing entry for 0.0.0.0/0, supernet
Known via "isis", distance 115, metric 10, candidate default path, type level-1
Redistributing via isis 1
Last update from 10.1.2.2 on Ethernet0/0, 00:29:20 ago
Routing Descriptor Blocks:
* 10.1.2.2, from 10.2.4.2, 00:29:20 ago, via Ethernet0/0
Route metric is 10, traffic share count is 1
```

Wie in den vorherigen Beispielen gezeigt, ist das Standardverhalten im Hinblick auf die Netzwerkanforderungen unerwünscht. Bringen Sie die Schnittstelle Eth0/1 auf R2 (Verbindung zu R3) wieder auf. Hier können Sie IS-IS ATT-Bit-Filterung mit dem CLNS-Feature-Set verwenden.

CLNS-Routing-Konfiguration

Gehen Sie wie folgt vor, um das CLNS-Routing zu konfigurieren:

1. CLNS-Routing global aktivieren:

```
!
R1(config)#clns routing
R2(config)#clns routing
R3(config)#clns routing
R4(config)#clns routing
!
```

2. Aktivieren Sie CLNS-Routing auf allen IS-IS-fähigen Schnittstellen. R1(config-if)#clns router isis 1 <<< Here, 1 is the IS-IS tag.

CLNS-Verifizierung

Überprüfen Sie nach der Konfiguration der CLNS, ob R2 von der CLNS-Route erfahren wird.

R2#show clns route
C 49.0001.0000.0000.2222.00 [1/0], Local IS-IS NET
C 49.0001 [2/0], Local IS-IS Area
i 49.0003 [110/10]
 via R3, Ethernet0/1
i 49.0004 [110/10]
 via R4, Ethernet0/2

ATT-Bit-Filterungskonfiguration

Gehen Sie wie folgt vor, um die ATT-Bit-Filterung zu konfigurieren:

1. Erstellen Sie den CLNS-Filtersatz.

```
! clns filter-set ATT-BIT permit 49.0003
```

2. Erstellen Sie die route-map.

```
route-map ATT permit 10
```

!

```
match clns address ATT-BIT
```

3. Konfigurieren Sie die route-map unter dem IS-IS-Prozess auf R2. Irouter isis 1

```
set-attached-bit route-map ATT
!
```

Überprüfen

1

In diesem Abschnitt überprüfen Sie, ob Ihre Konfiguration ordnungsgemäß funktioniert.

Das <u>Output Interpreter Tool</u> (nur <u>registrierte</u> Kunden) unterstützt bestimmte **show**-Befehle. Verwenden Sie das Output Interpreter Tool, um eine Analyse der **Ausgabe des** Befehls **show** anzuzeigen.

Wenn diese Konfiguration vorhanden ist, darf der L1/L2-Router R2 das ATT-Bit NICHT in der L1-Datenbank festlegen, wenn die CLNS-Route zu 49.0003 verloren geht.

Wenn eine Verbindung zum Backbone besteht, ist die CLNS-Route zu 49.0002 auf R2 vorhanden.

```
R2#show clns route 49.0003
Routing entry for 49.0003
Known via "isis 1", distance 110, metric 10, Dynamic Entry
Routing Descriptor Blocks:
via R3, Ethernet0/1
isis 1, route metric is 10, route version is 22
De dia CLNC Deute verbanden ist muse D2 dee ATT Ditfectler
```

Da die CLNS-Route vorhanden ist, muss R2 das ATT-Bit festlegen:

```
R2#show isis database level-1
Tag 1:
IS-IS Level-1 Link State Database:
                  LSP Seq Num LSP Checksum LSP Holdtime
LSPID
                                                           ATT/P/OL
R1.00-00
                   0x000000B 0x9DB5 815
                                                           0/0/0
R2.00-00
                * 0x00000012 0x3A70
* 0x00000007 0xE6BE
                                           954
                                                           1/0/0
R2.01-00
                                          950
                                                           0/0/0
R4.00-00
                   0x0000003 0x7201
                                           0 (756)
                                                           0/0/0
                   0x0000002 0x6D06
R4.01-00
                                           0 (676)
                                                            0/0/0
```

Fahren Sie die Schnittstelle zwischen R2 und R3 herunter.

```
R2#show clns route 49.0002
```

Routing entry for 49.0002

Known via "isis 1", distance 110, metric 10, Dynamic Entry

Routing Descriptor Blocks:

via R3, Ethernet0/1, (Interface down), (Adjacency down) <<<<< Interface goes Down

is is 1, route metric is 10, route version is 23 $({\tt Aging \ out: \ 23/24}) \quad <<<$ The route is aging out

Nach dem Timeout existiert die Route nicht mehr in der CLNS-Routing-Tabelle.

R2#**show clns route 49.0002** R2# Überprüfen Sie die Datenbank auf R2.

R2#show isis database 11 Tag 1: IS-IS Level-1 Link State Database: ATT/P/OL LSP Seq Num LSP Checksum LSP Holdtime LSPID * 0x00000017 0xD6A7 1133 0/0/0 <<<< ATT R2.00-00 bit not set. * 0x0000000E 0x79C9 901 R2.01-00 0/0/0 R1.00-00 0x00000010 0xF74D 592 0/0/0 Wie in der Datenbank zu sehen, wird das ATT-Bit von R2 nicht festgelegt, obwohl es sich dennoch um einen L1/L2-Router handelt.

Rl#show ip route 0.0.0.0 % Network not in table Auf diese Weise können Sie das ATT-Bit entsprechend den Anforderungen filtern.

Fehlerbehebung

Für diese Konfiguration sind derzeit keine spezifischen Informationen zur Fehlerbehebung verfügbar.